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1. Introduction. It is well-known that the total curvature K of an
ovaloid in Euclidean 3-space E3 satisfies the inequality K 2: 0 everywhere,
if one assumes sufficient differentiability of the surface. It will be natural
to present the converse problem whether a closed surface in E3 with
K> 0 is an ovaloid or not, or at least the problem whether it is homeo-
morphic to a sphere.

When K > 0 the problem is easily solved by using the spherical repre-
sentation. The second fundamental form is then positive definite and the
surface is so to say locally strictly convex. Similarly a locally strictly convex
hypersurface in En+1 is homeomorphic to an ^-sphere if one can assume
sufficient differentiability. But if one assumes only less differentiability and
moreover less strict convexity, that is, that the rank of the second funda-
mental form may become less than n, the problem becomes more difficult.
The following study might be the first attack to such a problem.

The present article contains another result, for the mapping / considered
is not assumed to be a homeomorphism, but it is proved to be a homeomor-
phism in the sequel.

2. Definition and the Theorem. Consider a regular mapping / of class
C* of an w-dimensional compact manifold Mn of class C2 into an n + 1-
dimensional Riemannian manifold Vn+1 of class C* (OL > 3). This means
that for any point P in M* we can find out a neighborhood U(P) and a
coordinate system such that any point in U(P) is given by the coordinates
ul, ____ , #n, while in Vn+1 we can find out a neighborhood of /(P) and a
coordinate system #l, ---- , xn+1 so that the image f(U(P)) of U(P) is
given by

& = f\u\ ....,un) (λ = 1, . . . ., n + 1),

where the functions /λ are differentiate of class C2 and the rank of the
matrix 3/Λ/3«* is n at P. A mapping/ will be called a convex mapping if
f(U(P)) in Vn+1 is convex (or concave) at f(P) for any point P in Mn.

We might take some other definition of "convex", but in the present
paper "convex" means

^ 0 for any υ* (/, k = 1, . . . ., n)
< 0 for some #;,

where Ω^fc is the second fundamental tensor of f(U(P)) for a suitably chosen
direction of the normal.
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The purpose of the present paper is to prove the

THEOREM. // an n-dimensional compact manifold Mn of class C2 is mapped
into an (n -\- l}-dimensional euclidean space En+1 by a convex mapping f and n
>2, then f is a homeomorphism, that is, Mn and f(Mn) are homeomorphic,

and hence f(Mn) has no singular (or multiple) point, and MH is homeomorphic
to an n-sphere Sn.

3. Proof. The proof is given in nine steps.

(i) We prove that Mn is orientable. We fix an orientation in En+1 and
take a neighborhood U(ά) for each point a in Mn :). Its image f(U(a)} has a
normal at/fa) directed to the convex sidea), and this normal fixes an orientation
mf(U(ά)\ Then the orientation in f(U(a)) fixes an orientation in U(ά).

(ii) As Mn is orientable and has integral cycles, we can speak of the
order of a point in E'l+1 —f(MH) with respect to f(Mn). The orientation of
Mn and f(Mn) being given by the convexity of f(Mn), we can determine the
order of a point in such a way that it increases when the point crosses

f(Mn) from the convex side to the concave side. Then we can find out a
point P whose order is one or more3). This fact is proved as follows.

In En+1 a hyperplane En(c) is given by xn+1 = c. If c is sufficiently large,
f(Mn) and En(c) have no common point. We can find out a number c0 such
that for c > c0, En(c) has no common point with f(Mn), while for c = cQ, En(c)
has at least one common point with f(Mn). Let f(ά) be one of such common
points. Then E"(c0) is the tangent oίf(U(ά)) at/(«) and the normal of /(£/(#))
is directed to the positive direction of xn+1 axis. If we extend this normal
to the concave side of f(U(ά)) and take a point near f(ά) on this extension as
the point P, then P is the point demanded.

