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1. Introduction. Let us put

(1.1) Fs)= 2a.exp(—ss) (s=o+it, 0SM <M< ... <A + ).
n=1

We shall begin with

DEFINITION. ([1,p.605]) Zf (1.1) is simply convergent for o >0, we call
the point s, on o = 0 Picard’s point, provided that (1.1) assumes every value,
except perhaps two (oo included), infintely many times, in the half-circle: |s —
sl € & o >0, where & is an arbitrary positive constant.

In this note, we shall study the relation between Picard’s points and
Dirichlet-coefficients {a,} of (1.1) in the most general cases. In the special
cases, we have already established some results in the previous note [1, p.
610, p.612].

The main theorem reads as follows:

MAIN THEOREM. JZLet (1.1) have the simple convergence-abscissa os = 0.
Then s = 0 ¢s Picard’'s point for (1.1), provided that there exist two sequences
{%} (0 < %1 0), {ve} (v&:7eal) such that

1.2 (a);l_ijrn 1/x, - log|As] = O, ]lciﬁ 1/log x%. - log* log* |A¢l = 1/2 +
I~ Seo

0 < a <1/2), where Ay = X buy, bay = R(anexp( — ivy), [x]: Gauss's symbol.
o T 'SA, <%
(b) kl;m log o/log [%.] < &, where o : the number of sign-changes of bn,

M€ L[]l —w), [%]1+w)] O<w<]I)
(c) the sequence {bay} (Mn € {I;}) has the normal sign-change in {I.}
(k=1,2,...) [2, p. 285. Definition III].
2. Lemmas. To establish our main theorem, we need some lemmas.

LEMMA 1[1, p.610. corollary 1]. Let (1.1) have the simple convergence-
abscissa as = 0. Ther s =0 ¢s Picard’s pioint for (1.1), provided that

. 1
(a) lim |On|™ =1,
n=»0
@.1) (b) li_})h 1/log m-log* log* |Om| > 1/2,
m-yoo i

where O,, = (e/m)™ 2 @a AT exXp (— Ayp) O<w<1).

m(l-w)SApsSm(l+w)

LEMMA 2. Under the same assumptions as in lemma 1, the following
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conditions (2.2) are equivalent to (2.1):
I 1
(@) Hm [F™1Q)/m!|™ =1,
m->c0
(b) lim1/log m-log* log*|F™X(1)/m!| > 1/2.

M—>cc

2.2)

Proor. By A. Ostrowski’s theorem ([3, 4; pp. 12-16], [2, p. 288]) (2.1) (a) is
the necessary-sufficient condition for s = 0 to be the singular point of (1.1).
Hence (2.1) (a) is equivalent to (2. 2) (a).

Since s =1 is a regular point of (1.1), (1.1) is developablz in Taylor
series:

F(s) = 2 FoL)jmte(s — 1),

m=1

where FO(1) = (— 1" > @, A0 exp( — An) = (— 1Y"{Ry + Hyu + Su).

n=1

23 R.= > H,= X , Sn= > .
A Shn <m(1—w) MA=1w)EppEm(1+w) 7> m(1+w)
O<w<l).
By a lemma ([1,p.606 lemma 2], [5,p.32 (1.13)]), we have easily
2.4 Bm1/m!« |Ru+ Sul =0.

From the assumption (2.1) (b), we get
.5 1/2< }El/log m-log* log*|0,] = ﬁl/logm-log 10g| Oyl
Since, by Stirling’s formula, we can put
Hy/m! = On(1 + o(1)/(2 wm)!/2,
by (2.5) we can easily prove
(2.6) lim1/log m - 15g+ log* |Hu/m'| = ﬁl/log m-log log|On| >1/2.

m->o0
Since we can put

IF(m)(l)/m‘l = 'l/m' hd (Rm + IIm -+ Sm.” i l}Im/m'! - Il/m le (Rm =+ Sm)!,
by (2.4), (2.6) we get '
@.7 lim 1/log m - log* log* | F™(1)/m | > 1/2.
M->c0
By the slight modification of the above arguments, we can prove that (2.5)
follows from (2.7). q.e. d.

LemMa 3[1,p.606.lemma 3]. ZLet {(z) = zanz"’ have |z| <1 as its

n=0
convergence-civcle. Then

,IEEI 1/log n-log* log*|aa| = p/(1 + p).
where i) p= 1731 [log(1/(1 — r))] 'log* log* M(z),
() M) = l}/zl‘ag_clf(z)l.



