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Introduction

G. de Rharα [3] proved an interesting theorem concerning structures of
simply-connected, complete and reducible Riemannian manifolds. In this
paper I shall first attempt to extend his theorem to affinely connected
manifolds. For this purpose I shall define irreducible manifolds which are
regarded as an extension of the notion of reducible Riemannian manifolds.
For this manifold, I shall prove that the ^-dimensional homotopy group of
any of its maximal integral manifolds is isomorphic into the ^-dimensional
homotopy group of the given manifold under the homomorphism induced
by the inclusion map. By virtue of this, it will be shown that a simply-
connected ^-reducible manifold is equivalent to an affine product. This is
nothing but an extension of de Rham's theorem, as mentioned above. Secondly
I shall determine structures of /^-reducible manifolds whose fundamental
groups are cyclic of order two, by the above theorem.

Throughout the whole discussion, I shall adopt the following conventions :
I use the word "nbh" for neighborhood. I describe as a path (or a curve)
what is usually called a segment of a path (or a curve), including the
endpoints, and parameters of paths mean always affine parameters. If X is
an affinely connected manifold, I describe as the covering space of X the
universal covering space of X with the affine connection induced naturally
from X by the covering. Let us suppose that the indices run as follows :

a,b,c,d= 1,2, r t,j,k,l = r + l,r + 2,....,n;

a,β,y= 1,2, ....,n.
I wish to note that integral manifolds R and S in this paper can not be

intrinsically distinguished and lemmas etc. hold good though we exchange
the roles of R and S there.

Furthermore, I wish to note that a part of the idea of this paper owes
to A. G. Walker's paper [6] and to express my thanks to Professor S. Sasaki
of Tόhoku Univ. for his kind assistance during the preparation of the
manuscript.

1. JR-rediicible manifolds

Let M be an w-dimensional differentiate manifold (of class C3) with an
affine connection without torsion of class C1 and we assume that M is affinely
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complete. For the definition of differentiable manifolds, see [5], p. 21, and
note that Mi s connected, separable, and metric. The word "affinely complete"
means that any straight line lying on the tangent space at any point x € M
and passing through x can wholly be developed into M.

When the homogeneous holonomy group h at a point o of M fixes an
^-dimensional plane To and an (n — r)-dimensional plane T'o complementary
to To, then M i s called a completely reducible or briefly, C-reducible manifold.

In a C-reducible manifold M, transplant the two planes To and To at 0

to every point x ^ M by parallel displacement along a curve ox of class D1

and denote the two planes thus obtained by Tx and T'. respectively, then we
get two parallel plane fields TX} T'x over M. When we attach at every point
x of a coordinate nbh U a suitable frame (eϊ} ...., en) whose first r vectors
(e1} ,er) span Tx and the remaining n — r vectors (er+i, ,en) span T'χ} we
may find Pfaffian forms ωa (class C1), ωΊ

b and &>} such that the connection of
M is expressed by

dX = ωΛ£α;,

As the connection is without torsion, we have

The plane field T'x in U is defined by the system ωa = 0, and the field
T:c by the system ωι = 0. Since these systems are completely integrable by
(1), we may find their first integrals

x*' = fa\χa)} xif = /Γ(Λ:Λ), (2)

where we have denoted the coordinates in U by (#α). As the Jacobian of
(2) is not zero, we transform the coordinates (xa) by (2). Then, for any
point x^U we may find a suitable coordinate nbh V oi x covered by the
new coordinates (#*')• Such new coordinates are called canonical coordinates
and a nbh covered by canonical coordinates is called a canonical coordinate
nbh.

In every canonical coordinate nbh V with coordinates (x") (we omit
"dashes")

χι = const, and x1 - const.

define the r- and s-dimensional integral manifolds of the two fields Tx and
Tx respectively, where 5 = n — r. We can express the connection of M in
terms of natural frames (eΛ) in V by

dx =

As the planes Ta, and Tx are parallel fields, we see ω\ = ωj = 0, hence we
get Γ^. = Γ ^ = ΓfΛ = Γj t = 0, where we have put w ^ Γ ^ ^ v . Accordingly,
among many components of Γgγ, only Γ ĉ and Γ^ are non-trivial in general
and usually they consist of functions of coordinates (Λ1, . . . . , tf1) (cf. [1]). If
Γ ĉ are functions of coordinates (Λ:1 s xr) only and Γĵ  are functions of
coordinates (%r+1, , tf*) only, then M is called an R-reducible manifold.
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Now, concerning integral manifolds in a C-reducible manifold M we
have the following well-known properties (we do not give their proofs here):

a) Through every point xζM there pass a pair of two r- and s-dimensional
maximal integral manifolds (cf. [2], p. 94). We shall consider each of them
as a differentiate manifold with the system of coordinates and the affine
connection induced naturally from a system of canonical coordinates and
the affine connection in M. We denote the r- and s-dimensional manifolds by
R{x) and S(x) respectively and sometimes we shall use abbreviated notations
R and S for them.

b) The intersection R(x)f]S(x) is at most countable (cf. [2], p. 96).
c) Any path of a maximal integral manifold, say R[x), is a path of M

too, and a path of M through x, whose tangent vector at x is contained in the
tangent space of R{x) at x, is contained in R(x) and is a path of R{x). Hence
R(x) is affinely complete.

Under thesa prenises we shall discuss structures of i?-reducible mani-
folds.

2. Homotopy groups

DEFINITION 2.1. Let M be a C-reducible manifold. In a maximal integral
manifold, say R, of M, a nbh of a point x^R is called an intrinsic nbh in
R. In M, a canonical coordinate nbh whose coordinates consist only of all
(x*) satisfying the inequalities a* < x* < b* (a*, b* are all const.) is called a
canonical cubic coordinate nbh or briefly, a C-nbh.