(iii) Consider a mapping φ obtained from / by

φ^u1, ...., un) =/A(w1, - . . ., un) + Kl\u\ . . . ., un\

where K is a positive constant and lλ(ul, . . . ., un) is the unit normal vector
of the image by / of neighborhoods of the point (ul, ---- , un). As / is convex
and K is positive, φ is regular. This fact is proved as follows.

If we take a suitable cartesian coordinate system with f(ά) as the origin,
f(U(a)} is given by

*W+1 = <7(*S ....,**),

where g is a different! able function of class Ca satisfying

(1) 9 = 0, - = 0 ,

at the origin xλ = 0. As we can take x1, ---- , xn as the coordinates ul, ---- ,

1) Neighborhoods are always taken sufficiently small.
2) In this paper a normal is a half straight line directed to the convex side.
3) This is not trivial, for, as we do not assume that f be a homeomorphism, we

ean take the Klein bottle and its image in E3, which has double points, as a
counter example, if we omit the assumption that f be convex.
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un in U(a\ we get

(2) /* = »', /"+1 = <7<V, . . . . , «w),

_ __
-du* ~~ G ' du1 ~

We can calculate the expressions

/c\ 'dφ*(5) -~r =k

and find that the determinant \'dφsl'dtF\ does not vanish at the origin for
positive K. Hence this determinant does not vanish in a sufficiently small
V(ά) in U(a\ for 'dφ^ou16 are continuous functions in U(a).

(iv) As MΛ is compact, /(MΌ is contained in a sphere with P as the
center and with sufficiently large radius R. If we take K > 2R, then φ(Mn)
has no tangent line from P, for φ(Mn) has no point in the sphere with P as
the center and of radius K — R, while a normal of φ(MH) must join a point of
φ(Mn) and a point of f(Mn). Hence if we take a unit sphere 2W with P as
the center and consider a projection π caused by half straight lines from
P, we can map φ(Mn>) into Σn, and the mapping is locally homeomorphic.
This means that we can map Mn into 27*, and the mapping πφ is locally
homeomorphic. Mn being compact, this mapping is onto.

According to Monodromiesatz a locally homeomorphic mapping of Mn

onto an w-sphere Sn is a homeomorphic mapping and hence Mn is homeo-
morphic to Sn, for n>2. As πφ is homeomorphic, a half straight line from
jP has only one common point with φ(Mn), and the order of P with respect
to φ(Mn) is ±1.

(v) Let us denote the mapping φ in which /f is replaced by tK by ft.
Then /o =/ and /i = <p. Λ shows a continuous deformation of / to φ. For
any point a in MΛ and its neighborhood U(a\ ft(U(ά)) moves toward the
convex side for increasing t^. According to (ii) the order of P with respect
to f(Mn) never exceeds that with respect to φ(Mn\ for the order of a point
with respect to ff(Ma\ which is not defined when it belongs to ft(Mrt), is a
non-decreasing function of t. As the order of P with respect to φ(Mn) is
ifc 1 and that with respect to f(Mn) is one at least, the former and the latter
.are the same and we have d = 1.

(vi) If P belongs to ft(Mn) for some value of ί, t = *ι, 0 < Λ < 1, the order
of P with respect to fτ(Mn) is greater for t = ft -f 6 than for £ = ίI - 6. Then

the order of P with respect to φ(M'1) becomes more than one, contrary to
(iv). Hence the point P never belongs to ft(Mn) for 0 ̂  / ;< 1. If a normal of

f(Mn), that is, the normal of f(U(ά)) at /(#) for some point a of Mn passes

4) Though we can not say that fτ is differentiable of class C2, we can understand the
sides of ff(M^ for /t means a continuous deformation.
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P, P belongs to ft(Mn) for some t such that tK < R, hence no normal of
f(Mn) passes P.