ON THE SINGULARITIES OF DIRICHLET SERIES 231

LEMMA 4. Let ¢(2) be the integral function such that, for any given &
(>0
2.8 ¢ (2)] < exp(€&]z]) Sfor |z| > R(&).

Put Fys) = 281 ¢ (An) €xp( — Ans).
n=1

Then (2.10) follows, provided that Fus) satisfies (2.9):

{(a) fim | Fym(1)/m % = 1,

2.9 (b)  Tm1/log m-log* log*| Fyn(l)/m| >1/2,
M-poo
(@)  Hm|Feol)/m! % =1,
(2.10) o T T
(b) lim 1/log m « log* log* | F™(1)/m!| > 1/2.
Mm->e0

ReEMARK. By a lemma [2,p. 287 lemma 3, (2.11)], Fy(s) is simply con-
vergent at least for ¢ > 0. Hence, taking account ot (2.9) (@), the simple
convergence-abscissa of Fy(s) is exactly equal to o = 0.

Proor. Let us put

co

B2) = 2calntez, @) = 2(— e/

n=0 n=0
Since o
lim|c, | = lim log M(r)/r (M(r) = l}dlaxlcﬁ(z)l)
n-yeo 7"—>oo 2] =7
[6,p.62], (2.8) yields us
(2.11) lim|c,|Y® = 0.
n>c0

Then, by Cramer-Ostrowski’s theorem [4, pp. 49-52], for any given & (>0),
we have

(2.12) Fy(s) = 1/2ni f F(s 4+ 2)¢p*(2) dz
|2] =€
On account of (2. 12), the regularity of Fy(s) at s = s, follows from the re-

gularity of F(s) at s =s,. Hence, (2.10) (@) follows from (2.9) (a). Thus,
to establish our lemma, it suffices to prove that (2.14) follows from (2.13):

B 1
{(a) lim | Fo(1)/mi |7 = 1,
m->co

(2.13) (b) fim 1/log m - log* log* | Fo(1)/m!| < 1/2.
Mm-yoo
{(a) fim | Fyo () /m1 | = 1,
Mm->co
(2.14) (b) lim 1/logm-log*log* | Fym(1)/m!| <1/2.
Mm-yo0

By (2.11), for any given &(>0), there exists a constant K(&) such that
lenl < K (E/2) n=012,...).
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Therefore
2.15) |$*@] = 2 leal /™1 < 2 K/e.
¢ =e n=0
Combining (2.12) with (2.15), we get
Mz, Fy) =|M?§!F"’(5)| = |Fy(s)| (Iso— 1] =7)

< M(R,F)5- f |$*(2)| |dz| <2K-M(R,F),
2] =(1=-7)/2

Where M(R, F) = Ma)%lF(s)l,R =7+1—-7)/2 0<r<1.

Is=1]
Hence,

(2. 16) Py = linlm 1/log(1/1 — 7r) - log* log* M(r, Fy)
-
__<_El’i11 1/10og(1/1 — R)+log* log* M(R, F) = p.
>

Therefore, by (2.13) and lemma 3,
pp=p=1,
so that, again by this lemma, we have (2.14)(b), which proves our lemma.

LeMMA 5. Under the same assumptions as in the main theorem, we

have
(i) Iiln (rv+1 - 7’1/) > 0, li_n;llru - 7\‘nl > 0:
v-)co Vv, N>c0

(ii) limlogw/log7r, < a (=1/2),
v>oo
provided that {r,} is the sequence arranged in the order of magnitude of

{1/2:(An + An-1)}, where the sign-change occurs between bn,, and ba_1; An,
)\,n—l GIL, k= 1,2.)

PrOOF. On account of (¢) of the main theorem, (i) is evident. Taking
suitable subsequence, if necessary, we can suppose that
[%es1] > 20x] - (1 + w)/(1 — w), (2 =1,2,...).
Hence,

[1/2 . [xk+1] > [xL]
\ e — w) > [%J(L+ w), so that LIy =0, § % j.

Putting lim logoi/log [%] = @ < &, by virtue of (b). for any given & (>0),
k>oo
there exists k(E) such that

2.17)

(2.18) Opvi < [Hpsi]PFe B+éE<a, £=0,1,2,...).
Therefore, by (2.17) and (2. 18)

” r r 1 (B+e)t
(2.19) EO‘Ic+£ < 2[3\7};+i]8+8 < [Xpar]3te °2(‘2">

i=0 i=0 =0

< w1 - (37}
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For sufficiently large » = »(€), we have easily

k-1

(2. 20) Do < [HparlBre for » =7 (&).
i=1

By (2.19) and (2.20)

(2.21) S < [Hal+ee O(1) for m = k(E) + 7(&).

i=1

Ifrn€lh, v=o1+02+ .... + 041+ oy, o, =0 Hence, by (2.21)

logv < log (2m> < (B + &) log[x] + O1),
i=1

so that
lim logv/logr, < (8 + €) lﬁ'log[xk]/log{[xk] ‘A —w)}=(B+ 8.
Letting €0,
EP: logv/logr,<B < «a,

which proves our lemma.