DEFINITION 2. 2. In an /^-reducible manifold M, let U and V be intrinsic
coordinate nbhs with cDordinates (xίl) and (xι) in two integral manifolds R
and S of M respectively. Let Γ^ΰ(xa) and Γjfc(#*) be the connection coefficients
of R and S in U aud V respectively. Now consider the product U x V with
coordinates (xd, xι). We endow the product U x V with the connection
coefficients T%y(X\ oί) which satisfy the following relations : Γ,J,(Λ .̂ xι) •:= Γjc(#f),
Tι

jk(X\ xι) == Γjjy) and the remaining ΓjJ/tf1, **) are all zero. Then the product
U x V is called the affine product of U and V. Moreover, when we cover
the product R x S by a set of affine products U x V, we get a differentiate
manifold R x S with an affine connection. This is also called the affine
product of R and S.

Let C(x) be a C-nbh of a point x in an /^-reducible manifold M. In
integral manifolds R(x) and S(x\ the connected components containing x of
C(x) Π R(x) and C{x) f| S(ΛΓ) are intrinsic nbhs and we denote them together with
the coordinates induced naturally from those of C(x) by C{x)\R and C(x)\S
respectively. Then, C(x) | R and C(x) | S are intrinsic coordinate nbhs and the
following lemma is evident:

LEMMA 2.1. C(x) is represented by the affine product of C(x)\R and C(x)\S.
Now, under the same notations it follows by applying Whitehead's theorem

[7] to M that there exist simple convex intrinsic nbhs U(x) and V(x) of x
such that U(x)aC(x)\R and V(x)aC(x)\S, in the geometries of R{x) and S{x)
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respectively. The word "a simple convex nbh N" means a nbh such that
any two points in N are joined by one and only one path which is wholly
contained in N. Now, we consider U(x) and V(x) as intrinsic coordinate nbhs
in C(x) IR and C{x) \ S covering them respectively. Then, we have:

LEMMA 2.2. Let W(x) be the αffine product U(x) x V(x), then Wκx)αC(x)
and W(x) is a simple convex nbh of M.

PROOF. It is evident that W(x)czC(x) from Lemma 2.1. We shall .denote
the coordinates of any two points xh x2 € W(x) by (Xιa), (x%) and express the
unique path in U(x) joining the point (ΛJ, 0) to the point (x], 0) by x° = x\t),
x1 = 0 (0 <; t <Ξ 1) and similarly the unique in V{x) joining the point (0, x[)
to the point (0, x\) by x* ^ 0, x* = x\t) ( O S ^ S 1). Then it is easily seen that
a curve

y? = xσ(t), x1 = x*(t) ( O S ί S l )

is the unique path in W(x) joining xx to χ.z.
DEFINITION 2. 3. A nbh W{x) such that we defined in Lemma 2.2 is called

a W-nbh of x.
When a vector v at a point AT of Λf is given, we shall denote by (x, v, c),

where c is a constant, the terminal point y of the path obtained by developing
the vector cv into M.

LEMMA 2. 3. Let v0 be a vector tangent to R(xQ) at a point x0 of an Ir-
reducible manifold M and v(τ) the vector field parallel to v0 along a curve x =
χ(τ) (0<;τ5Ξ 1) of class C1 in S(x0), where xo=x(O). Let u{τ) be a vector at <r
= c {constant), obtained by parallel displacement of v(τ) along a path (x(τ),

v{τ), σ ) ( 0 S σ ^ c). Put y(τ) ~ (x(τ), v(τ), c) andyo~y(O). Then, / O Γ O S T ^ I ,
the following properties are fulfilled:

a) y(r)czS(y0) and y(τ) is of class C1. b) u{τ) is a parallel vector field along
the curve y(τ). c) If x{τ) is a path, so is v(τ).

PROOF. A) We shall first prove the lemma in a C-nbh. Let the components
of v0 be (#J, 0) and the coordinates of x0 be (x%, Λ:J). Express the curve x = x(τ)
by x° = ΛΓQ, X( = x1(r\ where x\ = x*(0). Now consider a differential equations-
of parallel displacement

¥ + *»*¥
dr py dr

along the curve x = x{τ). It turns into

-JL + Γ , Λ^e. = o.
d d

dr dr dr

Solve them under the initial conditions va = v%, vι = 0 when T = 0, and
we get v'1 = ^J, vι = 0. This is the parallel vector field #(τ). Again solve
the differential equations

dxf . dva

 τ-,7 ,, , dxf , dυ'
dV = ^ rf = -1*"*"' d^=Vt> &Γ
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under the initial conditions oC1 = *J, va = z/J xι = *'(T), »' = 0 when σ = 0,
and we get tf* = ^(σ, aj, ι#), z>α = va(σ, x%, tφ, ** = *'(τ), ^ = 0. If we put <r
= c in this solution, we get y(τ), i. e., xa = const., Λ* = x\τ) and «(τ), i. e.,

va = const., vι = 0. From these forms, the lemma is easily seen.

B) Next we shall prove our lemma in the large. Let x{τ)y{τ) be the path
(x(τ), v{τ\ σ) from σ = 0 to <r = c. When we cover the path x^y0 by a finite
number of C-nbhs, it follows from A) that there exists δ0 > 0 such that this
lemma holds good for the arc x = x(τ) (0 < T <Ξ δ0). Now we suppose that
the lemma holds good for the arc x = Λ(T) (0 <; T < τ0). Similarly by covering
the path x(ro)y(τo) by a finite number of C-nbhs, we see that there exists
Si > 0 such that, for τ0 - δL S T <; τ0, y(τ)dS(y{τ0 — δi)), XT) is of class C1

and b) and c) of the lemma hold good. Hence we may see that the lemma
holds good for a curve x = x(τ) (0 <Ξ r <; τ0) too. Summing up these fact,
Lemma 2.3 is easily shown.

When X is an affinely connected manifold, we shall denote by Tx(.x) the
afϊine space tangent to X at a point # *Ξ X. Next, when the terminal point
of a curve h coincides with the initial point of another curve l2i we shall
denote by lλlz the curve /] followed by lz.

