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1. Introduction. Let

be a function regular for [2| < 1. If, for some p > 0, the expression

0

is bounded as r -> 1, then the function f(z) and its power series are said to
belong to the class Hp. It is well known that, if f(z) belongs to the class
Hp, then f(z) has a boundary function

(1.3) /(O = limfir^), 0 ̂  θ ̂  2π

for almost all θ and f(eiθ) is integrable Lι\ Moreover if p > 1 a necessary
and sufficient condition for the function f(z) to belong to the class Hp is that
the series

(1.4) 2«

is the Fourier series of its boundary function f(eiθ). Hence, in virtiίre of M.
Riesz's theorem, if p > 1, the class Hp is isomorphic to the class Lp. In this
case, the series (1.4) is summable (C, 6), 6 > 0, to the boundary functions /(£*a>
at almost all θ. The problem whether in this result we may replace sum-
mability (C, £) by ordinary convergence remains open, but if p = 1, the answer
is negative (Sunouchi [7]).

On the behaviour of power series of class HD on the circle of convergence,
important results were obtained by Littlewood and Paley [6] and Zygmund
[11] [12]. The main tool of Littlewood and Paley was an auxiliary function

(1.5) g*(θ) = g*(θ f) = ( j (1 - r) X%r, θ) drj" , 0 g θ ̂  2π
o

where

X(r,θ)= ( —

*> Presented to the Meeting of Mathematical Society of Japan on 23 May 195$
(Tokyo).
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and

But they proved an inequality theorem concerning to g*(θ) only for Hp,
p = 2k (k = integer) and their proof is very difficult. Later Zygmund [13]
gave a complete and simple proof. In the other papers [10J [11], he used
another inequality theorem of Littlewood and Paley concerning to

(1.β) g(θ) = g(θ; f) = ( f (1 -
o

and gave a simple proof of the main result of Littlewood-Paley and many
interesting generalizations. The purpose of this paper is to give the gene-
ralized theorem on g*(θ) and systematic treatment and generalization of
theorems on the power series of the class Hp.

2. The function g*(θ) for the class HP (0 < p ^ 2).

The definition of the function g*(θ) is slightly less simple. It is given by
the formula

1 2Λ

(2.1) t&ff) = &θ:f)= (J (1-rrdrJ ^ ^ ϊ
0 0

If a = 1, gl{θ) reduces to the function g*(θ) of Littlewood and Paley
excepting constant factor. So we don't distinguish between gf (θ) and g*(θ).
It is known that g*(θ) is a majorant of many important functions. Especially

intervenes for the partial sums of the series (1.4).
Let us denote

Sn{θ) = 2

<(θ) = ^ τ 2 A«nz\ sv{θ\ (a > - 1)

<{θ) - ~ r 2 At:] tv{θ\ {a > 0)

where

then

(2. 2) τ%(θ) = n{<τ%(θ) - σ«_Ύ{θ)} = rtίσ ; - 1 ^ ) — cr£(0)}.

Further put

(2.3) ft«(β) = W(9; f) = ( 2 " 7 """ M Λ
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then we have the following relation. The right half was given by Chow [1]
and the left half for a = 1 was remarked by Koizumi [5].

LEMMA 1. For the function f(z) €HP (Q<p< oo),

(2.4) AJι«{θ) % g£(θ) < BΛh«(θ).

REMARK 1. Throughout this paper, A*, Ba, — are positive constants
depending only on a, and may be different from one occurence to another.

REMARK 2. For the definiteness of conjugate series, we put $c0 = 0.

Remark 3. In proving theorems in this paper, we can suppose without
loss of generarity that f(z) has no zeros inside the unite circle. And in many
case, it is enough to prove theorems for f(z) regular on |2| <Ξ 1. For, proving
theorem for f(Rz) (0 < R < 1) and making R tend to 1, we get the theorem.

PROOF. If we write

(2.5) φa(r, θ) = 2 (An? I τj(0) I * r*\
n = l

then

(2.6) _

1

= Aa ί (1 - rfvφccir, θ) dr.

