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1. Introduction. Let us put
CO

(1. 1) F(s) = 2X eχP ( ~ λ"s) (s = σ + it, 0 ̂  XT < λa < . . . < λn-> + oo).
n=ι

We shall begin with

DEFINITION, (fl, p. 605]) If (1. 1) is simply convergent for σ > 0, we call
the point s0 on σ = 0 Picard's point, provided that (1. 1) assumes every value,
except perhaps two (oo included), infintely many times, in the half-circle: \s —
s0 1 < £, σ > 0, where £ is an arbitrary positive constant.

In this note, we shall study the relation between Picard's points and
Dirichlet-coefficients {an} of (1. 1) in the most general cases. In the special
cases, we have already established some results in the previous note [1, p.
610, p. 612].

The main theorem reads as follows :

MAIN THEOREM. Let (1. 1) have the simple convergence-abscissa σs = 0.
Then s = 0 is Picard's point for (1. 1), provided that there exist two sequences

(0 < xk t oo), {jk} (γfc : real) such that

(1.2)(a)Thnl/ΛΓfc log|ΔA;| = 0, lim I/log #* log+ log+ |Δ*| - 1/2 4- a
fc->oo fc->oo

(0 < a <Ξ 1/2), where Δfc = 2#Λlfc, Λ ,* = ^(α» eχP( "~ fV*))j M Gauss's symbol.
L^^λn<ίCA:

(b) ϊim log σ fc/log M < < ,̂ where σfc : ίto number of sign-changes of bn,is,
fc->βo

λn€/ fc[te](l-^), M(l + w;)] (0 <«;<!).
(c) //^ sequence {bn^} (λΛ ^ {/fc}) has the normal sign-change in {/fc}

(A = 1, 2, ... J [2, p. 285. Definition III].

2. Lemmas. To establish our main theorem, we need some lemmas.

LEMMA 1 [1, p. 610. corollary 1]. Let (1. 1) have the simple convergence-
abscissa σs = 0. Then s = 0 is Picards pioint for (1. 1), provided that

(a) Tίm |OJ^>1,
(9 Λ\ "l~>°°
^ ' (b) lim I/log iw - log+ log+ | O» | > 1/2,

« λ^ eχP ( ~ λ/») (0 < wr < 1).
υ)

LEMMA 2. Under the same assumptions as in lemma 1, the following
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conditions (2. 2) are equivalent to (2. 1) :

(a) ϊΐm
(2> 2) (b) lim I/log m log+ log+ 1 F<w>(l)/ra! | > 1/2.

m->oc

PROOF. By A. Ostrowski's theorem ([3, 4; pp. 12-16], [2, p. 288]) (2. 1) (a) is
the necessary-sufficient condition for s = 0 to be the singular point of (1. 1).
Hence (2. 1) (<z) is equivalent to (2. 2) (a).

Since s = 1 is a regular point of (1. 1), (1. 1) is developable in Taylor
series :

F(s) = 2 F^\l)/m ! (s - 1)™,
m = l

oo

where F«(l) - ( - 1)"* 2*/» λ™ eχP (-*•») = (- l)w{#™ + Hm + &«},
W = l

(2. 3) /?OT = îι ί Ή m = ,̂ , SOT = 2^ ,

(0 < M; < 1).

By a lemma ([1, p. 606 lemma 2], [5, p. 32 (1. 13)]), we have easily

(2. 4) lim 1/m ! I /?„ + Sw | = 0.
m-^aa

From the assumption (2. 1) (£), we get

(2.5) 1/2 < lim I/log m log+ log+|OOT | = lϊm I/log ̂  log log|Om |.
m-^oo m->oo

Since, by Stirling's formula, we can put

HJm ! = Om(l 4- o(l))/(2 πm)^}

by (2. 5) we can easily prove

(2. 6) lim I/log m log* log+ | HJm ! | ^ lίm I/log m lag log \Om\ > 1/2.
m->oo m-^oo

Since we can put

I FC«) (!)/»,! i = l l / ί w ϊ - C Λ ^ + flU + S™)! ^ I f t i / w i l l - \l/m ! (Λ. 4- S»)|,

by (2. 4), (2. 6) we get

(2. 7) ϊfih I/log m log4 log+ | F«n\l)/m ! | > 1/2.
m->co

By the slight modification of the above arguments, we can prove that (2. 5)
follows from (2. 7). q. e. d.

