ON THE REDUCIBILITY OF AN AFFINELY CONNECTED MANIFOLD

Shōbin Kashiwabara

(Received December 15, 1955)

Introduction

G. de Rham [3] proved an interesting theorem concerning structures of simply-connected, complete and reducible Riemannian manifolds. In this paper I shall first attempt to extend his theorem to affinely connected manifolds. For this purpose I shall define R-reducible manifolds which are regarded as an extension of the notion of reducible Riemannian manifolds. For this manifold, I shall prove that the p-dimensional homotopy group of any of its maximal integral manifolds is isomorphic into the p-dimensional homotopy group of the given manifold under the homomorphism induced by the inclusion map. By virtue of this, it will be shown that a simplyconnected R-reducible manifold is equivalent to an affine product. This is nothing but an extension of de Rham's theorem, as mentioned above. Secondly I shall determine structures of R-reducible manifolds whose fundamental groups are cyclic of order two, by the above theorem.

Throughout the whole discussion, I shall adopt the following conventions : I use the word "nbh" for neighborhood. I describe as a path (or a curve) what is usually called a segment of a path (or a curve), including the endpoints, and parameters of paths mean always affine parameters. If X is an affinely connected manifold, I describe as the covering space of X the universal covering space of X with the affine connection induced naturally from X by the covering. Let us suppose that the indices run as follows :

$$
\begin{gathered}
a, b, c, d=1,2, \ldots, r ; \quad i, j, k, l=r+1, r+2, \ldots, n \\
\alpha, \beta, \gamma=1,2, \ldots, n
\end{gathered}
$$

I wish to note that integral manifolds R and S in this paper can not be intrinsically distinguished and lemmas etc. hold good though we exchange the roles of R and S there.

Furthermore, I wish to note that a part of the idea of this paper owes to A. G. Walker's paper [6] and to express my thanks to Professor S. Sasaki of Tôhoiku Univ. for his kind assistance during the preparation of the manuscript.

1. R-reducible manifolds

Let M be an n-dimensional differentiable manifold (of class C^{3}) with an affine connection without torsion of class C^{1} and we assume that M is affinely
complete. For the definition of differentiable manifolds, see [5], p. 21, and note that M is connected, separable, and metric. The word "affinely complete" means that any straight line lying on the tangent space at any point $x \in M$ and passing through x can wholly be developed into M.

When the homogeneous holonomy group h at a point o of M fixes an r-dimensional plane T_{0} and an ($n-r$)-dimensional plane T_{0}^{\prime} complementary to T_{0}, then M is called a completely reducible or briefly, C-reducible manifold.

In a C-reducible manifold M, transplant the two planes T_{0} and T_{0}^{\prime} at 0 to every point $x \in M$ by parallel displacement along a curve $\overparen{o x}$ of class D^{1} and denote the two planes thus obtained by T_{x} and T_{x}^{\prime} respectively, then we get two parallel plane fields T_{x}, T_{x}^{\prime} over M. When we attach at every point x of a coordinate nbh U a suitable frame $\left(e_{1}, \ldots, e_{n}\right)$ whose first r vectors $\left(e_{1}, \ldots, e_{r}\right)$ span T_{x} and the remaining $n-r$ vectors $\left(e_{r+1}, \ldots, e_{n}\right)$ span T_{x}^{\prime}, we may find Pfaffian forms ω^{α} (class C^{1}), ω_{b}^{τ} and ω_{j}^{i} such that the connection of M is expressed by

$$
\begin{gathered}
d x=\omega^{\alpha} e_{\alpha} \\
d e_{a}=\omega_{l}^{j} e_{b}, \quad d e_{i}=\omega_{i}^{j} e_{j} .
\end{gathered}
$$

As the connection is without torsion, we have

$$
\begin{equation*}
\left(\omega^{a}\right)^{\prime}=\left[\omega^{j} \omega_{b}^{i}\right], \quad\left(\omega^{i}\right)^{\prime}=\left[\omega^{j} \omega_{j}^{i}\right] \tag{1}
\end{equation*}
$$

The plane field T_{x}^{\prime} in U is defined by the system $\omega^{x}=0$, and the field T_{x} by the system $\omega^{i}=0$. Since these systems are completely integrable by (1), we may find their first integrals

$$
\begin{equation*}
x^{a^{\prime}}=f^{a^{\prime}}\left(x^{\alpha}\right), \quad x^{x^{\prime}}=f^{\prime}\left(x^{\alpha}\right), \tag{2}
\end{equation*}
$$

where we have denoted the coordinates in U by $\left(x^{\alpha}\right)$. As the Jacobian of (2) is not zero, we transform the coordinates $\left(x^{\alpha}\right)$ by (2). Then, for any point $x \in U$ we may find a suitable coordinate nbh V of x covered by the new coordinates ($x^{\alpha^{\alpha}}$). Such new coordinates are called canonical coordinates and a nbh covered by canonical coordinates is called a canonical coordinate $n b h$.