Since

(2-7)

we have, by ParsevaPs theorem

o

so that

<2.9) <UW - B.f (1 - rrdrf
0 0

by the definition (2.1).
On the other hand, for 0 ^ r < 1/2

JX-rT

are limited above and below by positive numbers, and
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I \f'W**>)\* dφ.
0

is non-decreasing function of r. Thus

0

Consequently

ϋ 0

= / + /
0 1/4

by (2.9). Thus we have (2.4).

LEMMA 2. If a > 1/2 <md 0 < r < 1, then

ί 2 1 0 ) /"iϊ^ίs
0

PROOF. Since

(2.1D %
where δ = 1 — r, are bound above and below by positive numbers,

ί dcP < A f dcP - A f +A f
0 -7t 0 δ

o
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for 1 - 2a < 0.

LEMMA 3. If we put

129

(2.12) f*(θ) = sup

(2.13) f*(θ) = sup
0 | f t | ^

if
h J

0

1 /'
h J

(2.14) | ^ | /δ) /or

(2.15) l/ϊr^β+^>) I ̂  B/*(^) (1 + I φ I /δ)^fc /or /f^) € U (k > 1)

wter^. S = 1 - r, flwrf /ϊ(ί) € Z2, ί//(^θ) € # flwrf Λ < 2.

This is essentially due to Hardy and Littlewood [3]. Since

rlΊt

+<p))=, JL ί f(ei«)+u>>)P(r,u-φ)du,

where P(r,t) is the Poisson kernel, by partial integration, we can easily
get (2.14).

To deduce (2.15) from (2.14) it is enough to note that, by Jensen's in
equality

H i l/(έ?ίC*+t))'P(r'Vdt\'k S i " / IΛ« (ί+t>)I*P(r,t)dt.
o o

THEOREM 1. Iff(z) € Hp (0 < £ S 2), and a > 1/p, then

(2.16)

This was given in my previous paper [9]. We shall give a slightly simpler
proof.

PROOF. We shall begin with the case p = 2.
(1) p = 2. Then for 2α > 1,
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^ C* 2 n*M* [ d - rf{l - r)1"2* r**"-1* dr (by Lemma 2)

i

Hence the case £ = 2 is proved.

(2) Suppose that 0 < p < 2 and put

F(z) =

then F(2) is regular for \z\ < 1 and belongs to H\ Since

so that

we have, by ParsevaPs relation

0 0

By Lemma 3, for k < 2 this is smaller than

α - rr
0

Let α = (1 + 6)/ί (6 > 0), /8 = (1 + θ)/# - l/Λ(2/ί - 1) and k be sufficiently
near to 2, then

and the above formula is

^ f (1 - rf'^rf ' g ^
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dφ

o

(2/3 > 1).

Thus

J {g*a(θ f)}»dθ S F^J {F*(θ)}*-»{g*(θ F)}* dθ
0 0

2τc 2 *

ί Γ Λ{2-P)j2 ( Γ
^ FJC a { I (F*(θ)y dθ\ II (g*(θ

\J ί \J
0 0

by the inequality of Holder. From the maximal theorem of Hardy and
Littlewood, we have

Γ Γ
I {Fΐ(θ)}2 dθ t^A^l I Fie16) \2 dθ

J J
0 0

and so by the case (1),

P.- / W)\9dθ.
0 0 0

Thus we proved Theorem 1 completely.

COROLLARY 1. Iff(z) belongs to the class Hp (0 < p S 2),
then

zjohere

J 2

0

[fit > IIP)

H*(6) = { sup — 2 ki'W) -

This is a maximal theorem concerning with strong summability.

PROOF. Let us put nβ is the index n when Hζ(θ) attains the supremum,
then

/*

lay (2.3). Thus Corollary is immediate from Theorem 1 and Lemma 1.

COROLLARY 2. If f(z) belongs to the class Hp (0<p<L 2), then'

V7 K(0)la
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is convergent for almost all θ.

This is immediate from Theorem 1 and Lemma 1. This Corollary has
been ever proved by Chow [1].

From this, we can get the following Corollaries by the well known
method.

COROLLARY 3. Iff{z) belongs to Hp (0<pS 2), then the series 2 *>nCne
nίθ,

w^ere^l (λw)a/w converges, is summable \C, a\,(a > lip) for almost all θ.

