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Recently J.Dufresnoy [3], M.Tsuji [8] and Z. Yύjόbό [9] have proved a
generalization of Ahlfors' discs theorem [1] by use of Ahlfors* theory [2]
of covering surfaces. On the other hand, A. Pfluger [6] and Y. Juve [4] have
obtained an extension of Koebe's distortion theorem to some univalent
pseudo-regular functions.

From the results mentioned above, we are motivated to write this paper.
First, in 1, we define the functions which are called pseudo-analytic (K) and
{K} by following S.Kakutani and A. Pfluger. In 3, by the method due to
Z. Yύjόbό and by the aid of lemmas which are stated in 2, we establish a
theorem for our function which is pseudo-analytic {K} corresponding to
the above Dufresnoy-Tsuji-Yύjόbό's theorem for the analytic function.
Further, as its application, an extension of Bloch's theorem is proved in 4.

1. Let w — f(z) = u{x,y) -f iv(x,y) be one-valued continuous in a connected
domain D and suppose that it satisfies the following conditions:
(i) Ux, uy, vX) vy exist and are continuous in D — Eh where JEΊ is at most
enumerable and closed with respect to D;
(ii) J(z) = uxVy — UyVx > 0 in D — Eh where Ez has the same property as Ex

then w = f(z) is called pseudo-regular in D. It is well-known that such a
pseudo-regular function is an inner transformation in the sense of Stoϊlow.

If f(z) is pseudo-regular in a neighbourhood of z0, except at z0, and lim

f(z) = oo, then z0 is called a pole of /(*). If f{z) is pseudo-regular in D except
at poles, then f{z) is called pseudo-meromorphic in D. When fiz) is pseudo-
regular, pseudo-meromorphic or a constant, it is called pseudo-analytic.

It is well-known that an infinitesimal circle with center at each point z
belonging to D — Ev — E2 is transformed by f(z) into an infinitesimal ellipse
with center at/0), if we neglect infinitesimals of higher orders. The magnitude
of the ratio of the major and minor axes of the infinitesimal ellipse is called
a dilatation quotient of f(z) at z, and we denote it by q(z). If a pseudo-
regular (-meromorphic) function f(z) satisfies the condition:
(iii) the dilatation quotient q{z) of f{z) is bounded in D — Eλ — E2: q(z) <; K

then it is called pseudo-regular (-meromorphic) (K) in D. Furthermore, if
it satisfies the condition:

(iv) lim' ^ n,ϊ exists in a domain D which contains z = 0, then we
z->0 \Z\λl

call it pseudo-regular (-meromorphic) {K} in D.
In this paper, we consider the functions which are pseudo-analytic (K)

and {K}.
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2. For later use, first we state the following three lemmas.

LEMMA 1. Let w = f*(z) bepseudo-meromorphic (K) in \z\ < p and suppose
that /*(0) = 0. For any r such that 0 < r < p, we denote by L(r), A{r) respe-
ctively the length and the area of the Riemannian images of \z\ = r and \z\
< r by w — f*(z) on the w-sphere. If L(r) < π/2 and A(r) < π/2, then we

have |/*(z)| < 1 for \z\ ^r.

REMARK. Since Z. Yfljόbό's proof [9] for the case that f*(z) is meromorphic
in [z\ < p can be applied without any modification for the case that/*(«) is
pseudo-meromorphic (K) in \z\ < p, we omit here the proof of Lemma 1.

LEMMA 2. Let w = φ(z) be pseudo-regular (K) in \z\ < r* such that φ(0)
= 0 and suppose that w = φ(z) maps \z\ < r* one to one pseudo-conformally

onto a Jordan domain Dw which contains \w\ < r*, and whose contour contains
at least one point on \w\ = r*. Then we have for \z\ < r*e~**κ

\φ(z)\ <&*r*l-uK\z\llK.
PROOF. First we map \z\ < r* and Dw, each cut along the negative axes,

conformally on the parallel-strip-domains S and T, which are respectively
contained in |3( s)l < π and \ξj(t)\ <τr, by s = log z and t == logw respectively.
Then we have a branch of t = log {φ(es)} pseudo-regular (K), which maps S
pseudo-conformally on T. We denote this branch by t = to(s) for simplicity.
The image of \z\ = r < r* by s = log z is a segment θr in S which lies on
St(s) = log r, and the length θ(r) of θr is 2τr. The image of \z\ = r < r* by
w = φ{z) is a Jordan closed curve Lr surrounding w = 0, and the image of
Lr by t = log w is a Jordan arc Λr in T whose end points lie on ξ$(t) = TΓ
and Q(t) = — 7r. Then ^ r is transformed into Λr by t = /Q(S).

