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0. Introduction1 }. It has been proved by K. Yano [7J that in a compact
orientable Riemannian manifold an infinitesimal affine transformation is an
infinitesimal motion. But it seems that the assumptions of "compactness"
and "orientability" are too strong or unnecessary. In this respect, K. Nomizu
[5] has recently given very suggestive lemmas on the relations between the
group A(M) of all affine transformations and the group I(M) of all isometries
in a Riemannian manifold M. According to one of his lemmas, in an
irreducible Riemannian manifold the affine transformation may be considered
as the homothetic one. Furthermore so far as the identity component
Ao(M) of A(M) is concerned, we may restrict our consideration to the
irreducible or locally flat parts of the Riemannian manifold M. Thereby we
shall first treat of the properties of the homothetic transformation and show
that in some complete Riemannian manifold a homothetic transformation is
necessarily an isometry. We shall next apply this to affine transformations
in an irreducible Riemannian manifold. Afterwards we shall consider the
locally flat case. In the last section we shall give some examples which show
that the assumptions in our theorems can not be made weak.

1. Preliminaries. If M is a differentiate Riemannian manifold with a
fundamental metric tensor field G which is positive definite, for any vector
field X we denote by \7(X) the covariant differentiation in the direction of
X with respect to the Riemannian connection.

Now let Mi and M2 be two Riemannian manifolds with GΊ and G* as
their fundamental metric tensor fields and denote by Vι(-Xι) and VaC^a) the
corresponding covariant differentiations respectively. Let φ be a differentiate
homeomorphism of Mi onto M2. If φ commutes with the covariant differen-
tiations, i. e. for any vector field X on Mi

φ is called an affine transformation. If we have φG\ = G 2, then φ is said
to be an isometric transformation or an isometry. If for some real constant
p > 0 we have φGL = pG3, φ is called a homothetic transformation.

For a connected Riemannian manifold M, we denote by A(M}, I(M) and

1) Similar results to ours were proved independently by T. Nagano, J. Hano and
S. Kobayashi though not simultaneously. Cf . Nagoya Math J., Vol. 9(1955), pp. 39-41
and 99-106

2) The definition of φ is as follows: If / is a function on MI then g>f=f°φ~1',
If X is a contravariant vector field on MI and f is a function on M >., then

If ω is a covariant vector field on MI and X is a contravariant vector field on
then (9>ω)X=.φ(ω(φ-1))', and so on.
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H(M} the group of all affine transformations M-*M, that of all isometries
M-+M and that of all homothetic transformations M-+M respectively. It
is then evident that we have A(M) n> H(M) ID I(M). Furthermore it has been
proved [2, 3, 4] that they are Lie groups.

M is said reducible or irreducible if the restricted homogeneous holonomy
group of M is reducible or not. It suits our convenience to call one-dimen-
sional Riemannian manifolds reducible.

2. On homothetic transformations.

LEMMA 1. Let M be a connected Riemannian manifold which is not locally
flat and φ a homothetic transformation in M which is not an isometry. Then
φ has no fixed point.

PROOF. Without loss of generality we may assume that φG = p~*G with
a real constant p such that 0 < p < 1. Suppose that φ fixes a point pQ 6 M.
If p is any point of M at which the curvature tensor field R does not vanish,
i. e. RV Φ 0, then the sequence {<pkp}ic=i,i, ---- must converge to the point pQ

because the distance d(p0, φkp) tends to zero. For any unit vectors X, Y,
ZeTP and ω £ T^φ^X, φ*Y, φ*Z are vectors of length pfc in Tφkp and φkω
is a vector of length ρ~fc in T*kί)ί where T* is the dual space of TP. If we
put

then they are unit vectors and we may regard the pairs (φkp, X^),
(φ^p, Zjc) and (φkp, ωfc) as points of the tangent sphere bundle of M3). It is
easily seen that there exist unit vectors X0, YG, Z0 € TPo and ω0 € T$0 such
that

,v) = (P0, Xϋ\

, Zh) = (p0, Z0\
|/->oo K V-oo

The curvature tensor field R being continuous, we have then

lim Rφ*»p(Xicv, Yicv, Z,v, ωO = RpQ(Xo, Yo, Z0, ω0),

On the other hand, R being invariant by all affine transformations

R^P (X^ FV Z^ ωhv) - p-^ Rφ*"p (φ\X, φ**Y, φ**Z, φ^ω)
= p-*»RP(X,Y}Z,ωl

which cannot tend to the finite value RPQ(Xo, YQ, Zΰ} ω0) unless RP(X} Y, Z, ω)
= 0 or p > 1. This leads to a contradiction and we conclude that φ has no

fixed point.

LEMMA 2. Let M be a complete and connected Riemannian manifold which
is not locally flat, then H(M) = /(M).

3) We may restrict ourselves within a small neighborhood of the point ρ0 and
use a product representation of the bundle in this neighborhood.

4) {&ι,£& ,kv9. } is a suitable subsequence of {1,2,....... ,n, }.
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PROOF. Suppose that there exists φ which is in H(M) but not in /(M).
Then by Lemma 1 φ has no fixed point. We may assume that φG = ρ~2G,
0 < p < 1. If p is an arbitrary point of M, then the sequence {<£>*/>}& =1,2,
is clearly a Cauchy sequence on M. M being complete, there exists a limit
point po = Urn φkp in M. It is then evident that φ must fix the point pQ,

λ»00

contrary to Lemma 1. Thus we have H(M) = /(M).
The assumption of "completeness" seems to be really necessary. In the

last section we shall show by an example that some irreducible but non-
complete Riemannian manifold really admits homothetic transformations
which are not isometries and have no fixed point.