LEMMA 2. 4. Let C be a C-nbh of an R-reducible manifold M and I: tf* =
Λ"(£) (0 <Ξ t ^ 1) ^ a curve of class C1 in C. Consider two curves h: xf1 = ̂ (/),
^ - Λ«(0) « ^ /2: Λα = xa(l), xι = Λ«(/)(0 S ^ U * ^ ίAβ c/oŝ J cwrz β hid'1

gives rise to the unit element of the holonomy group H at (xa(0)).
PROOF. Consider the differential equations of developement

dx _ dx" dea _ Γ c dx^ det _ p]c dtf ~
~df ~ ~aTe"' ~Λ ~ ab dt ec} ~dt - l ί j ^ i e b ( 3 )

and put x0 = (x*(0)). Solve (3) in TM(X0) along / under the initial conditions
that x for t = 0 takes x0 and eΛ for t = 0 coincides with the natural frame
(£ϋQί) at x0. We denote the solutions by x{t) and £Λ(0 and put jy = #;l), βlα ==

Again solve (3) in Tπ(Xo) along h under the same initial conditions for
t =z 0. We denote the solutions by x\t) and e'JJt), then we get (e'JX)) = (̂ iα, eoi)
and put ^Ϊ Ξ X\1). Under the above values yΛ and (ela, e^i) as initial conditions
for t = 0, solve (3) in 7V%) along /2. We denote the solutions by x"(t) and
^'(ί), then we get gα'(l) = (eιa, en) and put ^2 == x"(l). From this it follows
directly that the closed curve hhl"1 gives rise to the unit element of the
homogeneous holonomy group h at xQ. On the other hand, we may find that
y coincides with jy2. Hence Lemma 2. 4 is proved.

We shall here give the following remarks: If / is a path, so are U and

/2. The curve obtained by developing hlj'1 is a triangle Λ^VI^ Vectors xoyι

and yιy2 are equal to the natural projections of a vector x0y2 into TR{X0) and
respectively.

DEFINITION 2. 4. Suppose that through a point XQ a path /0 and a curve

ft of class Dι are given in M. Let v0 be the vector obtained by developing



18 S. KASHIWABARA

Io into TM(XQ) and let vι be the vector at xh obtained by parallel displacement

of v0 along x0Xι. Again let h be the path obtained by developing V\ into M.

Then l0 and l{ are said to be parallel along the curve XQX{.
LEMMA 2. 5. Suppose that a map {not necessarily continuous) f of the square

{(σ, T) : Ogσ-jTgl} into an R-reducible manifold M satisfies the following
conditions:

1) f(σ, 0 ) ( 0 $ σ g l ) is of class C1 and ACT, 0)C=JR(O), where o = Λ0, 0). 2)
/(Ό, τ ) ( 0 S τ g l ) is a ίβίΛ βwrf /(0, τ)czS(o). 3) /(c, τ ) ( 0 ^ τ S l ) «wtf the path
f(0, T) #r£ parallel along f(σ,0), where c is an arbitrary constant.

Then the following properties are fulfilled:
a) The closed curve h : f(σ, 0/(1, τ)f(σ, l)"1/^, τ)-J(0 <; σ, T <i 1) gives rise to

the unit element of the holonomy group H at o. b) If f(σ, 0) is a path, f{σ, 0)
and f(σ, 1) are parallel along /(0, T).

Note that from Lemma 2. 3, /(σ, l ) ( 0 £ σ S l ) is of class C1.
PROOF. Consider a closed curve

/, : f(σ, 0V(c7 τ)/(σ , lJ'^O, r ) ' 1 ( O S σ ^ ^ O ^ T ^ l ) .

Cover the path fφ, r) by a finite number of C-nbhs. By making use of
Lemma 2. 3 and 2. 4 for every C-nbh in turn, we understand easily that there
exists So > 0 such that a closed curve h for any δ in 0 <Ξ δ <i δ0 gives rise
to the unit element of i£ Now suppose that a closed curve lcr for any d in
0 <Ξ d < c gives rise to the unit element of H. Similarly, CDver the path
f{c, T) by a finite number of C-nbhs, then there exists δι > 0 such that a
closed curve

C-δ^σ^C; 0<σ3Sc-δi, 0 ^ r ̂  1)

gives rise to the unit element of H. Hence it follows that the closed curve
Ilc-δi i ev lc, gives rise to the unit element. Summing up these facts a) is
easily proved. If f(σ, 0) is a path, we get a parallelogram by developing h
into TM(O). Hence b) is also shown easily.

DEFINITION 2. 5. When x(t) ( 0 < ί ^ l ) is a curve in M on which points
x(tλ) (λ = 0,1, , m 0 = t0 < ti < < tm = 1) are specified and curves x(t)
(tu-i ̂ t <:tv) (y — 1, 2, ,m) are all paths, then the curve x{t) is called a
broken-path and the points x(t\) are called its vertices.

In an ^-reducible manifold M, let xf{t) be the broken-line obtained by
developing a broken-path x(t) of M into TM(xS), where ΛO = AΓ(O). Again let
X£) be the broken-path obtained by developing into M the natural projection
y\t) of xf(t) into T^Λb) (relative to TR(x0)), then Xi)dS(^0). In such a case,
the broken-path X*) is called the natural projection of x{t) into S(Λ^). Then
we have:

LEMMA 2. 6. The point yif) lies on the integral manifold RipdJ;)).
PROOF. For 0~t0 < tx < < tb = 1 we may suppose that every curve

x{t) which corresponds to tv-Ύ <; t ̂  tv {v = 1, , &) is a path contained
in a TF-nbh Wv. Put xv = x(tv), xμ = #'(£„) and so on. Denote the path x(t)
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(tv-ι S ί < tv) by Xv-iX,, the vector xf{t) (tv-1 <,t^tv) by xv_vx'v and so on, where

x0 = x} = ^ ^ jy0. In order to prove the lemma we shall make use of Lemmas

2. 3, 2. 4 and 2. 5 repeatedly.