For the proof, see Chow [1].

COROLLARY 4. If f{z) belongs to Hp (0 < p<, 2), then for almost all θ, the
sequence {n} can be divided into two complementary subsequences {rik} and
{m/c}, depending in general on θ, and such that σf^iθ) tends to f(θ) and the

series 2 */wfc converges, where a >l/p.

For the reduction of this Corollary, see Zygmund [10].

3. The function g*(θ) for the class IIP (oo > p > 2).
For the class Hp (oo > p > 2), we have the following theorem. This is

essentially due to Zygmund [13]. The proof is also repetition of his argu-
ment.

THEOREM 2. If f(z) € Hp (oo > p > 2) and a > 1/2, then

(3.1) J (tfXθWdθ^Ap,.] \f(eiθ)\»dθ.
0 0

PROOF. Let μ be a positive number such that

pβ μ
and let ξ{θ) be any positive function such that

(3.2) ί J ξ»(θ)dθV'μ ^ 1 .
0-

Then it is known that

(3.3) / (g*(θ))*dθ\ = {/ (g*2(θ))Pi2dθ\
o o

= sup

and the inner integral
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(gZ(β)Ϋ£(0)dθ^Aal ζ[θ)dθ j δ2Λ dr ί V t PA d<P- (δ = 1 - r)
0

0 0

Let us put

(«, Ψ) = J

and

(3.4)

then

say.

the last

— It

Then

integral

1 - rβ"*-*

Tt

0

δ

0

»-p -

> + ») + £ι

δ

0

: ^ - «)>

= /+/,

+ fi) + f (<? - «)} - ^

and

S δ - 1 J {ξ{φ + U) + ξ(φ - U)}^
δ

= δ'^-1 Γ B(«, ^ ) w 2 Λ I7" + 2 Λ δ205-1 Γ B (
L Jδ J

δ

ί u'ιa

-2"-1 du

2a δ205-1 ?*(^) ί u'ιa du
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Thus the left-hand side of (3.3)

jf {^(θ)}'iB(θ)dθ^Faj Bdrj \f(n»)\*ξ*{φ)dφ
0 0

\fμ.f Γ[J
0

0 ϋ

from the maximal theorem of Hardy-Littlewood and the theorem of Lit-
tlewood-Paley [6] (simple proof; Zygmund [14]). Thus we get

2τr

Γ
2ic

( Γ

00 0

and the theorem is proved. From this, we can derive easily that if f(z)
belongs to Hp (oo >p > 2), and a > 1/2, then

/

2τr ^

and

/ I sup — V I σ-ίf-W - /(βίθ) Ia i d<9 g £2>. β I |/(βί9) I * dθ

4. A proof of the theorem of Littlewood and Paley. From Theorems
1 and 2, we have especially,

THEOREM 3. If f(z) belongs to Hp (Kp< oo), then

(4.1) I {g*(θ))v dθSApl \f(eiθ) | p dθ.
J J
0 0

From this, we have the following

{S(θ)}p dθ S BP J l/(^ίa) Ip ί», (ί > 1)
0 0

and
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/

,a* 2*

{μ(θ)}pdθ^CP I |Λeίθ)\*dθ (P>D
J

0 0

where S(θ) is the function of Lusin and μ(θ) is the function of Marcinkiewicz.
The function of g\θ) is essenitally a majorant of these functions. The
reduction of (4. 2) is done by a moment's consideration, but the reduction of
(4.3) is somewhat difficult. For the detailed definitions and proofs, see
Zygmund [13].

The main theorem of Littlewood-Paley is condensed in the following
theorem.

THEOREM 4. If f(z) belongs to J P (1< p< 00), thenl j l ^ W f
o o

2/r

(4.4) APf
o

(4.5) BP<a,βJ
0

(4.6) CP^β \f(^ψdθ^ {Σ\MΘ)\*W>dθ^Cpaβ

(4. 4) is a consequence of Theorem 3 and Lemma 1*>. The left-halves of
(4.5) and (4.6) are proved by the following results of Zygmund [11]. That
is

/

" p/a

for 1 < p < oo. For the proof of the reverse inequalities, we need

LEMMA 4. Let {fn(z)} (n = 1,2 ) δe « sequence of the function of Hp

(Kp< oo), dwd /̂ ί sn, JC(Θ) denote the k-th partial sum of the boundary series
offniz). Then

0 w = 1 0

A comparatively simple proof was given by Zygmund [10], using Rade-
macher's function.

