ON AHLFORS' DISCS THEOREM AND ITS APPLICATION

Kazuo Iкомa

(Received in revised form, February 16, 1956)
Recently J. Dufresnoy [3], M.Tsuji [8] and Z. Yâjôbô [9] have proved a generalization of Ahlfors' discs theorem [1] by use of Ahlfors' theory [2] of covering surfaces. On the other hand, A. Pfluger [6] and Y. Juve [4] have obtained an extension of Koebe's distortion theorem to some univalent pseudo-regular functions.

From the results mentioned above, we are motivated to write this paper. First, in 1, we define the functions which are called pseudo-analytic (K) and $\{K\}$ by following S.Kakutani and A.Pfluger. In 3, by the method due to Z. Yâjôbô and by the aid of lemmas which are stated in 2, we establish a theorem for our function which is pseudo-analytic $\{K\}$ corresponding to the above Dufresnoy-Tsuji-Yûjôbô's theorem for the analytic function. Further, as its application, an extension of Bloch's theorem is proved in 4.

1. Let $w=f(z)=u(x, y)+i v(x, y)$ be one-valued continuous in a connected domain D and suppose that it satisfies the following conditions:
(i) $u_{x}, u_{y}, v_{x}, v_{y}$ exist and are continuous in $D-E_{1}$, where E_{1} is at most enumerable and closed with respect to D;
(ii) $J(z)=u_{x} v_{y}-u_{y} v_{x}>0$ in $D-E_{2}$, where E_{2} has the same property as E_{1}; then $w=f(z)$ is called pseudo-regular in D. It is well-known that such a pseudo-regular function is an inner transformation in the sense of Stoilow.

If $f(z)$ is pseudo-regular in a neighbourhood of z_{0}, except at z_{0}, and $\lim _{z \rightarrow z_{0}}$ $f(z)=\infty$, then z_{0} is called a pole of $f(z)$. If $f(z)$ is pseudo-regular in D except at poles, then $f(z)$ is called pseudo-meromorphic in D. When $f(z)$ is pseudoregular, pseudo-meromorphic or a constant, it is called pseudo-analytic.

It is well-known that an infinitesimal circle with center at each point z belonging to $D-E_{1}-E_{2}$ is transformed by $f(z)$ into an infinitesimal ellipse with center at $f(z)$, if we neglect infinitesimals of higher orders. The magnitude of the ratio of the major and minor axes of the infinitesimal ellipse is called a dilatation quotient of $f(z)$ at z, and we denote it by $q(z)$. If a pseudoregular (-meromorphic) function $f(z)$ satisfies the condition:
(iii) the dilatation quotient $q(z)$ of $f(z)$ is bounded in $D-E_{1}-E_{2}: q(z) \leqq K$ ($K \geqq 1$);
then it is called pseudo-regular (-meromorphic) (K) in D. Furthermore, if it satisfies the condition:
(iv) $\lim _{z \rightarrow 0} \frac{|f(z)-f(0)|}{|z|^{1 / K}}$ exists in a domain D which contains $z=0$, then we call it pseudo-regular (-meromorphic) $\{K\}$ in D.

In this paper, we consider the functions which are pseudo-analytic (K) and $\{K\}$.
2. For later use, first we state the following three lemmas.

Lemma 1. Let $w=f^{*}(z)$ be pseudo-meromorphic (K) in $|z|<\rho$ and suppose that $f^{*}(0)=0$. For any r such that $0<r<\rho$, we denote by $L(r), A(r)$ respectively the length and the area of the Riemannian images of $|z|=r$ and $|z|$ $<r$ by $w=f^{*}(z)$ on the w-sphere. If $L(r)<\pi / 2$ and $A(r)<\pi / 2$, then we have $\left|f^{*}(z)\right|<1$ for $|z| \leqq r$.

Remark. Since Z. Yújôbô's proof [9] for the case that $f^{*}(z)$ is meromorphic in $|z|<\rho$ can be applied without any modification for the case that $f^{*}(z)$ is pseudo-meromorphic (K) in $|z|<\rho$, we omit here the proof of Lemma 1.