CO

LEMMA 3 [1, p. 606. lemma 3]. Let f(z)^^anz
n have \z\<I as its

n=o

convergence-circle. Then

Em I/log w log+ log* I an I = p/(l + P),

where (i ) p = Him [log(l /(I - r))] "^log* log+M(^),
r->l

(ii) Λf(r) = Max |/j[«)|.
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LEMMA 4. Let φ(z) be the integral function such that, for any given €

(2.8) |φCε)| < exp(£|z|) for \z\ >/?(£).
CO

Put Fφ(s) = 2βΛ φ (\n) exp( - λas).

77z£w (2.10) follows, provided that Fφ(s) satisfies (2. 9):

f(a)

^2' 9^ I (b) lim I/log m log* log* | F(

ώ

m\l)/m\ \ > 1/2,
V m-^^ ψ

|(a) lim\F«n\ϊ)/ml |^ = 1,

(2' 10) j (b) ϊϊm I/log m log* log* | F™(l)/m\ \ > 1/2.
\ m->co

REMARK. By a lemma [2, p. 287 lemma 3, (2. 11)], Fφ(s) is simply con-
vergent at least for σ > 0. Hence, taking account oί (2. 9) (a), the simple
convergence-abscissa of Fφ(s) is exactly equal to σ = 0.

PROOF. Let us put

Since _
lίm I cn I *'» = llm log M(r)/r (M(r) = Max | φ(^
w->co ? ->co |β|=r

[6, p. 62], (2. 8) yields us

(2.11) llmlcnl1'^ 0.

Then, by Cramer-Ostrowski's theorem [4, pp. 49-52], for any given £(>0),
we have

(2. 12) Fφ(s) = l/2τrί Γ

On account of (2. 12), the regularity of Fφ(s) at s = s0 follows from the re-
gularity of F(s) at s = s0. Hence, (2. 10) (a) follows from (2. 9) (a). Thus,
to establish our lemma, it suffices to prove that (2. 14) follows from (2. 13) :

(a) Urn I F< m\ΐ)/m\ \ ̂  = 1,
m^°°

(b) lim I/log w - log- log-1- 1 F™(l)/ml \ ̂  1/2.
»n->oo

(a) ίΐm I F
rn-^co

(b)

By (2,11), for any given £(>0), there exists a constant K(£) such that
(Λ = 0,1,2,...).
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Therefore

(2.15) \φ*(z)\ S 2 k»l/«n+1 <
1*1 =e n^

Combining (2.12) with (2.15), we get

M(r, Fφ) = Max I Fφ(s) | = | FΦ(sfl) I (\s0-l\=r)

1 Γ
2π J

Where M(/?,F) = Max|F(s)|,Λ = r + (1 - r)/2, 0 < r < 1.
|*-11-Λ

Hence,

(2. 16) /?φ = lϊm l/log(l/l - r) log* log* M(r, Fφ)
?•->!

glim l/log(l/l - 7?) log+ log+M(R, F) = p.
R^l

Therefore, by (2. 13) and lemma 3,

PΦ^P^I,

so that, again by this lemma, we have (2. 14) (b), which proves our lemma.

LEMMA 5. Under the same assumptions as in the main theorem, we
have

(i) lim (rv+l - rv} > 0, \\m\r v — λΛ | > 0,
j/->co V,W->oo

(ii) Tίmlogz;/logn,< α(^l/2),
V->oo

provided that {rv} is the sequence arranged in the order of magnitude of
{l/2 (λn -f λn_ι)}, where the sign-change occurs between bn%ιύ and ^-ι,fc(λn,
λ»-ι€/ f c ; * = 1,2....).

PROOF. On account of (c) of the main theorem, (i) is evident. Taking
suitable subsequence, if necessary, we can suppose that

[ΛW,] > 2fe] (1 + ι0)/(l ~ w\ (k = 1, 2, . . . ).

Hence,

1 ; I te+u(i - αO > M(l + w), so that It Ij = 0, i Φ j.

Putting lϊm logσ-fc/iogM = β < a, by virtue of (b). for any given £(>0),
fc->oo

there exists £(£) such that

(2. 18) <rfc+ί < fe+ί]
β+e (/β + 6 < a, ί = 0, 1, 2, . . . ).

Therefore, by (2. 17) and (2. 18)
(j3"l"e)ί

(2. 19) **+< < fo+ J 8 ** / 1 \8+t < fe^]3+e 2( 2 r)
ί=o ^ '
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For sufficiently large r^r(S\ we'have easily
fc-l

(2. 20) 2σί < [x^rγ
+e for r ̂  r (£).