From xoxτczWι, it follows that the natural projectionyoyι of x0Xι is also

contained in W\. Hence the lemma holds good for to^t <Ξ tλ. Consider the

path yLxτ in Wι. Take a point ΛΓ12 such that x1xVI is parallel to jy^ along y&.

Develope the broken-path JΌJΊJViΛά xrfv> into TM{X0) and we denote the terminal

point by x[2. x[xV2 is equal to y[y'13 i.e., the natural projection of xλx'z into

Ts(Xυ). Hence x}xV2 is the natural projection of x±x2 into S(Xι), and XιXi2ciW2.

Consequently we may show that the lemma holds good for ^ g ί g tλ. Next

let y >xV2 be the path parallel to y[χL along .y^, and x^x2 be the path in Wz.

Then the closed broken-path x{]xγ xΎx2 xΔxV2 x12y2 y2y\ 3Ί3Ό gives rise to the unit

element of the holonomy group H at x0. Take a point #23 such that x^c^ is

parallel to y>y3 along the broken-path j>2#i2 Xγλx u In the same manner as

above, %2χ.23 is the natural projection of x2x3 into S(x2) and ^ϊ23c:T73. Hence

the lemma holds good for t2^t<L t3. If we continue this manner, it is

evident that Lemma 2. 6 is proved.

Let E be the ^>-cube consisting of points (tlf .. . . , tp) in the ^-dimensional

Euclidean space Ep such that 0 <Ξ tv <Ξ 1 (v = 1, , £). In particular, the

(φ — l)-faces defined by tP = 0 and /^ = 1 in 51 are denoted by £Ό and ZsΊ

respectively.

LEMMA 2.7. Z?/ U be a simple convex nbh of M. Suppose that a map φ

•of E into U satisfies the following conditions :

1) φ is continuous in E0[)EL. 2) When tι, . . . . , tv-λare regarded as constants,

φ{tι, '... .,tP) (0 <Ξ tp S 1) defines a path. Then, φ is a continuous map.

Since this follows from the theory of differential equations, we do not

give its proof here.

LEMMA 2. 8. Suppose that a continuous map φ of E into an R-reducible

manifold M satisfies the following conditions . 1) φ(E0) = xΰ} where xΰ is a fixed

point. 2) When t1} , tp-x are regarded as constants, φ(t1} , ίp) (0 S /p

<; 1) is a broken-path which we denote by φΐ1...tp-1(tP). 3) Vertices of φtι...tp-1{tp)

consist only of points corresponding to tP = 0, ljm, ,{m — l)/m, 1.

Then there exists a continuous map ψ: E-*S(XQ) for which the following

properties are fulfilled:

a) ψ(E0) = φ(E0) = Xo b) Two points, ψ(tlt ...,tp)andφ(tl} . . . . ,*„) for the

same value (th ,tP) lie always on the same integral manifold R. c) For

(ίi, ,tP) such that φtl....t (ίp) (0 <Ξ tp ^ 1) is contained in'S(x0), ψ(tlf ,t (

PROOF. Letφ'ty...tp-ι (tP) be the development of a broken-path φtι....tp-1(tp)

into TM{XQ). NOW consider the map

φ': E-+TM(Xo) ((tl3.. ..,tpy+φtι....tp_ι(tp)),

then we get
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ΦVu , h) = (mtP - X)φ\t1, .. .., tP-!, (λ +
+ (λ + 1 - mtp)φf(h, ...., ίp-χ, λ/m) (4)

for XI m <= tp <; (λ + l)/m (λ = 0,1, m — 1). From the continuity of φ we

have

φ-1+Δfi...fp-i+Δ*,,-! (tp)-+φΐί...tp-1 (tp) (Δίv ->0 ^ = 1, ,/> — 1).

Hence, Φί1+Δfι ^_1+Δίp_1(λ//w)-^φf

1't -,p_1 (λ,/ra) (λ = 0.1, . . . ., m),
i. e., φŶ i + Δίi, , ίj,-ι + Δfi>-i, X/m)-+φ'(tι, £,>-!, λ/w).

Consequently φ'{tu , tP-λ, X/m) is CDntinuous. From this and (4\ φ'(tu.
tP) is also continuous.

Next, let Ψ'tu..tp_ι(tp) be the natural projection of a broken-line φ'tί%,Λ _„
(tP) into Ts{Xo). Then it follows directly that the map

ψ : E -+ Ts(Xo) ((ίi, ...., f„) -• ^ . . t^tp))
is continuous. Again let ψtv..tp-ι (tp) be the development of a ίbroken-line
<Ψtίi...r

p-i(^p) m t o SOJ). Consider the map
•ψ : E -> S(ΛΓ0) ((fx, ...., tp) -> ψ n... .tp-i(tp)).

By the similar manner, it is possible to deduce that the map ψ is conti-
nuous. It follows directly that ψ satisfies a) and c), and b) holds good by
virtue of Lemma 2. 6.

THEOREM 1. Let f be a continuous map of the boundary 3E of E into a
maximal intergal manifold, say S, of an R-reducible manifold M. Iff is homo-
topic in M to a constant map, then it is homotopic in S to a constant map.

PROOF. We shall suppose f(E0) = x0 and f(Eγ) = xu where XQ, xι ^ S. This
assumption does not lose its generality of our theorem. Since M has a
metric independent of the connection, we denote the distance between x and
y by d(x,y). From the given conditions, we may extend the map / to a con-
tinuous map E-+M and denote such a map again by /. Put D=f(E), then
D is a compact subset of M. Next, in a nbh W(x) at a point x there exists
always the greatest positive number (or infinity) δ such that W(x)^>{y:
d(x,y) < δ}. δ is called the radius of W(x).