LEMMA 6. Under the same assumptions as above, there exists the integral
Junction ¢(z) (p(A\s): real) such that

(i) {(Gap-Pd )} M€l k=1,2,...) has the same sign.
(ii) for any given &(> 0),

{(a) [ (2)] < exp(]z!7*) for |z| > R(&),
(b) exp( —A¥e) < |p(An)| < exp (AL*e) Jor A > R(E),
where :Tiﬁl logv/logr, (< a=<1/2).

(2.22)

o

(iii) Fy(s) = Ea,. d(\n) exp (— AyS) has the simple convergence-

n=1
abscissa o = 0.

Proor. The convergence-exponent of {7,} is v (< a < 1/2) (lemma 5 (ii)).
Let ¢ (2) be the canonical product of {r,}

@) = I E@z/r, 0= L —z/r).

v=1 v=1
Then, (i) is evident. Since the order of the canonical product of {7} is
equal to the convergence-exponent of {7,}, the order of ¢ (z) is 7. Hence,
(2.22) (@) is obvious. By the well-known property of the canonical product,
we have
|p ()] >exp(— |z]v*) for|z]| > RE), |z—7,| >7r,~ 9 (v=12...).
Therefore, by lemma 5 (i), (2.22) (b) follows immediately.
By (2.22) and a lemma [2,p.287 lemma 3], Fy(s) has the simple con-
vergence-abscissa o = 0. q.e.d
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3. Proof of the main Theorem. Let us put
On(Fy) = (e/my» 2 @n (M) N XD ( — ) (0<w<1),
mM(1—w)SAEm(1+w)

where ¢ (2) is the integral function defined in lemma 6.
Then by lemma 6(i),

@1 [Oz(Fy)| = |exp ( — i) » Oap(Fy)|
2|3 bus BRI/ [ exp ( — A)
Anely
2| S Baw O e/ImINH exp (=)
[ZEISA <
> S barpra)l et
[rx)=hp <Tg '

On the other hand, by (2.23) (b)

|Ax] = 2 b,,,,zc = 2 bn,kqs()\'n) '1/(]5(7\%)
[l Ay <23 ["rISA <7k
= 1 2 bn,k ° d’(xn) ! * €Xp (x%-"E) for X > R(e)!
rRI=A, < ’
so that :
(3.2 1 S bu bha) | = exp (— 2%) « | Ay for %, > R(&).
[rx'Shn <t
Hence, by (3.1) and (3.2)
3.3) | Oy (F3) | -exp(l + 279 = A for x, > R(E)

Since vy + E< @ <1/2, by (3.3) and (1.2)
E@ | Oray (Fy) % = I@IAH””’“ =1,
{;_rg 1/log [%:] - log* log* | Oy (Fy)| = 1@ 1/log %, - log* log* | Ayl
—(y+8& =124+ (a—v—E&)>1/2,

so that
1
Iim] Om,(Fd))P“ g 1’
(3.4) "
lim 1/log m-log* log*|Ou(Fy)| > 1/2.
NM-> oo

Since Fy(s) has the simple convergence-abscissa o = 0 by lemma 6 (iii), by
(3.4) and lemma 2,

- 1
(Um!|F{m(1)/met|m™ = 1,
3.5) i

lim 1/log m - log* log*|Fg™(1)/m!| > 1/2.

Mm->e0
Hence, by (2.22) (a) and lemma 4,
-— 1
im|Fo(1)/m!|w = 1,
Mm->co0
lim 1/logm-log* log* |F™(1)/m!| > 1/2.

m->c0

Therefore, by lemma2 and lemmal, s =0 is Picard’s point for (1.1),
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which proves our main theorem.

4. Theorems. We can deduce series of theorems from the main
theorem.

THEOREM 1. Let (1.1) have the simple convergence-abscissa os = 0. Then
s =0 s Picard’s point for (1.1), provided that there exist two sequences {\n,},
{vx} (vi: real) such that

(41 (a) lim 1/Aq-loglbl =0, lim 1/logAn, - log* log*|b| = 1/2 + e
im im

k:

where 0 < a <1/2, b, = R (Gn, €xD( — Y1)
(b) lk1_r>n log o/10g [As,] < &, where oy: the number of sign-changes of
bnje = R(an exp( — i), A € LI ] (1 —w), g ]+ w)] 0O < w < 1).