ί = l

By (2.19) and (2.20)
m

(2.21) 2σ < IXJ3+e 0(1) for ra > k(S) + r(S).
i=l

If rv <Ξ Λ, z> = <TI + cτ2 + — + σ fc-ϊ + σ-fc, σ'k S σv Hence, by (2. 21)

log v < logΠ£σΛ < (β + O logM +
^ /f _ 1 'ί = l

so that

lim log v/log rv ̂  (β 4- £) lim'logfej/logίfe] •(! — M;)} = (β + 6).

Letting £->0,

ίίm logz^/ log r v <zβ<oί ,

which proves our lemma.

LEMMA 6. Under the same assumptions as above, there exists the integral
function φ(-ε) (φ(\n): real) such that

(i ) {bnjs Φ (λn)} (λ« € 7fc £ = 1, 2, . . . ) /ZtfS f/Z£ Stf#2£ SίgW.

(ii) /0r tf/iy £&>£w £(> 0),

1*1 >Λ(θ),
[ (b) exp ( — λχ+ί) < ! Φ(λ«) I < exp (λj+e) /or λ^ > #(£),

f&λβr^ 7 = "Km log v/log r,, ( < oί ^ 1/2).
CO

(iii) Fφ(s) = 2β« Φ(λn)exp(— λ»s) has the simple convergence-

abscissa cr = 0.

PROOF. The convergence-exponent of {rv} is ry«a<^l/2) (lemma 5 (ii)).
Let φ (2) be the canonical product of {rv}

oo co

Φ(z) = Π £(2/Λ,, 0) = Π (1 - «/rv).

Then, (i) is evident. Since the order of the canonical product of {rv} is
equal to the convergence-exponent of {rv}, the order of φ (2) is 7. Hence,
(2. 22) (a) is obvious. By the well-known property of the canonical product,
we have

|φ(z)| >exp(- |2|vβ) for|2| > Λ(θ), |2-r v | > r,-(Y+e) (v = 1,2,...).

Therefore, by lemma 5 (i), (2. 22) (&) follows immediately.
By (2.22) and a lemma [2, p. 287 lemma 3], Fφ(s) has the simple con-

vergence-abscissa σ = 0. q. e. d.
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3. Proof of the main Theorem. Let us put

Om(Fφ) = (e/m)m 2 «»Φ (λ*) λ» eχP ( ~ λ») ( 0 < w < 1),

where φ(z) is the integral function defined in lemma 6.
Then by lemma 6(i),

(3. 1) |(WFφ)| = |exp( -ίy^ O^Fψ)!

^ 2 *«,* 0(λJ(λ^ω)L*ft] exp ( - \n

exp ( - \n)

>

2 *»,*

2 ftMr
On the other hand, by (2. 23)

so that

(3.2;

Σ *-,*•
}lr^^\lt<rk

for Λrfe >

^ eχp (— χτϊ
Hence, by (3.1) and (3.2)
(3.3) 10[,Λl(FΦ) 1 exp(l 4- xΓ€) ^ Δ-,
Since γ + 6 < a < 1/2, by (3. 3) and (1. 2)

ίim lOra

for #fc >

lim I/log fe]. log+ 3og+1OM (Fφ) | ^ lim I/log Λ* log+ log+1 Δfc |
fc->oo fc^co

_ (7 + £) = 1/2 + (α - 7 - θ) > 1/2,
so that

(3.4)
lim I Om(Fφ)Γ» >1,
/?i->oo

llϊn I/log m log+ log* | OOT(FΦ) | > 1/2.

Since Fφ(s) has the simple convergence-abscissa σ = 0 by lemma 6(iii), by
(3. 4) and lemma 2,

(3.5)
ίiϊn I/log ̂  log+ log+1 Ff\l)lm\ \ > 1/2.

Hence, by (2. 22) (a) and lemma 4,
1

lϊϊn 1/logιw log+ log+ |F(m)(l)/m! | > 1/2.
m-^oo

Therefore, by lemma 2 and lemma 1, s = 0 is Picard's point for (1.1),
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which proves our main theorem.

4. Theorems. We can deduce series of theorems from the main
theorem.

THEOREM 1. Let (1. 1) have the simple convergence-abscissa σs = 0. Then
s = 0 is Picard's point for (1. 1), provided that there exist two sequences {λ»Λ},
{Ύfc} (Jk real) such that

(4.1) (a) = 0, lim I/log λ%. log+
= 1/2 + α,

(b) lim log σfc/log [λΛ J < a, where σfc: the number of sign-changes of
fc->co

(c) the sequence bn^ (λΛ €ί Λ ) has the normal sign-change in {//,} (k =
1,2,...).