Lemma 2. Let $w=\varphi(z)$ be pseudo-regular (K) in $|z|<r^{*}$ such that $\varphi(0)$ $=0$ and suppose that $w=\phi(z)$ maps $|z|<r^{*}$ one to one pseudo-conformally onto a Jordan domain $D_{v i}$ which contains $|w|<r^{*}$, and whose contour contains at least one point on $|w|=r^{*}$. Then we have for $|z|<r^{*} e^{-4 \pi K}$

$$
|\varphi(z)|<e^{8 \pi} r^{* 1-1 / K}|z|^{1 / K} .
$$

Proof. First we map $|z|<r^{*}$ and D_{v}, each cut along the negative axes, conformally on the parallel-strip-domains S and T, which are respectively contained in $|\mathcal{Y}(s)|<\pi$ and $|\mathfrak{Y}(t)|<\pi$, by $s=\log z$ and $t=\log w$ respectively. Then we have a branch of $t=\log \left\{\boldsymbol{\varphi}\left(e^{s}\right)\right\}$ pseudo-regular (K), which maps S pseudo-conformally on T. We denote this branch by $t=t_{0}(s)$ for simplicity. The image of $|z|=r<r^{*}$ by $s=\log z$ is a segment θ_{r} in S which lies on $\%(s)=\log r$, and the length $\theta(r)$ of θ_{r} is 2π. The image of $|z|=r<r^{*}$ by $w=\phi(z)$ is a Jordan closed curve L_{r} surrounding $w=0$, and the image of L_{r} by $t=\log w$ is a Jordan $\operatorname{arc} \Lambda_{r}$ in T whose end points lie on $\mathcal{Y}(t)=\pi$ and $\mathfrak{J}(t)=-\pi$. Then θ_{r} is transformed into Λ_{r} by $t=t_{0}(s)$.

On the other hand, by Kakutani's theorem [5], we can see that the dilatation quotient of $t=t_{0}(s)$ on θ_{r} is equal to the dilatation quotient $q(r)$ of $\varphi(z)$ on $|z|=r$. Moreover, if we put $\operatorname{Max}_{|z|=r}|\varphi(z)| \equiv M(r)$, then we have $\operatorname{Max}_{s \in \theta_{r}} \nVdash\left\{t_{0}(s)\right\}=\log M(r)$.

Now we suppose that r satisfies the inequality

$$
\begin{aligned}
\int_{\log r}^{\log r *} \frac{d\{\Re(s)\}}{q(r) \theta(r)} & =\frac{1}{2 \pi} \int_{r}^{r *} \frac{d r}{r q(r)} \\
& \geqq \frac{1}{2 \pi K} \int_{r}^{r *} \frac{d r}{r} \\
& =\frac{1}{2 \pi K} \log \frac{r^{*}}{r} \\
& >2
\end{aligned}
$$

i. e. $r<r^{*} e^{-4 \pi \kappa}$. Then, by an extension of Ahlfors' distortion theorem [5], for any r such that $r<r^{*} e^{-4 \pi K}$, we get

$$
\log r^{*}-\log M(r)>\int_{\log r}^{\log r^{*}} \frac{d r}{r q(r)}-8 \pi \geqq \frac{1}{K} \log \frac{r^{*}}{r}-8 \pi .
$$

so that

$$
\boldsymbol{M}(\boldsymbol{r})<\boldsymbol{e}^{8 \pi} \boldsymbol{r}^{* 1-1 / \kappa} \boldsymbol{r}^{1 / K}
$$

Hence we have for $|z|<r^{*} e^{-4 \pi K}$

$$
|\varphi(z)|<e^{3 \pi} r^{* 1-1 / K}|z|^{1 / K}
$$

Lemma 3. Let $w=f^{*}(z)$ be pseudoregular $\{K\}$ in $|z|<\rho$ such that $f^{*}(0)$ $=0$, and denote by $\frac{d f^{*}(z)}{d z}$ the derivative of $f^{*}(z)$ along $|z|=r^{*}<\rho$, then we have

$$
\frac{1}{e^{8 \pi} r^{* 1-1 ; K}} \lim _{z \rightarrow 0} \frac{\left|F^{*}(z)\right|}{|z|^{1 / K}}<\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| d \theta
$$

