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0. Introduction?. It has been proved by K. Yano [7] that in a compact
orientable Riemannian manifold an infinitesimal affine transformation is an
infinitesimal motion. But it seems that the assumptions of ‘“compactness”
and “orientability” are too strong or unnecessary. In this respect, K. Nomizu
[5] has reczntly given very suggestive lemmas on the relations between the
group A(M) of all affine transformations and the group I(M) of all isometries
in a Riemannian manifold M. According to one of his lemmas, in an
irreducible Riemannian manifold the affine transformation may be considered
as the homothetic one. Furthermore so far as the identity component
AyM) of A(M) is concerned, we may restrict our consideration to the
irreducible or locally flat parts of the Riemannian manifold Af. Thereby we
shall first treat of the properties of the homothetic transformation and show
that in some complete Riemannian manifold a homothetic transformation is
neceassarily an isometry. We shall next apply this to affine transformations
in an irreducible Riemannian manifold. Afterwards we shall consider the
locally flat case. In the last section we shall give some examples which show
that the assumptions in our theorems can not be made weak.

1. Preliminaries. If M is a differentiable Riemannian manifold with a
fundamental metric tensor field G which is positive definite, for any vector
field X we denote by V/(X) the covariant differentiation in the direction of
X with respect to the Riemannian connection.

Now let M, and M, be two Riemannian manifolds with G, and G; as
their fundamental metric tensor fields and denote by V(X;) and Vx(X,) the
corresponding covariant differentiations respectively. Let @ be a differentiable
homeomorphism of M; onto M,. If ¢ commutes with the covariant differen-
tiations, i.e. for any vector field X on M,

@ (V1X) = Vi(pXp, »
@ is called an affine transformation. If we have @G, = G,, then ¢ is said
to be an zsometric transformation or an isometry. If for some real constant
p >0 we have @G, = pGs, @ is called a homothetic transformation.
For a connected Riemannian manifold M, we denote by A(M), (M) and

1) Similar results to ours were proved independently by T.Nagano, J.Hano and
S. Kobayashi though not simultaneously. Cf.Nagoya Math J., Vol.9(1955), pp.39-41
and 99-106

2) The definition of ¢ is as follows: If fis a function on M) then of=fop-1;

If X is a contravariant vector field on M; and £ is a function on M,, then
(@ X)f=9(X(9p~1f); ,

f w is a covariant vector field on M; and X is a contravariant vector field on M,
then (P»)X=go(w(p-1)); and so on.
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H(M) the group of all affine transformations M — M, that of all isometries
M — M and that of all homothetic transformations M — M respectively. It
is then evident that we have A(M) > H(M) > I(M). Furthermore it has been
proved [2,3, 4] that they are Lie groups.

M is said reducible or irreducible if the restricted homogeneous holonomy
group of M is reducible or not. It suits our convenience to call one-dimen-
sional Riemannian manifolds reducible.

2. On homothetic transformations.

LemMA 1. Let M be a connected Riemannian manifold which is not locally
flat and @ a homothetic transformation in M which is not an isometry. Then
@ has no fixed point.

Proor. Without loss of generality we may assume that @G = p~*G with
a real constant p such that 0 < p < 1. Suppose that ¢ fixes a point p, € M.
If p is any point of M at which the curvature tensor field R does not vanish,
i.e. Ry +0, then the sequence {@fp}i-1s ... must converge to the point p,
because the distance d(p,, ¢*p) tends to zero. For any unit vectors X, Y,
ZeTy and w € Ty, ¢*X, @Y, ¢FZ are vectors of length p¥ in Ty, and gfe
is a vector of length p~% in T, where T} is the dual space of T, If we
put

Xp = pP@*X, Yy = p*@tY, Z = p7*P*Z, wy = pigfw,

‘then they are unit vectors and we may regard the pairs (@*p, Xu), (@*p, Y4),
(9*p, Z;) and (¢*b, w,;) as points of the tangent sphere bundle of M®. It is
easily seen that there exist unit vectors X, Y, Zy € T, and w, € T}, such
that

l‘g{l‘) (@*D, Xi,) = (Do, Xo), 1531 (@*p, Yi,) = (by, Yy),
1};{3 (@b, Zs) = (Do, Z), lffi (@D, i) = (Do, ).
The curvature tensor field R being continuous, we have then
lim R ov (X, Yi, Z.rgy, wi,) = Rp( Xy, Yo, Zy, wp),

[
On the other hand, R being invariant by all affine transformations
Ro*p (Xs,, Y, Zi, 0n,) = p~% R (¢ X, oMY, @ Z, pPre)
= P_Z’CVRP ()(7 Y: Zr &)),
which cannot tend to the finite value Ry(Xy, Y, Z,, »,) unless Ry(X, Y, Z, w)
=0 or p >1. This leads to a contradiction and we conclude that ¢ has no
fixed point.

‘LEMMA 2. Let M be a complete and connected Riemannian manifold which
is not locally flat, then HM) = I(M).

3) We may restrict ourselves within a small neighborhood of the point p, and
use a product representation of the bundle in this neighborhood.
4) {ki,ky,...... N T } is a suitable subsequence of {1,2,...... My }.
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Proor. Suppose that there exists @ which is in H(M) but not in I(M).
Then by Lemma 1 ¢ has no fixed point. We may assume that ¢G = p~G,
0< p< 1 If p is an arbitrary point of M, then the sequence {@*p}v-1,, -- .-
is clearly a Cauchy sequence on M. M being complete, there exists a limit
point P, = {Lm @"p in M. It is then evident that ¢ must fix the point p,,

contrary to Lemma 1. Thus we have H(M) = I(M).