PROOF OF THEOREM 4. From Lemma 4, we have

*> We suppose that the left-half of (4.4) is proved by another method.
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/

2

"* 2 l/v*)~" dθ
v=nk+l

(Σ Σ 4 Σ"1^^'

Thus (4. 5) is proved. On the other hand
«Jfc-»-l

log π; { 2*

2
by (4. 2). Since

dθ

^ |s»Λ+1(β) - σ. t + 1(ί) |« + \snk(θ) - <r^(0)|a + |<r»M(0
we get the required ineqnality

2 IΔ.I s iW 2 iwo - w«ι + BΛ.,β 2 \*M-«*

and get the formula (4. β). Thus the theorem is proved completely.
The following corollary is deduced by the well known method from

Theorem 4.

COROLLARY 5. If f(z) belongs to the class Hp (p > 1), and if β > fh+ifih

> a > 1, then

\ sup I s*Jβ) \Ydθ^A,,*,β f l/t«*) I 'dθ
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COROLLARY 6. If {£&} is any sequence of numbers of which each has one of
the values 1, — 1, and if f ^ Hp (p > 1), β > n^λjnk >a>l, then

Γ"* ί J l , p

0 re=J-

5. The poΛver series of Jϊ-elass.
Concerning with the power series of ϋΓ-class, A.Zygmund [11] proved

that

(5.1) J hι(θ) dθ^Aj \f(eiθ)Ilog+\f{eiθ)|dθ + A

and

(5.2) J {h(θ))μdθ<Bμ(J 1/(̂ )1 )̂ , (0</»<l).
0 0

So, from Lemma 1, we get

THEOREM 5. Iff(z) belongs to the class H, then

(5.3) J g*(θ)dθ^AJ |/(«")|log+|/r*")|rf0 + A'

r27C r~π

(5.4) J (g*φ)rdθ^B^J \f(«P)\dθy, (0 < μ < 1)

The present author has not ever a simple and direct proof of this
theprem.

THEOREM 6. If f(z) belongs to H, then

(5- 5) J {μ(θ)}dθSΛJ I(feiθ)|log+ \f(eiθ)\dθ + A'
0 0

(5. 6) J { ^ F dθ S Br (j \f(e«) I dθj , (0<r< 1)
0 0

11/2j
0

and
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This is immediate from the fact

μ(θ)<Cg*(θ)

which was proved by Zygmund [13].

6. Power series of the class JBP(O < p < 1). For the class Hpφ < p

< 1), we have a more precise results than Theorem 2.

THEOREM 7. If f(z) belongs to Hp (0 < />< 1) and a = lip, then

(6.1)

(6.2)

f
0

ί

\f(e«)I * log- \f(eiθ)\dθ + A;

PROOF. This case is reduced to the case p = 1.

If we take 0 < p < 1, a^ljp and p

G(z) = {f(z)}p

then

and

fix) = a{G(z)y-iG'(z),

(l-rY«drί _

AG

From (2.14) of Lemma 3,

where

the right-hand side is smaller than

{Θ) ί l + L | l l

G*(0)= sup

(S = 1 - r)

(θ)}*«-vj (1 - ry " drj (1 _ ^fiΐ)^"^)^
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o-^g iθi Gψ.

<sZ(β' f)Ydθ ^ A"J {

g*(θ;G)dθ\P

0 0

by Holder's inequality. From the maximal theorem and ^Theorem 5, we get

J WΘ)Jpdθ<BP] \G{<*»)\log+\G(e*»)\dθ + Bp

f \A<*») I ' log- |/(e«>) I dθ + B p

0

Analogously

J {g*"(θ f)Y» dθ^AP I {G%θ)}^1-1Hg*(θ G)}»» dθ
0 0

-τt

J
ϋ

2*

Thus Theorem is proved completely.