Proof. Let W be the Riemann covering surface onto which $|z|<\rho$ is mapped by $w=f^{*}(z)$, then W is of hyperbolic type by Kakutani's theorem [5]. Hence W can be transformed one to one and conformally on $|\sigma|<\rho$ by a suitable function $\sigma=g^{-1}(w)$. Then it is seen that the composed function $\sigma=g^{-1}(w)=g^{-1}\left\{f^{*}(z)\right\} \equiv \psi(z)$ is pseudo-regular (K) in $|z|<\rho$ and maps $|z|$ $<\rho$ one to one pseudo-conformally on $|\sigma|<\rho$. In particular, we choose $\psi(z)$ such that $\psi(0)=0$. Then the image of $|z|<r^{*}<\rho$ by $\sigma=\psi(z)$ is a Jordan domain D_{σ} containning $\sigma=0$. Further, we select a positive number k so that the image D_{ζ} of D_{σ} by $\zeta=k \sigma$ may be able to contain $|\zeta|<r^{*}$ and the contour Γ of D_{ζ} may be able to contain at least one point on $|\zeta|$ $=r^{*}$. Then the composed function $\boldsymbol{w}=\boldsymbol{g}(\sigma)=g(\zeta / k) \equiv \boldsymbol{h}(\zeta)$ is regular in $|\zeta|<k \rho$ and there holds $f^{*}(z)=h(\zeta)$ for z and ζ corresponding each other by $\zeta=k \psi(z) \equiv \varphi(z)$.

Now, by Cauchy's integral formula, we have

$$
h^{\prime}(0)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\zeta} \frac{d h(\zeta)}{d \zeta} d \zeta=\frac{1}{2 \pi i} \int_{|z|=r r^{*}} \frac{1}{\varphi(z)} \frac{d f^{*}(z)}{d z} d z
$$

so that

$$
\begin{aligned}
\left|h^{\prime}(0)\right| & \leqq \frac{1}{2 \pi} \int_{|z|=r^{*}}\left|\frac{1}{\varphi(z)}\right|\left|\frac{d f^{*}(z)}{d z}\right||d z| \\
& \leqq \frac{1}{2 \pi r^{*}} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| r^{*} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| d \theta
\end{aligned}
$$

On the other hand,

$$
\left|\boldsymbol{h}^{\prime}(0)\right|=\lim _{\zeta \rightarrow 0}\left|\frac{\boldsymbol{h}(\zeta)}{\zeta}\right|=\lim _{z \rightarrow 0}\left|\frac{f^{*}(z)_{i}^{\prime}}{\rho^{\prime}(z)}\right| .
$$

By Lemma 2, since $|\boldsymbol{\varphi}(z)|<e^{8 \pi} r^{* 1-1 / K}|z|^{1 / K}$ for $|z|<r^{*} e^{-4 \pi K}$, we get

$$
\left|h^{\prime}(0)\right|>\frac{1}{e^{8 \gamma^{* 1-1 / K}}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}}
$$

Hence it follows that

$$
\frac{1}{e^{8 \pi} r^{* 1-1 / K}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}}<\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| d \theta .
$$

3. Now, by the above lemmas, we can prove the following

Theorem 1. Let $w=f(z)$ be pseudo-meromorphic $\{K\}$ in $|z|<R$ and F be the Riemann surface generated by $w=f(z)$ on the w-sphere. Let D_{1}, D_{2}, \ldots, $D_{q}(q \geqq 3)$ be q disjoint simply connected closed domains on the w-sphere and suppose that every simply connected island of F which lies above D_{i} is of multiplicity $\geqq m_{i}, m_{i}$ being positive integers or ∞. If $\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}}\right)>2$, then

$$
R<\left(C \frac{1+|f(0)|^{2}}{\lim _{z \rightarrow 0}|f(z)-f(0)| /|z|^{1 / K}}\right)^{K}
$$

where C is a constant depending only on $D_{1}, D_{2}, \ldots, D_{q}$.
Proof. For any $r(\leqq R)$, let $f(z)$ ramify at least $m_{i}(r)$-ply $\left(m_{i}(r) \geqq m_{i}(R)\right.$ $\left.\equiv m_{i}\right)$ on $D_{i}(i=1,2, \ldots, q)$ in $|z| \leqq r \leqq R$, there holds

$$
\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}(r)}\right)-2 \geqq \sum_{i=1}^{q}\left(1-\frac{1}{m_{i}}\right)-2>0 .
$$