The assumption of “completeness” seems to be really necessary. In the
last section we shall show by an example that some irreducible but non-
complete Riemannian manifold really admits homothetic transformations
which are not isometries and have no fixed point.

3. Affine transformations in an irreducible Riemannian manifold.
Let M, and M, be two Riemannian manifolds with G, and G. as their
fundamental metric tensor fields respectively. If @ is an affine transformation
of M, onto M, by the definition for any vector field X on M, the relation
@Vi(@~1X) = VX)p holds true. In particular, we have

VA X) (9Gr) = pVilg~ X)Gr = 0

by virtue of the invariance of G, under the covariant differentiation.
Thereforeif M,;is irreducible, it follows that we have ¢ G: = p G: for some
constant p > 0.

The result established above becomes

LeMMA 3. The notation being as above, if M is irreducible, then ¢ is a
homothetic transformation [5].

Combining Lemma 1 and 3, We have

THEOREM 1. Let M be a connected irreducible Riemannian manifold and
@ an affine transformation in M which is not an isometry. Then ¢ has no
fixed point.

Combining Lemma 2 and 3, we have

THEOREM 2. Let M be a connected irreducible Riemannian manifold. If M
is complete, then we have A(M) = I(M).

Let M be a connected and simply connected Riemannian manifold which
is notirreducible and T = T + T + TE + .... + T the canonical decom-
position of the tangent space T, at any point p of M by the homogeneous
holonomy group o, where ¢ is trivial on T\ and irreducible on TO 1=
=7). Then each T’ (0 =<7 =<7) generates a completely integrable field F®
of plane elements by the parallel displacement. We denote by M the
maximal integral manifold of F® through the point p. If moreover M is
complete, by a theorem of G.de Rham [1] M is a(unique)direct product of
MP, MP, ....,M{. Thenwehave the following lemma due to K. Nomizu [5]:

LEMMA 4. The notation being as above, let A\(M) be the identity component
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of the group A(M). If M is simply connected, every element of Ay(M) leaves
tnvariant each field F®.

It is easily seen that if M is complete so alsoiseach M®. Thus, in case
M is complete and simply connected, by Lemma 4, we have easily

AfM) = A(M®) x ... x Af(M).
The following lemma follows from the above results.

LEMMA 5. Let M be a simply connected Riemannian manifold. If M is
complete and has no locally flat part, then A(M) = I(M), where I,(M) is
the identity component of I(M).

Now we do not assume that M is simply connected. Let M be the simply
connected covering manifold of M and = the canonical projection of M onto
M, then G = -G is the fundamental metric tensor field of M which defines
the same Riemannian geometry of M induced by that of M. If @(¢)is a one-
parameter subgroup of A¢M), then there exists a one-parameter group ;(t)
of affine transformations of M such that the relation n';(t) = @(¢)z holds true.

Furthermore it is easily seen that if ;(t) is isometric so also is @().
Putting this fact and Lemma 5 together we have

TrEOREM 3. Let M be a connected Riemannian manifold. If M is complete
and has no locally flat part, then A(M) = I(M).

4. Locally flat case. Let M be a simply connected Riemannian manifold
which is locally flat and & an infinitesimal affine transformation in M. Then
in a canonical coordinate system at any point of M we have

PE A<ijk=n)
ax]-a x’“ - = 7]7 == 1)
since the curvature tensor field vanishes [6]. Therefore we have

n
E=dv+c a=sisn
j=1
in this coordinate sytsem, where «} and ¢’ are constants of which not all
are zero.

Now, assume that M is complete. Then it is easily seen that if the
length of & is bounded, we have a!=0 (1<:{j7=<m) in every canonical
coordinate neighborhood and & defines an infinitesimal translation. Con-
versely, if £ isan infinitesimal translation, then the length of & is obviously
constant. By the remark which follows Lemmab5, we have the following
theorem.

THEOREM 4. Let M be a locally flat Riemannian manifold which is connected
and complete. Then in order that an infinitesimal affine transformation & be
a transaltion, it is necessary and sufficient that the lengih of & be bounded.

By virtue of Theorem 3 and 4 we have easily the theorem of K. Yano [7].
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5. Examples. (I) Let M be a product manifold L x L of the straight
line L by itself. We give M a fundamental metric

ds? = e®*{(¥* + 1)4dx* + dy*},

where x and y are the usual coordinates on L. It is easy to see that the
Riemannian manifold M is irreducible but not complete with respect to this
metric.

Now, for any x,y € L we denote by ¢, the mapping (x,¥) — (x — a,¥) of
M onto M, where a is an arbitrary real number. Then, if @40, @, is a
homothetic transformation which is not isometry and has no fixed point. In
fact we have

qja.dsz — ez(:c+a){(y2 4 l)zdxz 4 dyz} = e2%]Js2,

This example shows that the assumption of “compietess” in Lemma 2 is
really necessary. ’

(IT) Let M, be a connected complete irreducible Riemannian manifold
with a fundamental metric ds?, M, a Riemannian manifold with the

same underlying manifold M as M; but with another fundamental metric

ds? = pdsi, where p is a positive constant =1, and denote by ZTJ the
product Riemannian manifold M; x M. with ds* = ds} + ds;. Now for any

points x,y € M the mapping ¢ :(x,¥)— (¥, x) of M onto M is obviously an
affine transformation but not an isometry. Since the Jacobian of ¢ is negative,
@ does not belong to the identity component Ay (M) of the group A(M).

As is easily seen by the definition of ¢, this transformation leaves

invariant neither of the fields FO, F® of plane elements of M,
This shows that Theorem 3 does not always hold true for A(M) and (M)
instead of AyM) and I(M).
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5) See the remark which fellows Theorem 2.