On the other hand, by Kakutani's theorem [5], we can see that the
dilatation quotient of t = *0(s) on ft. is equal to the dilatation quotient q{r)
of φ(z) on 121 = r. Moreover, if we put Max |φ(z)\ ^M(r\ then we have

Max U {to{s)} = log M(r).
Sεθr

Now we suppose that r satisfies the inequality

f ° d & & } = _ l _ f
J ^)(?(r) 2τr J

1 Γ dr
WK J r

1
2-τrK™* r

> 2
i. e. r < r*e~**κ. Then, by an extension of Ahlfors' distortion theorem [5], for
any r such that r < r*e~**K, we get

-log r

/

lo

logr
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so that

Mr) <

Hence w e h a v e for \z\ < r*e~i1cK

\φ(z)\ <

LEMMA 3. Let w = /*(z) be pseudo-regular {K} in \z\ < p such that /*(0)

= 0, and denote by J-^L the derivative of f*(z) along \z\ = r* < p, then

we have

lim <-tf df*(zl
dz

dθ.

PROOF. Let W be the Riemann covering surface onto which \z\ < p is
mapped by zυ = f*(z), then W is of hyperbolic type by Kakutani's theorem
[5]. Hence W can be transformed one to one and conformally on \σ\ < p by
a suitable function σ = g~\w). Then it is seen that the composed function

σ = g-\w) = g~1{/*(z)}~ψ(z) is pseudo-regular (ϋQ in \z\ < p and maps \z\
< p one to one pseudo-conf ormally on | σ \ < p. In particular, we choose

ψ(z) such that ψ(0) = 0. Then the image of \z\ < r* < p by σ = ^(2) is a
Jordan domain £>σ containning σ = 0. Further, we select a positive number
k so that the image Dζ of Dσ by ξ* = kσ may be able to contain \ζ\ <r*
and the contour Γ of Dζ may be able to contain at least one point on \ζ\
= r*. Then the composed function w = ^(σ ) = g(ζ/k) = Λ(f) is regular in
I ξΊ < #p and there holds f*(z) = h(ζ) for 2 and f corresponding each other
by ζ^kψ(z)~φ{z).

Now, by Cauchy's integral formula, we have

2« J dz
dz,

so that

Ift'(θ)}
2πJ \dz\

On the other hand,

= lim
ζ-X)

h(ζ) lim
ί-M)

ίj
*(*>

By Lemma 2, since \φ(z)\ < e8*r*i-i/2C|eji/^ for ^j < jy*r4*ί:

J we get

Hence it follows that
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lim
z->0 2τr J

df*(z)
dz dθ.

3. Now, by the above lemmas, we can prove the following

THEOREM 1. Let w ~f(z) be pseudo-meromorphic {K} in \z\ < R and F be
the Riemann surface generated by w — f(z) on the w-sphere. Let Dh D2, — ,
Dq (<? =̂  3) be q disjoint simply connected closed domains on the w-sphere and
suppose that every simply connected island of F which lies above Dι is of

multiplicity ̂ mt, mi being positive integers or oo. If 2 ( 1 ~~ ~ZΓ ) > 2> then

where C is a constant depending only on Dh Dz, , Dq.

PROOF. For any r (^R), let f{z) ramify at least mt(r)-ρly (mι(r)
= mi) on Di (f = 1,2, ,q) in \z\ ̂  r ^ R, there holds

q I 1 \
It can be easily seen that the positive minimum value of 2 ( 1 ~~ ̂ 7~ ) "~

is 1/42, so that

= 2 + έ * (1)

On the other hand, we denote by L{r), A(r) respectively the length and
the area of the Riemannian images of \z\ = r and \z\ <rbyw =/(2),i.e.

Ur) =

df(reiθ)
rdθ

rdθ, Λ(r) =• if Άre:") rdrdθ.
(1+ IΛreίβ)|)2

0 0 0

Then, we have the following inequality obtained by Ahlfors [2] from his
theory of covering surfaces:

(2)

where h( > 0) depends only on Pi {i = 1,2, , q). Hence we get from (1)
and (2)

L(r) ^ . 1 /o\
j\\r) 4ώ Λ

By Schwarz's inequality, we can see
2 * J.7C

(r)]*^J rdθ j rdθ

(1+
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Using the well-known formula | df(z)Jdz | 3 <,q(z)J(z), it holds that

105

2πr ~KJ dβ = κdA{r)
(l+\f(reiθ)\*¥ dr '

-so that

dr
r

2πK
dA(r)

(4)

Integrating both members from r0 to R and using (3), we have

log— ^2τrK
r0

f dA(r) f dA(r)
A(r0)

so that

A(ro) <
log (Λ/r0) *

If we put r0 = R exp( - 7056 h2K\ then there holds

A(r0) < π/2.