It can be easily seen that the positive minimum value of $\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}}\right)-2$ is $1 / 42$, so that

$$
\begin{equation*}
\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}(r)}\right) \geqq 2+\frac{1}{42} \tag{1}
\end{equation*}
$$

On the other hand, we denote by $L_{(}^{\prime}(\boldsymbol{r}), A(r)$ respectively the length and the area of the Riemannian images of $|z|=r$ and $|z|<r$ by $w=f(z)$, i. e.

$$
L(r)=\int_{0}^{2 \pi} \frac{\left|\frac{d f\left(r e^{i \theta}\right)}{r d \theta}\right|}{1+\left|f\left(r e^{i \theta}\right)\right|^{2}} r d \theta, A(r)=\int_{0}^{r} \int_{0}^{i \pi} \frac{\|\left(r e^{i \theta}\right)}{\left(1+\left|f\left(r e^{i \theta}\right)\right|\right)^{2}} r d r d \theta
$$

Then, we have the following inequality obtained by Ahlfors [2] from his theory of covering surfaces:

$$
\begin{equation*}
\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}(r)}\right) \leqq 2+h \frac{L(r)}{A(r)}, \tag{2}
\end{equation*}
$$

where $h(>0)$ depends only on $D_{i}(i=1,2, \ldots, q)$. Hence we get from (1) and (2)

$$
\begin{equation*}
\frac{L(r)}{A(r)} \geqq \frac{1}{42 h} \tag{3}
\end{equation*}
$$

By Schwarz's inequality, we can see

$$
\left[L^{\prime}(r)\right]^{2} \leqq \int_{0}^{2 \pi} r d \theta \int_{0}^{2 \pi} \frac{\left|\frac{d f\left(r e^{i \theta}\right)}{r d \theta}\right|^{2}}{\left(1+\left|f\left(r e^{i \theta}\right)\right|^{2}\right)^{2}} r d \theta
$$

Using the well-known formula $|d f(z) / d z|^{2} \leqq q(z) J(z)$, it holds that

$$
\frac{[L(r)]^{2}}{2 \pi r} \leqq K \int_{0}^{2 \pi} \frac{J\left(r e^{i \theta}\right)}{\left(1+\left|f\left(r e^{(\theta)}\right)\right|^{2}\right)^{2}} r d \theta=K \frac{d A(r)}{d r},
$$

so that

$$
\begin{equation*}
\frac{d r}{r} \leqq 2 \pi K \frac{d A(r)}{[L(r)]^{2}} \tag{4}
\end{equation*}
$$

Integrating both members from r_{0} to R and using (3), we have

$$
\log \frac{R}{r_{0}} \leqq 2 \pi K \int_{r_{0}}^{R} \frac{d A(r)}{[L(r)]^{2}} \leqq 2 \pi(42 h)^{2} K \int_{r_{0}}^{R} \frac{d A(r)}{[A(r)]^{2}}<\frac{3528 \pi h^{2} K}{A\left(r_{0}\right)}
$$

so that

$$
A\left(r_{0}\right)<\frac{3528 \pi h^{2} K}{\log \left(R / r_{0}\right)} .
$$

If we put $r_{0} \equiv R \exp \left(-7056 h^{2} K\right)$, then there holds

$$
\begin{equation*}
A\left(r_{0}\right)<\pi / 2 . \tag{5}
\end{equation*}
$$

Hence, for any $\boldsymbol{r}_{1}\left(0<\boldsymbol{r}_{1}<\boldsymbol{r}_{0}\right)$, we have from (4) and (5)

$$
\begin{equation*}
\log \frac{r_{0}}{r_{1}} \leqq 2 \pi K \int_{r_{1}}^{r_{0}} \frac{d A(r)}{[L(r)]^{2}}<\frac{2 \pi K}{\left[L\left(r^{*}\right)\right]^{3}} A\left(r_{0}\right)<\frac{\pi^{2} K}{\left[L\left(r^{*}\right)\right]^{2}}, \tag{6}
\end{equation*}
$$

where r^{*} is the radius which minimizes $L(r)$ in $r_{1} \leqq r \leqq r_{0}$. Put $r_{1}=e^{-4 K} r_{0}$, then it holds that for $r_{1}=e^{-4 K} r_{0} \leqq r^{*} \leqq r_{0}$,