PROOF. Taking account of the main theorem, it suffices to prove the
jl existence of a sequence {#*.} such that

(i) M = [λ»J (ft = 1,2,...)

(ii) lim lM. log|Δ,| -0,
(4.2)

where Δ/, = ]

Let us put

(4.3)

lim I/log XT, - log+ log* |ΔJ = 1/2 + a' (0 < a ̂  a' ^ 1/2)

l j = lim 1/ΛΓ log

i2 = lim 1 xlog Λ: log+ log+! = 1/2

where Il:: [\nk] ^x< [λΛΛ ] + 1 (ft = 1, 2,...). Then, by the entirely similar
arguments as in the previous note [2; p. 290], we have

(4. 4) Δi = 0.

Hence, we can easily prove that

(4.5) O^ΔaSl, i.e. - 1/2 ̂  a' ^ 1/2.

On account of (4.3), for any given £(> 0), there exists X(β) such that

(4. 6) 2L ^n.fc < exp{Λ:1/2+α/+e} for [x] > .

Now we have easily
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if λw^ -i

Therefore, by (4. 6)

I bjs I < 2 exp {x12+<*'+e} < 2 exp

so that

for pul

1/2 + a = lim I/log λWι log* log+ |fe| ^ 1/2 + a' + £.
fc-^oo fc

Letting £->0, on account of (4.1) and (4. 5),

(4. 7) 0 < a ̂  a! ̂  1/2.

Taking account of (4.3), (4.4) and (4.7), there exist two sequences
{*fc}> {x'k'} such that

ii = lim I/si log

(4.8)
«£' log+ log+

Let us define {Λ fc} as follows :

ΓV

(0 < a ̂  a' < 1/2).

(ΛΓfc = 4 or 3%, M = [Λ?J = [4'] = [λwj).

Then, by (4. 3) and (4. 8), we can easily establish (4. 2), which proves our
theorem.

THEOREM 2. Let (1.1) have the simple convergence-abscissa σs = 0. Then
s = 0 is Picard's point for (1.1), provided that there exists a sequence {xΐ:} (0
< ΛΓfc t °°) such that

(4.9) (a) lim l/*fc log|Δfc| = 0, lim I/log # f c-log+ log+|ΔJ > 1/2,
fc^oo fc->co

ztf/zer^ Δfc = 2 ^ (*«)•
[ϊΛ^λw <rΛ

(b) »(βn)>0 . /or M(l-zί;)^λw^M(l + ̂
(* = 1, 2, . . . , 0 < w < 1).

For its proof, we need only to put 7fc = 0 (k = 1, 2, . . . ) in the main
theorem.

THEOREM 3. Let (1. 1) have the simple convergence-abscissa σs = 0. Then
s = 0 is Picarφs point for (1. 1), provided that there exists a sequence {x1:} such
that

(a) lim !/#• log|Δ*| = 0, Tim I/log #fc log+log+ |Δfc[ = 1/2 + a
fc->00 fc^OO

(CL > 0),

where Δ^ = 2 Λw
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(4 10) (b) W(an) ^ 0 for λ* € [M (1 - w), fe] (1 + w)]
(k=l,2>... 0<w<l),

(c) (i) lim 1/λ* log (cos θn) = 0,
(n^oo

\*n*V*y

(ii) ίϊϊn I/log λ^ log+ log+{(cos θn)~1} < a,
/n^oo

UtfW

where θn = arg (βn), Λ : M ̂  # < #ί; (Λ = 1,2,...)-

PROOF. On account of theorem 2, it is sufficient to prove (4. 9) (a). By
the entirely similar arguments as in the previous note [7, p. 293], and (4.10)
(a), (c\

ίiϊn l/Λk log|Δfc| =0.
fc -ί»co

Hence we need only establish

lim I/log Λrfc - log+ 3og+ |Δfc| > 1/2.
fc-^oo

On the other hand,

2 ^K)!= 2 I β» I COS ίn

i> COS (ft, J 2ϋ l<*n| S

where cos(θnk) = Min {cos (ft,)}. Therefore
λ,2e/fc

ίίϊn log λWAr/log #Λ I/log λroΛ log+ log* {(cos θnk)~1}

-\- lim I/log ΛΓfc log+ log* | Δfc| ^ lim I/log ΛJ. log* log* |Δ!|
fc^oo fc^βo

= 1/2 + α.

so that, by (c) (ii),

Urn I/log Λξb log+ log* | Δ-1 > 1/2 + a — ίϊm I/log λn log* log*{(cos θn)~l

which is to be proved.