(c) the sequence bun; (N, € I,) has the normal sign-change in {I,}(k =
1,2,...).

Proor. Taking account of the main theorem, it suffices to prove the
Zexistence of a sequence {x.} such that

(1) [ = gl (k=1,2...)
(ii) {Lm 1/%.-log|As] =0,

4. 2)

]]CLE 1/log %, - log* log*[A,| =1/24+ a’ O<a=a’ <1/2)
where A, = Z bu, &

(rpISN, <Tg
Let us put
A, = lim l/x-log’ > bn’,\,’,

(et i<z

(4.3)

lAz = lim 1’log x- log* ]0g+§ 2 bap| =1/2 +a,
' elTe) (T1EAy <T

where I;: N ] =2 <[Mn,]+1(k=1,2,...). Then, by the entirely similar
arguments as in the previous note [2, p. 290], we have

(4. 4) A =0.

Hence, we can easily prove that

(4.5) 0=A:=1, ie —12=5a'<1/2

On account of (4.3), for any given &(> 0), there exists X(&) such that

2 b'n,l.:

[r1=A, <P
\ee{Tpy

(4.6) < exp {x!lz+ar+e} for [x] > X(&).

Now we have easily

b!.: = Z b"hk - 2 bu,k, if [)\.nkl é Xnk—l < h"k'

:}‘”klé)‘"é)‘",c ApplEin <Ang—1
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= 2 bn,k’ if 7\,nk—1 < [Knk] < 7\.nk.
D IS0 S0,
Therefore, by (4.6)
[b] < 2exp{xt 2+*"+¢} < 2 xD {([An,] + DH/2+%"+<} for .1 > X(&),

so that

124+ a = lk'lg 1/1og Ay, - log* log* b <1/2 4+ &’ + &.
Letting €—0, on account of (4.1) and (4.5).
4.7 I<a=z=a =1/2

Taking account of (4.3), (4 4) and (4.7), there exist two sequences
{#;}, {x.} such that

A = IEIE l/x,;-log\ 2 bl =0 (%] = D)),

4.8) iz 1SAn <, ’
Ay = g@ 1/logx, - log*log* | X bus=1/2+ &' (5,1 = [y,
: Iy, 1SAg <y,

O<a=sa <1/2).
Let us define {x} as follows:

Max” > bn,kl: ‘ > bag } =
S <o, lg, 1Shn <2y,
(X% = 2, or 2, [%]=[x]=[x]=[AuD)

Then, by (4.3) and (4.8), we can easily establish (4.2), which proves our
theorem.

2 bn,ic

[TrlsSAn <zp

)

THEOREM 2. Let (1.1) have the simple convergence-abscissa os = 0. Then
s = 0 is Picard’s point for (1.1), provided that there exists a sequence {x.)} (0
< %,1 ) such that

4.9 (a) ,}Trﬁ 1/%,-log|As] =0, %ﬁ 1/log x, - log* log*|A,| >1/2,
c>e0 o0

where &, = X R (a).
o i=A, <7
(b) R(an) = Oi Jfor [%](1—w)=h = [%1(1 4+ w),
k=12..., 0O<w<1).

\

For its proof, we need only to put ¢, =0 (=1,2,...) in the main
theorem.

THEOREM 3. Let (1.1) have the simple convergence-abscissa os = 0. Then
s = 0 is Picarg’s point for (1.1), provided that there exists a sequence {%,} such
that

(a) ,]C'i'rﬁ 1/x-log|A;| =0, l’?m 1/log x.-log*log*|Ai|l =1/2 + «
oo G=>o0
(a > 0),
where A, = > an

[zx]=An <7k
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(4.10) (B Ra)=0 Jfor vy € [[%](1—w), [%]1A+ w)]
k=12... 0<w<1),
(¢) (i) lim 1/A,-log (cos 6,) =0,
I,\I;)f?’k}
(ii) Tim 1/log X, -log* log*{(cos 6,)-1} < a,

(oetrr
where 0, = arg (a,), LIn: [%]Sx< %, (k=1,2,...).
Proor. On account of theorem 2, it is sufficient to prove (4.9)(a). By
the entirely similar arguments zs in the previous note [7, p. 293], and (4. 10)

(a), (o),
lim 1/% -log|A.| = 0.
ke

Hence we need only establish
%Lni 1/log %, - log* log* | Ay| > 1/2.