$$
\begin{equation*}
L\left(r^{*}\right)<\pi / 2 . \tag{7}
\end{equation*}
$$

Moreover, $A(r)$ is the increasing function of r, thence we see from [5],

$$
\begin{equation*}
A\left(r^{*}\right)<\pi / 2 . \tag{8}
\end{equation*}
$$

Now, we make the rotation of the Riemann sphere: $f^{*}(z)=(f(z)-f(0)) /$ $\left\{1+f(0) f(z)\right.$). Evidently, $f^{*}(z)$ is pseudo-meromorphic $\{K\}$ in $|z|<R$, and $L(r)$ and $A(r)$ for $f^{*}(z)$ are the same as those for $f(z)$, so that (7) and (8) hold for $f^{*}(z)$, hence we have $\left|f^{*}(z)\right| \leqq 1$ in $|z| \leqq r^{*}$ by Lemma 1 , and so $f^{*}(z)$ is pseudo-regular $\{K\}$ in $|z| \leqq r^{*}$. Then

$$
\frac{\pi}{2}>L\left(r^{*}\right)=\int_{|z|=r^{*}} \frac{\left|\frac{d f^{*}(z)}{d z}\right|}{1+\left|f^{*}(z)\right|^{2}}|d z|>\frac{r^{*}}{2} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| d \theta
$$

and by Lemma 3, we can get

$$
\begin{aligned}
& \frac{r^{*}}{2} \int_{0}^{2 \pi}\left|\frac{d f^{*}(z)}{d z}\right| d \theta>\frac{\pi\left(r^{*}\right)^{1 / K}}{e^{8 \pi}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}} \geqq \frac{\pi\left(r_{1}\right)^{1 / K}}{e^{5 \pi}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}} \\
& \quad=\frac{\pi r_{0}^{1 / K}}{e^{4+8 \pi}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}}=\frac{\pi R^{1 / K} \exp \left(-7056 h^{2}\right)}{e^{4+8 \pi}} \lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}} .
\end{aligned}
$$

Further we have

$$
\lim _{z \rightarrow 0} \frac{\left|f^{*}(z)\right|}{|z|^{1 / K}}=\frac{1}{1+|f(0)|^{2}} \lim _{, z \rightarrow 0} \frac{|f(z)-f(0)|}{|z|^{1 / K}} .
$$

Therefore we obtain

$$
R<\frac{1}{2^{K}} \exp \left\{4 K\left(1+2 \pi+1764 h^{2}\right)\right\}\left(\frac{1+|f(z)|^{2}}{\lim _{z \rightarrow 0}|f(z)-f(0)| /|z|^{1 / K}}\right)^{K},
$$

so that we have the required result by putting

$$
C \equiv 1 / 2 \cdot \exp \left\{4\left(1+2 \pi+1764 h^{2}\right)\right\} .
$$

4. If we use Theorem 1, then we can extend Bloch's theorem [7].

Theorem 2 (An extension of Bloch's theorem). Let $w=f(z)$ be pseudomeromorphic $\{K\}$ in $|z|<1$ and suppose that $f(0)=0, \lim _{z \rightarrow 0}|f(z)| /|z|^{1 / K} \geqq 1$, then the Riemann surface generated by $w=f(z)$ on the w-sphere contains a schlicht spherical disc whose radius $\geqq \beta>0, \beta$ being a constant independent of $f(z)$.

Proof. Let $D_{1}, \boldsymbol{D}_{2}, \boldsymbol{D}_{3}, \boldsymbol{D}_{4}, \boldsymbol{D}_{5}$ be five disjoint spherical discs on ζ-sphere and C be a constant which is decided depending only on $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ as in Theorem 1. If we consider $\zeta=\boldsymbol{C} f(z)$ instead of $f(z)$ and apply Theorem 1 to $\zeta=C f(z)$, then we have a schlicht island above at least one disc D_{i} of $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$, hence the schlicht domain B_{i} corresponding to this disc D_{i} is contained in $|z|<1$. If we transform the above five discs into the discs $\Delta_{\mathrm{l}}, \Delta_{2}, \Delta_{3}, \Delta_{4}, \Delta_{5}$ on w-sphere by $w=\zeta / C$, then Δ_{i} corresponding to D_{i} is the range of $f(z)$ in B_{i}. Hence, it suffices to take the minimum of radii of Δ_{1}, $\Delta_{2}, \Delta_{3}, \Delta_{4}, \Delta_{5}$ to β.