Choose at every point x of D a PF-nbh of x such that the greatest lower
bound of these radii is a positive number. This is possible because D is
compact. We denote the W-nbh by W(x) and the greatest lower bound by
δ0. Once more, choose at every point x of D a W-nbh of x, contained in a
nbhθ>: d(x,y) < δo/2>, such that the greatest lower bound of these radii
takes a positive number. This is also possible and we denote the PF-nbh by
w(x) and the greatest lower bound by δi. Next, at a point t of E, when
there exists the greatest ^-cube with the center t, whose (p — l)-faces are
respectively parallel to those of E and its interior is wholly contained in
f-1(to(f(t))[\D)\j(Ep - E), we denote the length of the side by p(t). If the
p-c\xbe does not exist, put p(t) = 2. Then it follows easily that the greatest
lower bound ρ0 of p(t) for all t € E is a positive number.

Moreover, take a positive integer m such that l/m< p0 and divide K
into mp p-cubes, whose sides are of the same length 1/m and their faces-
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are respectively parallel to those of E. We call every one of the />-cubes a
small p-cube and its (p — l)-faces small (p — l)-faces. We denote by AQl...Qp a
small p-cube i. e., the set of points (tι, . . . . , tp) satisfying qv\m SU^ (qv + l)/w
•(#> = 1, , p qv = 0,1, , m — 1), and by oH Qp its center. Put xΠι qp

=/(oQv..Qp), then we have

f(AQv..Qp)czw(xqv..qp).

In two small (p — l)-faces tp = ζfo/m and £# = (#/> -f T)/m of Agi...Q],, take
points (tlt , tp-ι, Qp/m) and (t1} .. .., ίj,_,, (#p + 1)1 m) respectively and consider
inw(xql...qp) only one path l(tlf , tp) with the parameter tP (qP/m <Ξ tP <Ξ (qP +
1)Λ»)> joining a point /fo , tp-1} qp/m) to a point f(t1} , tp-Ί, (qP + 1)1 m).
Then from Lemma 2. 7 we get a continuous map

ΦW.«P'. Aqv..qp^w{xqi....qp) <ttu....,tp)->l{tu tp)). (5)

Choose another small p-cuhe A! whose fp-coordinates satisfy qP/m S tp

S t o + l)/w and suppose NϊΞ=A'f\Aqv..qpΦθ. We denote any point of iV
by (t[, . . . . , ί p - r ^ ) and put w' = w(f(o')), where o' is the center A\ Let Z and
/' be two paths joining a point f(t[, , t'p_l3 qP/m) to another point f{t'v ,
t'P-v (QP + l)lm) in w{xQr..qp) and ^ ' respectively. Let y0 be a point of f(N)
and y be an arbitrary point of wix^.-q t) then

rf(y,^o) ̂  rfO, xqι...(]p) + ^(^ r.. e j l,^o) < δo/2 + δo/2 = δ0.

Hence, w(xQl. ..qp)α W(y0).

Similarly, w'cz W(y0).

However, since W(y0) is a simple convex nbh, we have / = Γ. Consequently
if φ':A' -• w;r is the continuous map analogus to (5) and t is any point of N,
we get

Φ9ι .qp(t) = Φ W
From this and (5), we get a continuous map φQp of the part {(ti ,tP):
qp/m^tP^(qp + l)/m} of E1 into M, regarded as the union of maps φqλ...qp

with qp = const. Then, we have φqp{tι, , tp-u qP/m) =/(£i, , ̂ - i , W^ 2 )
and φQp(tι, .. , ̂ _i , ( ^ + 1)1 m) = /*(ίh . . . . 3 ^_ 1 ; ( ^ + l)/m) for 0 ^ tl9 . . . . , ^ _ i

Again if we make the map φ: £ - ^ M a s the union of maps φQp(qP = 0,
1, . . . . , m — 1), φ is evidently continuous and satisfies

fitl9 . . . . , * „ - ! , λ/ι») = φ(ί,, . . . . , f„-!, λ/w) (λ = 0,1, . . . . , ml (6)

In the next place, we take a small (p — l)-face contained in oE, such
that qP/m <ztP<, (qP + 1)1 m, for example SQa...ffp Ξ {(0, t2} . . . . , ί p ) : ^ 2/m ^ tz

^ (ft + 1 ) M »^i>/^ S ίj» ^ (qP + l)/m}. BQ2...9p is a small (/> — l)-face of
-Aoβ2...ffP Now we have/(JBg2...Qp)c:S from the assumption of/. On the other
hand both f{BH...qp) and Φ(BQ2...Qp)czw(Xoq2...Qp). Consequently f(Bqr..Qp) and
Φ(BQ2- QP)

 a r e contained in a simple convex intrinsic nbh F, i.e. a connected
component of w{xθQ(}...qi))(]S in S, by virtue of Definition 2.3 and (6). Take
any point (0, t2, , tP)€BQz...qp and make in w{x^v.t1lp) a path 1(0, t2, , tp, T)
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(0 < r <Ξ 1) such t h a t 1(0, ί2, .. . . , *„, 0) = f(0, t,, ...., tP) and 7(0, t>, .. . . , tP, 1>