(vii) Take a point c and its neighborhood U(c) in Mn. The angle between

the normal of f(U(c)) at f(c) and the vector f(c}P is denoted by θ(c\ As / is.
convex, if θ(c) is an acute angle, we can find out a point c' in U(c) such
that θ(c?) < θ(c), except the case θ(c) = 0, as shown in the following :

If we take the point c instead of a in (iii), a point c' in U(c) has the
coordinates ul, ---- , un, satisfying \u(\ < 8 for some £ > 0. Let the coordinates.
of the point P be p\ ---- ,pn+1. Then we have

2 w - ^J) + ιn+ι(Pn+ι - 0)
(6) COS (C ) - [(£1 _ Ulγ _|_ . . . . + (pn _ unγ + ̂ n+i _ ^ji/^

and this is a function of class C1 with respect to ul, - - . , «w. Differentiating:
partially with respect to zfi and putting ul =; 0, we get

- -
where |£ | = Γφ1)2 +••••+ (£w+1)2]1/2- If θ(c) is an acute angle, then pn+1 < 0,
and we have

- Vo^M>* - Pn+l^(p^(8) - - + - — >0

for any p{ except pi = 0, in which case we have θ(c) = 0. If we consider a
curve tf = »' = #>*, Λ;?Ϊ+I = p( ,̂ . . . ., #>w) in/ίZ/(c)), and denote the angle θ(<f)
at the points on this curve by a(t\ this function is differentiate of class,
C1 with respect to t, satisfying

2°*̂  , -pn+1"Σ(p^ι
dt sina I \p\ ^ \p\* J

at t = 0, because of (7) and (8), except the case sin θ(c) = 0. Hence we get
a(t) < θ(c) for some t, that is, θ(cf) < θ(c) for some point cf in f/(c) as long-
as we have 0 < θ(c) < τr/2.

(viii) As the angle θ(c) is a continuous function of c and Mn is compact,
(̂c) has a least value #0. According to (vii) we know that Θ0 can not satisfy

0 < θύ < τr/2, while according to (vi) 00 can not be zero. Hence we get 00 ^>
τr/2. This fact is true even if we let the point P move in a sufficiently small
neighborhood V(P) of P such that V(P)f\f(Ma) = φ, for the order of the
point Pf in F(P) with respect to f(Mn) is the same and all previous discussions
are valid for Pf too.

Now suppose that a half straight line PX from P is tangent to f(MH),
that is, PX is tangent to f(U(ά)) for some C/ζα). We take the point a in such
a way that/(<z) is the point of contact. Then we can find out a point b in
U(a) and a point P' in V(P) such that the normal of f(U(ά)) at f(b) and the

vector f(b)Pf hold an acute angle. This fact is proved as follows.
As θ(c) = jr/2, we have pn+1 = 0 in the formulas considered in (vii), hence^
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at /(c). As in (vii) we can find out a point d for which θ(c') < θ(c) as long
as pl satisfy ΣΩώcW Φ 0, for 2 ΩjiίpyFfP vanishes only when 2ίljfc(c)/>> = 0
because of the definition of "convex". Then #(c') is an acute angle and we
can take P for P '. If 2 Ωj^cW = 0, we take a point P' in F(P) and denote
the coordinates of P' by p'\ Let £'n+1 = 0, so that Pf(c) is a tangent of

/(C7(c)) at f(c\ If we have 2 Ωj*/(c)p'Jp* < 0 for some £'', we can obtain <9(cO
< τr/2 for this point P; and the proof is completed. The only difficulty occurs

only when Σ ΩjiKtfp' p'*1 = 0 for every p' ; satisfying \pfί —p'\ < £ for some
£ > 0. But this means' flffcfc) = 0, which contradicts our definition of "convex".

Thus, we see, for some point P' in V(P) at least, we get θ(c') < τr/2
contrary to θύ > πr /2. Hence we know that PX is not tangent to f(Mn\

(ix) As there is no half straight line PX which is tangent to f(Mn\ we
can consider a projection π as considered in (iv) such that πf becomes a local
homeomorphism of Mn onto ΣΛ. By Monodromiesatz we conclude that πf is
a homeomorphism, hence / is also a homeomorphism and the theorem is
proved.

According to the Jordan-Brouwer's theorem we get the

COROLLARY. Under the same assumption as before, f(Mn) divides En+1 into
two parts, one of which is bounded and has f(Mn) as the common boundary.
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