Remark. In the particular case when $w=f(z)$ is meromorphic, M. Tsuji proved Theorem 1 [8] by use of Theorem 2 [7].

Theorem 3. Let $w=f(z)$ be pseudo-meromorphic $\{K\}$ in $|z|<R$ and suppose that the Riemann surface F generated by $w=f(z)$ on the w-sphere is a covering surface of a closed Riemann surface Φ whose genus $p \geqq 2$, then we have

$$
R<\left(C \frac{1+|f(0)|^{2}}{\lim _{z \rightarrow 0}|f(z)-f(0)| /|z|^{1 / K}}\right)^{K},
$$

where C is a positive constant depending only on Φ.
Proof. Put, as in the preceding case,

$$
L(r)=\int_{0}^{2 \pi} \frac{\left|\frac{d f\left(r e^{(\theta)}\right) \mid}{r d \theta}\right|}{1+\mid f\left(\left.r e^{\theta \theta}\right|^{2}\right.} r d \theta \text { and } A(r)=\int_{0}^{r} \int_{0}^{2 \pi} \frac{J\left(r e^{i \theta}\right)}{\left(1+\mid f\left(\left.r e^{(\theta)}\right|^{2}\right)^{2}\right.} r d r d \theta .
$$

Let $\rho(r)$ be the Euler's characteristic of the Riemann surface F_{r} generated by $\boldsymbol{w}=f(z)$ when z varies on $|z| \leqq r, \rho_{0}$ be the Euler's characteristic of Φ, and n be the number of sheets of Φ. Then by Ahlfors' fundamental theorem [2] on covering surfaces, we have

$$
\rho^{+}(r) \geqq \frac{\rho_{0}}{n \pi} A(r)-h L(r),
$$

where $\rho^{+}(r)$ means $\operatorname{Max}(\rho(r), 0)$ and \boldsymbol{h} is a positive constant depending only on Φ.

It is easily seen that ρ_{0} equals to $2(p-1)$, so that ρ_{0} is positive. Since F_{r} is simply connected, there holds $\rho^{+}(r)=0$. Hence we have

$$
\frac{L(r)}{A(r)} \geqq \frac{\rho_{0}}{n \pi h}
$$

From this, we can proceed similarly as in the proof of Theorem 1 and get the present theorem.

Remark. In the particular case that $K=1$ i. e. when our pseudo-analytic functions reduce to analytic functions, Theorem 1 reduces to Dufresnoy-Yâjôbô-Tsuji's theorem [3], [9], [8], and Theorems 2 and 3 reduce to Tsuji's theorems [7] and [8].

References

[1] L. Ahlfors, Sur les domaines dans lesquels une fonction méromorphe prend des valeurs appartenant à une région donnée, Acta Soc. Sci. Fenn. N. s. 2, Nr. 2(1933).
[2] L. Ahlfors, Zur Theorie der Úberlagerungsflächen, Acta Math., 65(1935).
[3] J. DUfresnoy, Sur les domaines couverts par les valeurs d'une fonction méromorphe ou algébroide. (Thèse, 1935).
[4] Y. JUVE, Úber gewisse Verzerrungseigenschaften konformer und quasikonformer Abbildungen, Ann. Acad. Sci. Fenn., A, I, 174(1954).
[5] S. Kakutani, Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces, Japanese J. Math, 13(1936).
[6] A. PflÜGER, Quasikonforme Abbildungen und logarıthmische Kapazität, Ann. de L'Inst. Fourier, 2(1950-1951).
[7] M. Tsuji, On an extension of Bloch's theorem, Proc. Acad. Tôkyô, 18(1942).
[8] M. Tsuji, An extension of Bloch's theorem and its application to normal family, Tôhoku Math., J., 4(1952).
[9] Z. Y Ûjôbô, An application of Ahlfors' theory of covering surfaces, J. Math. Soc. Japan, 4(1952).

Department of Mathematics, Faculty of Liberal Arts and Science, Yamagata University.