= φ(0, t2, , tP). F r o m L e m m a 2. 7 we get a continuous m a p

C *P. : β ^ ^ X / - > ^ ((0,f2, .. . ' .,fp,τ)-4/(0,f 2, . . . . , * * , τ», (7)

w h e r e / ΞΞΞ {T:0 ^ T ^ 1}. Again choose another small {p — l)-f ace B, contained

in oE, such that qP/m^tpS(qP+ι)/m and B []Bq2...qiJ Φ 0. Let A be the
small p-cυbe containing B and o be the center of A. Put M; = w(fio)) and
let (0, £•>, ,tP) be a point of BQr..qv{]B. Let / and /' be paths joining fφ,
t2, .. ., tP) to φ(0, f3> . , ̂ j>) in w(x0(lo...Qp) and ei; respectively. Then we get
/ = /', because w{xΰc^..qp) and w are contained in a TF-nbh. Here we note that,
if A = Aΰ%..^, we have / = /; directly. Then, as the union of maps (7) of
all small (p — l)-faces is contained in the part (aE)Ίl) of oE such that qμ/m
^ ^ <; (fip -t- l)/m, we have a continuous map

where /^ in tv = /̂̂ w and ^, = (̂ 2, + l)/m is independent of r from (6), lQp

= / in T = 0 and /r/p = φ in r = 1. Consequently we have a continuous map

g : BE x /->S (8)

by making the union of maps lQp (qP = 0,1, .. .., m — 1). # satisfies (/(fiΌ x /)
= xQ, g(Eι x 7) = Xι and .̂ (ί x 0) = fit), g{t x 1) = φ(ί) for f€αE. From (8),

f\dE is homotopic to φ|3E in S, leaving x0 and xL fixed.
Hence it is sufficient to show that φ | oE is homotopic to a constant map

in S. In fact the continuous map φ: E-+M satisfies wholly the conditions of
Lemma 2.8. Moreover φ(Eι) - ^ 6 S and φ(3E)czS. Hence we have the con-
tinuous map

Ψ-.E-+S. (9)

For any point t€oE — Ex + BEΛ, Ψ(t) = φ{t), hence ψ(3Eι) = xu On the other
hand, ψ{Eλ)aR{x{), hence ψ(Eτ)czSf]R(Xι). Consequently Ψ(EJ = xu from b)
of § 1. Since we have ψ(t) = φ(t) for ί€3E, it follows from (9) that φ\aE
is homotopic in S to a constant map.

COROLLARY. The p-dimensional homotopy group of any maximal integral
manifold of an R-reducible manifold M is isomorphic into the p-dimensional
homotopy group of M under the homomorphism induced by the inclusion map.

PROOF. We shall attempt the proof with respect to an integral manifold
S. Consider the inclusion map /: S->M and we get the homomorphism /*:
πi>(S) -> r7rP{M) induced by i. Let N be the kernel of i*. Since any element of
N is mapped to the unit element of τrP(M) under i*, N is of the unit element
of TΓ^S) from Theorem 1. Consequently our Corollary is proved.

3. Simply-eonnected ^-reducible manifolds

S. Sasaki [4] proved that any two points of M cannot necessarily be
joined by a path, but we have:

LEMMA 3.1. Any two points x and y of M can be joined by a broken-path.
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PROOF. Consider a curve / joinings and y and cover / by a finite number
of simple convex nbhs. Then we can make a broken-path joining x and y.

LEMMA 3. 2. Let x and y be any two points of an R-reducible manifold M,
then R(x)(]S(y) 4= 0.

This is evident from Lemmas 2. 6 and 3.1.
DEFINITION 3.1. Let v(x) be a vector field over an integral manifold S

of a C-reducible manifold M, where x^S. If v(Xι) and v{x2) at any two points
Xι and x 2 are parallel regardless of curves xλxt of class Dι in S, v(x) is called
a parallel vector field over S.

LEMMA 3. 3. Let v0 be a vector at x0, tangent to R{XQ) of an R-reducible
manifold M. When S(Xo) is simply-connected, there exists a vector field v{x)
over S(x0) parallel to v0, where x€S(x0).

PROOF. Consider a closed curve I of class Dι, with the endpoint x^ in
S(x0) and let Vι be the vector at the terminal point xΰ, obtained by parallel
displacement of v0 along /. From the proof of Lemma 2. 3, it follows that
Vι is tangent to R(xo) Suppose vx 4= v0. Then there exists c > 0 such that
y0 Φy 1 } where y0 = (xύ, v,}, c) and yλ == (χ0, vlf c). From Lemma 2. 3, y^y^R^)

Contract / to ^ and we get a curve yλy0 as the locus of yλ. Here
nS(3O). This is contradictory to b) of §1. Hence vγ = v0. From this,

Lemma 3. 3 is easily shown.
LEMMA 3.4 Under the same assumption and notations as Lemma 3. 3 put

y = (x, v(x), c) andyo = (ΛΓ0, ̂ , c), where c is a constant. If S[yύ) is simply-connected
too, S{xΰ) is equivalent to S[y0) under the map

f: S(xΰ)-* S{y0) (x-+y).
The word "equivalent" in such a case means th^ equivalence as aίϊinely

connected manifolds.
PROOF. Let u(y) be the vector at y, obtained by parallel displacement of

v(x) along a path (x, v(x), t) ( O S ί g c). For two distinct points xγ and x» in
S{X)), V: and 3̂2 are also distinct, where yL ΞΞ (χlt v(Xι\ c) etc. In fact, if yx =
^2, we have the closed curve / in S(y0) as the image under / of a curve xγx-ι
of class Dγ in S{x0). From Lemma 2. 3 w^) and w(̂ 2) are parallel along /.
However since S(y0) is simply-connected, u(yx) = w(̂ 3) by virtue of Lemma
3. 3. Hence we get xL = ΛΓ2, because ΛΓL and ΛΓ2 are represented as (yh u{yι),
— c). This is contradictory to the fact that xι and x2 axe distinct points.

Consequently, when we put S' =/{S(ΛO)), then S(x0) and S' correspond one-
to-one under / to each other, where S'αS(y0). Moreover S(x0) and S axe

equivalent under/. In fact if we cover a path ί ? = (x, v(χ), t) ( O S ^ S c) by
a finite number of C-nbhs, we get in S(x0) and S' two intrinsic nbhs of x
and y respectively, equivalent under/. From, this fact the equivalence of
S(x0) and Sx is easily shown.