On the other hand,
Al = | X (@) = 2 [aulcos b,

Anely Apely
= cos(On,) 2 |a@s| = cos (ank)’ 2 An
Anely Anelg
where cos(0y,) = 1\){[1}1 {cos(0,)}. Therefore
n€l K

t

zlciTn log Ay, /l0g %, - 1/10g Ay, - log™* log* {(cOs On,)1}
+ }C_uﬁ 1/log x, - log* log* | Ay zllch 1/log %, - log* log*|A;|
oo e
=1/2+ a.
so that, by (c) (ii),
Tim 1/log x, - log* log*|A;| = 1/2 + a — lim 1/1og A\ - log* log*{(cos 6,)~1}
koo . >

Anelly)

>1/2,
which is to be proved.
As its immediate corollary, we get
COROLLARY 1[1,p.612]. Let (1.1) with |arg(a,)| <60 < 7 /2 have the simple

conver gence-abscissa os = 0. Then s =0 is Picard's point provided that there
exists a sequence {x.} (0 < x%,1 o) such that

’lci;rﬁl/%-loglA;I =0, ?i?n 1/log x, - log* log*|A;| > 1/2,
oo {0
where Ar= X G

[Zx]SAp <Tk

THEOREM 4. Let (1.1) have the simple convergence-abscissa os = 0. Then
every point on o =0 is Picard’s point for (1.1), provided that there exists a
sequence {\y,} such that
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(a) }_i-fﬁ 1/An, < logla,,| =0, lim1/log A\, -log* log™* ||
(oo koo

=1/2 + a, O<a=<1/2).
(4.11) (b) Iki'rﬁlogs,u./log A < @, where s.: the number of an 0, Ay €
Sco
Ll nf ] (1T — w), A, ] (A + w)l k=12,..., 0<w<1)
(© Hm  A+1 —Aa) >0.
(;‘bzrn+1€’k

Proor. Putting v, = arg (a,,) (k=1,2,...) in theorem 1, all the as-
sumptions of theorem 1 is evidently satisfied. Hence s = 0 is Picard’s point.
By the transformation s = s’ + ¢ and the arguments as above, s=1if is
Picard’s point for (1.1), which proves our theorem.

As its corollary we obtain
COROLLARY 2. Let (1.1) with lim (Ays1 — Aa) >0 have the simple con-
n->oco

ver gence-abscissa o = 0. If lim1/log A, -log* log*|a,| = 1/2 + a (a > 0), and

N-Soo

Tim log n/log A, < &, then every point on o = 0 is Picard’'s point.
n~->o0

Proor. Since evidently limlog n/A, = 0, by G. Valiron’s theorem [4, p. 4]

n->eo
the simple convergence-abscissa of (1.1) is determined by
(4.12) Iim 1/, -logla,.| = 0.
n->e0

Hence we can easily prove that
lim1/log A, -log*log *la.] =1/2+a, 0< aa <1/2.

Therefore, for r;:;; given &(>0), there exists a sequence {A,.} such that
(4.13) kl—i)ril 1/log An, - log* log*|an,| =1/2 4+ a, 0 < a = ;/2,
lan,| > exp (AT} (k=1,2,...).
so that, by (4.12)
0= hg 1/An - log* | @a] g&iﬁﬁ: 1/Aa, - log*|@,,| =0, i.e.
4.14) LI;E 1/x, < log*|as,| = 0.
Denoting by N(r) the number of A;s contained in [0.7], by ﬁ_)@ log n/
log A, = B < a, for any given & (> 0), "
Nlr) < Mt < r3*e forr=R(E), B+ &< a.
Hence 0 == Nl (1 + w)) < {a ] (1 + w)}fre,
where s : the number of a,=+0, A € LI [N, ] (1 — w), ] (14 w)], so that
g—qglog s/log M ] S B + &< a.
Letting £—0,
(4.15) }}E{} log s/log An ] S B < a.
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By (4.14), (4.13), (4.15) and lim(Ay+1 —As) >0, all the assumptions of

N>
theorem 4 are satisfied, which proves our corollary.
Since lim log n/log A, = 0, follows from limA,+1/As > 1, we get

N> o
CorROLLARY 3 [1,p.610]. ZLet (1.1) with im Ans1/As > 1 have the simple
N>oo

conver gence-abscissa os = 0. If lim1/log A, -+ log*log*|a,| >1/2, then every
n-yoo

‘point on o =0 is Picard’s point for (1.1).
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