THEOREM 8, Iff(z) belongs to H*> ( 0 < ί g 1), and a = IIp, then

(6.3) J {ha{θ)y
0 ϋ

(6.4) J
This is immediate from Theorem 7 and Lemma 1. This formula was given
by the present author [9] by more complicated method.

7. Maximal theorems of the Cesaro mean of the power series of
the class UP (0 < p < 1).

THEORFM 9. Iff(z) belongs to Hp {0<p^ 1) and ct>l/p- 1, then
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<7.D / {snp\σl{θ)\Ydθ<AthJ
J 0<n<oo J
0 0

THEOREM 10. Iff(z) belongs to Hp(0 <p^ 1/2), and a=l/p- 1, then

<7.2) { sup I σ %β)\ydθ%B p \ \fi<f*)) * log+ \f(eiθ)\dθ + B'p0

2τc

(7. 3) Γ { sup I <(0)| »}^ <# Si C,J f \f{e«)\» dθX, (0<μ< 1).
J 0<n<oo \J /
0 0

Theorem 9 is a generalization of classical results of Hardy-Littlewood
{4] and Gwilliam [2]. (7.2) of Theorem 10 is an affirmative answer of a
problem of Zygmund [12J. From (7.3) we can easily see that σ%(θ) (a = 1/p
— 1) converges to f(eiθ) for almost all θ. This was proved by Zygmund [12]

for 0 < p < 1. For the case 1/2 < p < 1, the maximal theorem is left open,
but convergence of σ%{θ) is proved in the next section.

The present author [9] deduced Theorem 9 and Theorem 10 from Lemma
1 and Theorem 8 with the aid of the following lemma.

LEMMA 5. Iff(z) = g\z) and a > 0, then

, ., J.

where σ?τ(θ; f) is the a-th Cesaro mean of the boundary series of f(z).

For the detailed argument, see my previous paper [9J.

8. Strong summability and ordinary summability of the power
series.

In Corollary 1, we have proved the maximal theorem of the strong
summability of σ%-\θ) (a > 1/p) for Hp (Kp<L 2). But if we give up the
maxinal theorem, then we can prove the more precise result.

THEOREM 11. If f{z) belongs to Hp (1 <Lp < 2) and a = 1/p, then

fc=0

for almost all θ, where 0<q<p/(p — 1).

This was proved in the author's paper [8]. The method of the proof
depends closely upon the paper of Zygmund [12]. In his paper, Zygmund
proved the strong summability theorem of the function of L and the Cesaro
summability theorem of the series of the class IP (0 < p < 1). The proofs
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of both theorems have many features in common, but the the details of
proofs are different. After proving Theorem 11, we can deduce from that
the following Cesaro summability theorem.

THEOREM 12. If f(z) belongs to H» (1/2 <p<l) and a = l/p± 1, then the

series 2 cne
inθ is summable (C, a) to f(eίθ) for almost all θ.

PROOF. If we put

then g(z) belongs to H\\ = 2p, 1< λ < 2), and (a + l)/2 = l/2p = 1/λ. From
the formula in [8], p. 225, we have

n

2 Al> Ial1*-1 {θ g) - a-lHΘ g)|* = o(«»'*+1). a. e.
fc = l

that is
n

2 ; g) - < r ^ + 1 ) / 2 ( 0 ; g)\* = o(wα+2), a. e.
fc=l

By Abel's transformation,

From Lemma 5, we have

Since evidently σ £*+ 1 ) / 2(#; r/) tends to g(eiθ) for almost all θ, if we take
polynomial fe(z) near to f(z), then we can conclude

<r%(fi ί /) -*f(βίθ), a. e. as /2 ->- oo.
Thus we get Theorem 12 from Theorem 11.