Hence it is sufficient to show S(y0) = S\ Take a point yι€S(y0) and make
a curve jVô i of class Dι in S(^o). We get a vector «(yθ at y1} by parallel

displacement of u{y0) along j ^ l t Put xl~(yl)u(y0, — c). From Lemma 2.3;
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and (xh v{xx), c) = ylΛ Hence S(y0) = S'.
DEFINITION 3.2. In an /^-reducible manifold M, let Λ be a broken-path

xύxι xλXj Xu-iXh in R(XQ) with the vertices XQ, XU ,Xn and let / be a curve

Xoyo oί class D1 in S(Λ^). First displace xox1 parallelly along /, and we get

a path yQyλ at y0 and a curve #i3>i as the locus of xx. Again displace xxxλ

parallelly along xxyx, and we get a path yγy-λ at yι and a curve *£y2 as the

locus of Xi. Continuing this process successively, we get a broken-path yoyτ

yά* y^yh and a curve x^yh. The broken-path y^y2 ^y2 y^yh is called
to be parallel to h along 7.

It follows that the broken-path J Ό ^ I ^ Λ A - Λ coincides with the deve-
lopment of the broken-line at y0 parallel to the development of the given

broken-path lτ and xvyvziS(xv) (*> = 1, 2, ,h) from Lemmas 2.3 and 2.5.

Moreover when / is a broken-path, the curve xi~yh coincides with the broken-
path obtained by parallel displacement of I along lλ.

LEMMA 3.5. When all S of an R-reducible manifold M are simply connected

and a broken-path Xoy0 of M is given in R(Xo), we have: a) There exists over

S(xc) a broken-path field parallel to x^yo b) If y is the terminal point of its

broken-path at any point x of S(Xo)} S(x0) and S(y0) are equivalent under the

map

f: SίXo)->S(yo) (*->jv).
This is obvious from Lemmas 3. 3 and 3. 4.
DEFINITION 3. 3. We call such a map / as is defined in Lemma 3. 5 an

equivalent map with respect to a broken-path Xoy^

LEMMA 3. 6. Suppose that all R and S of an R-reducible manifold M are
simply-connected and g0 and h0 are any two broken-paths in R(XQ) joining x0 to
y0. Then the equivaleut map with respect to g0 coincides with the one with
respect to h0.

PROOF. Let g(x) and h(x) be two broken-path fields over S(XQ) parallel to
gu and hQ respectively, where ΛΓCS(Λ^). It is sufficient to show that the
terminal point yv of an element g{xλ) coincides with the terminal point y>2

of an element h(x{). If we consider a broken-path x^xu yγ is also regarded

as the terminal point of the broken-path at y0, parallel to XQXI along gQ and
so is y2> along h0. Since any R is simply-connected, yv coincides with y2 from
Lemma 3.5.

THEOREM 2. When all R and S of an R-reducible manifold M are simply-

connected, the affine product M = R{ό) x S(p), o €. M, is equivalent to the
covering space of M.

PROOF. We put Ro Ξ R(O) and So = S(o). A point x of M is always repre-

sented by (y, z), where y€RQ and z^S0. Let oy be a broken path in Rύ joining

o to y and oz a broken-path in So joining o to z. Let # b e the terminal point
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of the broken-path at z, obtained by parallel displacement of oy along oz in
M, and x^S(y)f]R(z). From Lemma 3.6 we see that the point x does not
depend on the broken-paths oy and oz, but does depend upon the points y
and z. Now consider a map

/ : M-+M (>->*).

A) Let # be a point of M. We can take a point y of /?on S(#), for #oΠ

S{x) =t= 0 by virtue of Lemma 3.2. Let z be the terminal point of the broken-

path at x, obtained by parallel displacement of oy1 along yx, where oy and

yx are arbitrary broken-paths in Ro and S(x) respectively. Then z^S0. Now

if we denote by x a point (y, z) in M, f(x) = #. Consequently f(M) = Λf.
B) Let yλ, λ€/, be all points of Rof]S(x) for ^ M , where / is the index-

set. Let Z\ be a point determined from y\ in the same manner as A), then

zλ€R(x)C\S0. Make two broken-paths oyκ and ozλ in Ro and So respectively.

On the other hand, consider a ΐ7-nbh W(x). By virtue of Definition 2. 3, W(x)

is necessarily represented by the affine product U(x) x V(x), where £/(#)d

R(x) and V(x)dS(x). Let £70 )̂ be the image of U(x\ obtained by the equi-

valent map with respect to oz^1. Let V(z\) be the analogous image of V(x)

with respect to oyi1. Denote by xx a point Oλ, zκ) in M, then the product

F A Ξ U(y\) x V(z\) is regarded as a nbh of ΛΓA and is equivalent to W under/

C) We have/" 1^) = \JκeJXκ from B). Now we shall verify

In fact, suppose that Wκ(\WμΦθ, then there is a point u€

Put u=Au) and uξW(x). Let WΛΓΛ be one and only one path in Wx> and

u Xμ. in W"μ. Since f(u ΛΓΛ) and /(M ΛΓμ) are contained in W(x), these are the

same path ux. Hence the directions at u of two paths u xκ and u xt± can not

coincide, because xκ Φ X^. Consequently there exist two distinct points ux

and us in WK such that uL €uxλ, u^ uxμ and f{Uι) -f(u2) € W(x). This co-

ntradicts to the equivalence of Wκ and W(x) under /. Hence Wκ Π Wμ = 0.

Summing up the above results, we see that the map / : M ->M is a cover-
ing.

COROLLARY. PF/^W «W R-reducible manifold M is simply-connected, M is
equivalent to the affine product Rip) x Sip), where O€LM.

It follows directly from Corollary of Theorem 1 and Theorem 2. This
Corollary is an extension of de Rham's theorem referred in the introduction.

4. .β-redueible manifolds whose fundamental groups
are cyclic of order t w o

DEFINITION 4.1. Let pix) be the number of points contained in R(x)f\S(x)
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for a point x of a C-reducible manifold M. p{x) is called the multiplicity at
x of M. Especially if p{x) is constant over M, the number >̂ is called the
multiplicity of M. It may be finite or infinite.