As its immediate corollary, we get

COROLLARY 1 [1, p. 612]. Let (1. 1) with | arg (an) \^θ< π/2 have the simple
convergence-abscissa σs = 0. Then s = 0 is Picard's point provided that there
exists a sequence {x^} (0 < #fc t °°) such that

lίm II xk log I Δl I = 0, Tim I/log %. - log+ log+ 1 Δj | > 1/2,
fc->oo fc-^co

where Δ^ = " g».

THEOREM 4. Z ί̂ (1. 1) /ί«^ ίλβ simple convergence-abscissa σs = 0. Then
every point on σ = 0 /s Picard's point for (1. 1), provided that there exists a
sequence {\>k} such that
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(a) Kml/λn A ; log|0,7;i.| =0, Km I/log λnjfc log+log* |β»J
λ. -700 fc-^oo

= 1/2 -f a, (0 < a ̂  1/2).
(4.11) (b) Km log sfc/log [λn J <r a, where s fc: ί/te number of an =*= 0, λw ̂

fc->oo

/*[ [λ» J (1 - w), [λ« J (1 + w)} (k = 1,2,..., 0 < w < 1).

(c) Km Ow - λn) > 0.
(w->co

VA n,X n +ie/)t

PROOF. Putting 7fc = arg (0njfc) (fc = 1,2,...) in theorem 1, all the as-
sumptions of theorem 1 is evidently satisfied. Hence s = 0 is Picard's point.
By the transformation s = sf -f it and the arguments as above, s = it is
Picard's point for (1.1), which proves our theorem.

As its corollary we obtain

COROLLARY 2. Let (1.1) with lim (λ«+ι — λn) > 0 have the simple con-

vergence-abscissa σs = 0. If lim I/log λ/s log+ log* 1 an \ = 1/2 4- α: (α > 0),
W->oo

lim log w/log \n < Λ, #/t^w ^yβrj' point on σ = 0 is Picard's point.
n->oo

PROOF. Since evidently lim log w/λ,, = 0, by G. Valiron's theorem [4, p. 4]
W->oo

the simple convergence-abscissa of (1. 1) is determined by

(4.12) finTl/λ^loglαJ =0.
W->°o

Hence we can easily prove that
ϊϊm I/log λn log+ log +\an\ = 1/2 + α, 0 < α ̂  1/2.
n-^oo

Therefore, for any giveir£(>0), there exists a sequence {λ»Λ} such that
(4. 13) Tim I/log λ»,. log+ log+ 1 α« J = 1/2 + α, 0 < α S 1/2,

+Λ"e } (k = 1, 2, . . . ).

so that, by (4. 12)

0 = lim l/λ« log* I aΛ \ > lim 1/λ^, log4- 1 Λ,|Λ | ̂  0, i. e.
«->oo fc->oo

(4.14) lim l/λw,-log+ |αnj = 0.
fc->oo

Denoting by ΛTr) the number of λ^s CDntained in [0,r], by llm logw/
W-»oo

log \n = β < a, for any given £ (> 0),

Mr) < λgffo < r3+e f or r ̂  /? (£), /3 + <? < a.

Hence 0 ^ sfe S N([\nk] (1 + w)) < {IX J (1 + αO}̂ ,

where sfc : the number of an*Q, \n € 7fc[ [λ»J d — w), [λnj(l + w)], so that

lim log sfc/Iog [λn J ̂  β 4- £ <

Letting £-»(),

(4.15) ϊim log sfc/log [\nJ ̂  /3 < tf
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By (4.14), (4.13), (4.15) and lim (λn+1 — λn) > 0, all the assumptions of
ri-ϊoo

theorem 4 are satisfied, which proves our corollary.
Since lim log ft/log λΛ = 0, follows from limλΛ + 1/λw > 1, we get

W->°° W_^oo

COROLLARY 3 [l,ρ. 610]. Let (1.1) with limλΛ + Ί/λn > 1 have the simple
n-^oo

convergence-abscissa σs = 0. If lim I/log λn log+ log+1 an \ > 1/2, then every
w->°°

'point on σ =. 0 is Picard's point for (1.1).
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