9. The affirmative answer to a problem of Zygmund.
On another conjecture of Zygmund, we can.prove the following theorem.

THEOREM 13. Iff(z) belongs to Hp, then

Γ
|a ΪP/2

(9. 2) / I Qsup L^»Wl-.__ J J0 ^ B p J |/(^) I * <*0, (0 < ί ^ 1, α =

(9. 2) is deduced from (9.1) by the usual method. (9. 2) is an answer to
the problem raised by Zygmund [12]. But there is a slip in his original
paper, so I proved (9. 2) in the case 1/2 < p<l, since this case is better
than Zygmund's original conjecture. After-that, I noticed his correction [I4J
in such a form as (9.2), so we will prove Theorem [13J completely. For the
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proof of theorem we need a lemma which was given in [9].

LEMMA. (A) For positive a,

Π "{log (« + !)}** "J \log(l-r)\*« J | l - r β » | » ψ

<B) If we put

integrals of {f**(θ)}'z and {f(θ)Yz are majorated by the integral of

PROOF OF THEOREM. The case 1 < p <; 2 of (9.1) was proved in my
previous paper [9]. So we begin with the case p = 1.

(1) p=l. Let us put

F(z) = {/U)}i/*

then F(z) € J2*. Denote by s*-1/^^) and τ^\θ) the corresponding (C, -1/2)
sums etc. of the boundary series of F\z). If we put

= /•'"[ĵ yc'tf*»))|« | F ( r ^ + > > ) ) | a

J | l - r β " | | l - r β * |
0

= 2 J 2 s

= 2J Σ ί Σ
0 n=Q *Ί/=0

dφ

v - 0

Applying Minkowski's inequality and Holder's inequality successively,
we obtain

l / 2

(-2 ls*:
^ nn —-••»

1/2
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^ Aa 2 (v + I)1'21 τ?l*(θ) 11 log (1 - r) 1 »*• r* F+«?) (by (B) of Lemma 2)

( 1 / 2 °° 1 / 2

2(^ + i)

So

Φ(r, fl) ̂  CΛFKΘ)y\l - r)-M log(l

By the formula of Lemma (A)

0

κ-0

Consequently

ϊit

0 0

(F\θ)f dθ J1'1 ί Γ {F*\θ)f dθ V "
0

0

by Lemma (B).

The case 1/2 < p < 1. put

then G(<ε) € -ίΓ. Denote by s*(^), σ*(θ) and τ*(^) the corresponding partial
sums, Cesaro means and their differences of the boundary series of G(z).
Then we have
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r
0 " J

by the case proved.

Moreover we have

0

and let us put

then we can prove analogously to Lemma 3 in [9]

Wt(θ)\
^ l o g ( W + "

and

r r
I I(θ)dθ^J \G(έ»)\dθ.0 0

On the other hand, since a = 1/p, and G(z) = {f(z)}p, we have

f(z) = .
and by applying Holder's inequality,

W n{log(n-\- l)}2lP )

— dy J — dcp \
0 0

— [J J \ \l—retφXλ j
o o

| l- r ^|a(a-«)
0

, ί ( \G(r<?<-»)\* . y«(l - r)
- r ) | 3 J

'2τr

\J |l_ r^|2/(2-«) ^ ) J
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where

and

\ H(θ)dθ<G\ \G(eiθ)\dθ.
J J
0 ϋ

Thus we get

^APJ \G(e*θ)\ ^
0

For the case p = 1/m and l/(m -\-l) <p < 1/m (m = 2, 3, ), we can prove
similarly, cf. Chow [1J.

The reduction of (9. 2) from (9.1) is identical to the proof of Theorem 6
in [9]. That is from Lemma 5,

Wnφ,f)\ ^Aana 2, ik+Ίy^

. A.I. ^\ήa+^-θL8}]l_
a n ° ύ (k + iy-*

where

fiz) = g\z), and a = l/p- 1.

This is smaller than

4^4:1^11^1 + B;f SUP wr^θ;S)\ Is

(k+ΐ) lo<>»<» J

Cα(logny>»

Consequently
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/
( I a(θ f)\ 1 p

) sup *σ n^ '-^'* \ dθ

0

} ^ ] —*i ' !

+ C' < sup | c r ( β f + 1 ^ z (0; £")| >
J lθ</i<oo ' J

o

^ D«J I ^ ^ I'xdθ^Daj IΛOI» J^

J J
ϋ 0

by (9.1) and a = l/£ - 1. Thus we get the formula (8. 2).
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