LEMMA 4.1. When all R and S of an R-reducible manifold M are simply-
connected, p(x) is constant over M, where xζM.

PROOF. Consider the aίfine product M~ Rio) x S(ό), where o € M. From
Theorem 2, M is equivalent to the covering space of M. Denote its cover-
ing by /, and the number p of points contained in f~\x) is independent of
x. From the proof of Theorem 2, p is also the number of points contained
in R(o) x S(x). From this it is easily proved that p(x) is constant over M.

LEMMA 4. 2. Let M be the covering space of an R-reducible manifold M.
When f is its covering and o is any point of M, the following properties are
fulfilled:

a) M is an R-reducible manifold and equivalent to the affine product Ro

x So, where Ro and So are the r- and s-dimensional maximal integral manifolds
through o respectively, b) Any maximal integral manifold, say RQ, is the
covering space of R(o) and f is its covering, where o =/(o).

PROOF. It follows that M is separable (since 7Γi(M) is at most countable)

and metric. Thus a) is easily shown. Hence, it is sufficient to show f(Ro) = Ro>

because Ro is simply-connected. For a point y<^R0, consider a curve oy in

Ro, then f(oy)czR(o). Hence f{Rύ)czR(o). Next, for a point y<£R(o), consider

a curve oy in R(o). We get a curve oy in Ro, such that f{oy) = oy. Hence

f(Ro)ZDRo. Consequently f(R0) = R{o).
LEMMA 4. 3. When an R-reducible manifold M has multiplicity one, M is

equivalent to the affine product R(o) x S(o), where o^M.
This is easily proved.
In the following we shall adopt the following convention: For any mani-

fold X, 7Γi(X) = 1 means that X is simply-connected, and 7Γι(X) = 2 means
that the fundamental group of X is cyclic of order two.

THEOREM 3. When 7rL(M) = 2 for an R-reducible manifold M, M has either
one of the following structures:

a) τr,(/?) = 1, 7Γi(S) = 1 for any R, S of M and M has multiplicity two.
b) irι(R) = 1, wi(S) = 2 for any R,S of M and M is equivalent to the affine

product R{p) x S(p), where o^M.
c) τrι(R) = 1 for any R of M, and all S of M are divided into two non-

vacuous classes, one satisfying irι(S) = 1 and the other satisfying ΊTX(S) = 2.
The multiplicity at a point ^of S is two or one according to 7Γi(S) = 1 or 2.

Similarly the structures obtained by exchanging R and S do also exist.
Conversely there exist R-reducible manifolds M with any one of the struc-

tures mentioned above and irx{M) = 2.
PROOF. From Corollary of Theorem 1, iri{R) and 7r2(S) for any R and »S
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are of order one or two, because irv(M) = 2. Consequently we have only
the following cases :

A) 7r{(R) = 1 and τri(S) = 1 for any R and S.
B) TΓICR) = 1 for any R and τn(S) = 2 for any S.

C) 7r,(7?) = 1 for any R and there exist at least two Si and S2 such that
iπ(Sι) = 1 and w^Sa) = 2.

D) There exists at least a pair i?0 and So such that 7Γι(/?0) = 2, and
7n(S0) = 2. Here we do not enumerate cases obtained by exchanging R and S.

The case A). By virtue of Lemma 4.1, there exists the multipicity p of
M. Suppose p Φ2. From Theorem 2, the affine product M == /?(o) x S(o) is
the covering space of M and l e t / be its covering, where o^M. For a point
#€M, /"K*) does not consist of two p3ints. Hence τrι{M) Φ 2, so we have
arrived at a contradiction. Consequently p must be two.

We shall show the existence of the case A) by an example :

Let R and S be r a n d s-dimensional spheres respectively. For a point

€ R let f{y) be its antipodal point, and similarly, for a point z € S let f(z)
be its antipodal point. Define the isometric map of the metric product R x
S onto itself by

We denote this map by / again and put M Ξ R X S. In M if we identify
any point x € M with f(x), we get a reducible Riemannian manifold M. It
follows easily that M satisfies a) of Theorem 3.

The case B). Suppose that the multiplicity at a point o is not one, and
R(o)f]S(ό) contains at least a point x distinct from o. We shall use notations
of Lemma 4. 2 and consider o as a point of f~ι{o). By virtue of ΎΓ^R) = 1,
f:R0~> R(o) is an equivalent map. Hence there exists one and only one point
x € Ro such that f(x) = x. For a curve #o in S{x) consider a curve of f-ι(xo}
with the initial point x, then it follows that there exists a point ô  € S(ΛΓ)
such that /(oa) = o, where S(x) is the s-dimensional maximal integral manifold
through x of M.

On the other hand, since So is the csvering space of S{p) and 9Γi(S(o)>
= 2, there exists a point ^ € So such that /(oO = o, distinct from o. Hence

f'ι(o) contains at least three point o, Oι and oλ. This is contradictory to the
fact that M is the covering space of M. Consequently the multiplicity of M
exists and it is one. From Lemma 4. 3, M is equivalent to the affine product
R(o) x S(o) and satisfies b) of Theorem 3.

The case C). It is shown by Lemma 4.2 that the multiplicity at a point
of S is two or one according to wι(S) = 1 or 2. By an example, we shall
show the existence of the case C). Let R be the r-dimensional Euclideaa
space and o be a point of R. Let S be an s-dimensional sphere. Let fiy) be
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the symmetric point of y C R with respect to o and f{z) the antipodal point

of z € S. Consider the metric product M^=RxS and denote again by / the

isometric map of M onto itself, such that

(y,z)-+(f(y),f(z)\

In M if we identify any point x € M with fix), we get a reducible Rieman-
nian manifold M. It follows easily that M satisfies c) of Theorem 3.

The case D). By Lemma 4.2, we can show that this case does not
occur.
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