Hence, for any rx (0 < t\ < r0), we have from (4) and (5)

(5)

(6)

r0. Put ri = e~iKr0)

(7)

where r* is the radius which minimizes L{γ) in t\
then it holds that for rΎ = e~iκr0 <Ξ r* <Ξ r0,

Z(r*) < π/2.

Moreover, A(r) is the increasing function of r, thence we see from [5],

A(r*) < τr/2. (8)

Now, we make the rotation of the Riemann sphere: f*(z) = (f(z) ~/(0))/

(1 + fΦY(z)) Evidently, f*(z) is pseudo-meromorphic {K} in \z\ < R, and L{r)
and A(r) for /*(z) are the same as those for f(z), so that (7) and (8) hold
for f*(z), hence we have |/*(2)| < l i n \z\ ^ r* by Lemma 1, and so/*0ε)is
pseudo-regular {ϋΓ} in \z\ <*r*. Then

7Γ

2
1*1 ='**

2 J

and by Lemma 3, we can get

df*(z)
dz

dθ >

- 7 0 5 6 ^ ) 1ί

Further we have
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!/*(*) I 1 Γ 1/(2)— /(0)|

Therefore we obtain

so that we have the required result by putting
C Ξ 1/2 exp {4(1 + 2π + 1764 fca)}.

4. If we use Theorem 1, then we can extend Bloch's theorem [7].

THEOREM 2 {An extension of Block's theorem). Let w = f(z) be pseudo-
meromorphic {KJ in \z\<l and suppose that /(0) = 0, lim \f(z)\/\z\1/κ>l,

then the Riemann surface generated by w —f{z) on the w-sphere contains a
schlicht spherical disc whose radius ;> β > 0, β being a constant independent of
f(z).

PROOF. Let Dι}D2,D3)Di,D5 be five disjoint spherical discs on f-sphere
and C be a constant which is decided depending only on Dι,Dz,DdyDi}Dz as
in Theorem 1. If we consider ζ == Cf(z) instead of f{z) and apply Theorem 1
to ζ = Cf{z), then we have a schlicht island above at least one disc Dι of
Du D*, A, D4i D5, hence the schlicht domain Bt corresponding to this disc Zλ
is contained in \z\ < 1. If we transform the above five discs into the discs
Δi,Δa,Δ3,Δ4,Δ5 on w-sphere by w = ζ/C, then Δ»: corresponding to Dι is the
range of f(z) in Bt. Hence, it suffices to take the minimum of radii of Δi,
Δ2, Δ3, Δ4j Δ5 to β.

REMARK. In the particular case when w = f(z) is meromorphic, M. Tsuji
proved Theorem 1 [8] by use of Theorem 2 [7].

THEOREM 3. Let w = f(z) bepseudo-meromorphic {K} in \z\ < R and suppose
that the Riemann surface F generated by w = f(z) on the w-sphere is a covering
surface of a closed Riemann surface Φ whose genus p^2, then we have

1 + I/(Q)M
R< (C o*

where C is a positive constant depending only on Φ.

PROOF. Put, as in the preceding case,
df{re*θ)

and =ίf
o 00

Let p(r) be the Euler's characteristic of the Riemann surface Fr generated
by w =f(z) when z varies on \z\ <; r, p0 be the Euler's characteristic of Φ,
and n be the number of sheets of Φ, Then by Ahlfors' fundamental theorem
[2] on covering surfaces, we have

β nπ
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where p+{r) means Max(/>(r),0) and h is a positive constant depending only

on Φ.

It is easily seen that p0 equals to 2(p — 1), so that ρ0 is positive. Since

Fr is simply connected, there holds p+(r) = 0. Hence we have

From this, we can proceed similarly as in the proof of Theorem 1 and get

the present theorem.

REMARK. In the particular case that K == 1 i. e. when our pseudo-analytic

functions reduce to analytic functions, Theorem 1 reduces to Dufresnoy-

Ytijόbό-Tsuji's theorem [3], [9], [8], and Theorems 2 and 3 reduce to Tsuji's

theorems [7] and [8].
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