3. Affine transformations in an irreducible Riemannian manifold.
Let MI and M2 be two Riemannian manifolds with GI and Gλ as their

fundamental metric tensor fields respectively. If φ is an aίfine transformation
of Mi onto Ma, by the definition for any vector field X on M2 the relation
φ\7\(φ~lX) = \7-ι(X)φ holds true. In particular, we have

= 0

by virtue of the invariance of d under the covariant differentiation.
Therefore if M2is irreducible, it follows that we have φGτ = pG3 for some
constant p > 0.

The result established above becomes

LEMMA 3. The notation being as above, if M is irreducible, then φ is a
homothetic transformation [5].

Combining Lemma 1 and 3, we have

THEOREM 1. Let M be a connected irreducible Riemannian manifold and
φ an affine transformation in M which is not an isometry. Then φ has no
fixed point.

Combining Lemma 2 and 3, we have

THEOREM 2. Let M be a connected irreducible Riemannian manifold. If M
is complete, then we have A(M) = /(M).

Let M be a connected and simply connected Riemannian manifold which
is not irreducible and TP = T + T > + T + . . . . + T the canonical decom-
position of the tangent space TP at any point p of M by the homogeneous
holonomy group σ, where σ is trivial on 7^0) and irreducible on T$ (1 S i
S r). Then each T$> (0 ̂  i g r) generates a completely integrable field F(o

of plane elements by the parallel displacement. We denote by M$> the
maximal integral manifold of /*<> through the point p. If moreover M is
complete, by a theorem of G. de Rham [1] M is a (unique) direct product of

, M$\ ...., M%\ Then we have the following lemma due to K. Nomizu [5] :

LEMMA 4. The notation being as above, let AQ(Δί) be the identity component
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of the group A(M). If M is simply connected, every element of A0(M) leaves
invariant each field F(O.

It is easily seen that if M is complete so also is each Λf£0. Thus, in case
M is complete and simply connected, by Lemma 4, we have easily

ΛCM) = Λ(M<?>) x . . . . x Λ W).
The following lemma follows from the above results.

LEMMA 5. Let M be a simply connected Riemannian manifold. If M is
complete and has no locally flat part, then A^M) = Iυ(M), where Io(M) is
the identity component of /(M).

Now we do not assume that M is simply connected. Let M be the simply
connected covering manifold of M and π the canonical projection of M onto
M, then G = π~^G is the fundamental metric tensor field of M which defines

the same Riemannian geometry of M induced by that of M. If <p(t)is a one-

parameter subgroup of A0(M), then there exists a one-parameter group φ(t)

of affine transformations of M such that the relation πφ(t) = φ(f)π holds true.

Furthermore it is easily seen that if φ(t) is isometric so also is φ(t).
Putting this fact and Lemma 5 together we have

THEOREM 3. Let M be a connected Riemannian manifold. If M is complete
and has no locally flat part, then A0(M) = 70(M).

4. Locally flat case. Let M be a simply connected Riemannian manifold
which is locally flat and ξ an infinitesimal affine transformation in M. Then
in a canonical coordinate system at any point of M we have

since the curvature tensor field vanishes [6J. Therefore we have

in this coordinate sytsem, where a*j and cl are constants of which not all
are zero.

Now, assume that M is complete. Then it is easily seen that if the
length of ξ is bounded, we have aj = 0 (l^i.j^n) in every canonical
coordinate neighborhood and ξ defines an infinitesimal translation. Con-
versely, if ξ is an infinitesimal translation, then the length of ξ is obviously
constant. By the remark which follows Lemma 5, we have the following
theorem.

THEOREM 4. Let M be a locally flat Riemannian manifold which is connected
and complete. Then in order that an infinitesimal affine transformation ξ be
a transaltion, it is necessary and sufficient that the length of ξ be bounded.

By virtue of Theorem 3 and 4 we have easily the theorem of K. Yano [7].
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5. Examples. (I) Let M be a product manifold L x L of the straight
line L by itself. We give M a fundamental metric

ds* = e**{(y* + Vfdtf + dy*},
where x and y are the usual coordinates on L. It is easy to see that the
Riemannian manifold M is irreducible but not complete with respect to this
metric.

Now, for any x,y € L we denote by ψa the mapping (x,y)-*(x — a,y) of
M onto M, where a is an arbitrary real number. Then, if a Φ 0, φa is a
homothetic transformation which is not isometry and has no fixed point. In
fact we have

This example shows that the assumption of "completess" in Lemma 2 is
really necessary.

(II) Let MI be a connected complete irreducible Riemannian manifold
with a fundamental metric ds\, M2 a Riemannian ma'nifold with the
same underlying manifold M as MI but with another fundamental metric

dsl = pdsl, where p is a positive constant Φ 1, and denote by M the
product Riemannian manifold M\ x M2 with ds* = t/sf 4- Js^. Now for any

points x,y 6 M the mapping ̂  : (#, ̂ ) -> (y, x) of M onto M is obviously an
affine transformation but not an isometry. Since the Jacobian of φ is negative,
φ does not belong to the identity component A0(M) of the group A(M).

As is easily seen by the definition of φ, this transformation leaves

invariant neither of the fields F(1), F^ of plane elements of Λί5).
This shows that Theorem 3 does not always hold true for A(M) and /(M)

instead of A0(M) and 70(M).
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5) See the remark which follows Theorem 2.