In every canonical coordinate nbh V with coordinates (x^{α}) (we omit "dashes")

$$
x^{i}=\text { const. and } x^{2}=\text { const. }
$$

define the r-and s-dimensional integral manifolds of the two fields T_{x} and T_{x}^{\prime} respectively, where $s=n-r$. We can express the connection of M in terms of natural frames (e^{α}) in V by

$$
d x=d x^{\alpha} e_{\alpha}, \quad d e_{\alpha}=\omega_{\alpha}^{\beta} e_{\beta}
$$

As the planes T_{x} and T_{x}^{\prime} are parallel fields, we see $\omega_{x}^{i}=\omega_{i}^{\alpha}=0$, hence we get $\Gamma_{a \alpha}^{i}=\Gamma_{\alpha \alpha}^{i}=\Gamma_{i \alpha}^{i}=\Gamma_{\alpha i}^{x}=0$, where we have put $\omega_{\alpha}^{\beta} \equiv \Gamma_{\alpha \gamma}^{3} d x^{\gamma}$. Accordingly, among many components of $\Gamma_{\beta \gamma}^{\alpha}$, only $\Gamma_{b c}^{x}$ and $\Gamma_{i j}^{k}$ are non-trivial in general and usually they consist of functions of coordinates (x^{1}, \ldots, x^{n}) (cf. [1]). If $\Gamma_{b c}^{b}$ are functions of coordinates (x^{1}, \ldots, x^{r}) only and $\Gamma_{j k}^{i}$ are functions of coordinates $\left(x^{r+1}, \ldots \ldots, x^{n}\right)$ only, then M is called an R-reducible manifold.

Now, concerning integral manifolds in a C-reducible manifold M we have the following well-known properties (we do not give their proofs here):
a) Through every point $x \in M$ there pass a pair of two r - and s-dimensional maximal integral manifolds (cf. [2], p. 94). We shall consider each of them as a differentiable manifold with the system of csordinates and the affine connection induced naturally from a system of canonical coordinates and the affine connection in M. We denote the r - and s-dimensional manifolds by $R(x)$ and $S(x)$ respectively and sometimes we shall use abbreviated notations R and S for them.
b) The intersection $R(x) \cap S(x)$ is at most countable (cf. [2], p.96).
c) Any path of a maximal integral manifold, say $R(x)$, is a path of M too, and a path of M through x, whose tangent vector at x is contained in the tangent space of $R(x)$ at x, is contained in $R(x)$ and is a path of $R(x)$. Hence $R(x)$ is affinely complete.

Under these prenises wa shall discass structures of R-reducible manifolds.

2. Homotopy groups

Definition 2.1. Let M be a C-reducible manifold. In a maximal integral manifold, say R, of M, a nbh of a point $x \in R$ is called an intrinsic nbh in R. In M, a canonical coordinate nbh whose coordinates consist only of all (x^{α}) satisfying the inequalities $a^{\alpha}<x^{\alpha}<b^{\alpha}$ (a^{α}, b^{α} are all const.) is called a canonical cubic coordinate nbh or briefly, a C-nbh.

Definition 2.2. In an R-reducible manifold M, let U and V be intrinsic coordinate nbhs with coordinates (x^{i}) and (x^{l}) in two integral manifolds R and S of M respectively. Let $\Gamma_{b c}^{c}\left(x^{l}\right)$ and $\Gamma_{j k}^{c}\left(x^{l}\right)$ be the connection coefficients of R and S in U aud V respectively. Now consider the product $U \times V$ with coordinates (x^{l}, x^{l}). We endow the product $U \times V$ with the connection coefficients $\Gamma_{\beta \gamma}^{\alpha}\left(x^{l}, x^{l}\right)$ which satisfy the following relations: $\Gamma_{b p}^{l}\left(x^{d} . x^{l}\right) \equiv \Gamma_{b c}^{u}\left(x^{t}\right)$, $\Gamma_{j k}^{i}\left(x^{l}, x^{l}\right) \equiv \Gamma_{j k}^{i}\left(x^{l}\right)$ and the remaining $\Gamma_{\rho \gamma}^{\alpha}\left(x^{d}, x^{l}\right)$ are all zero. Then the product $U \times V$ is called the affine product of U and V. Moreover, when we cover the product $R \times S$ by a set of affine products $U \times V$, we get a differentiable manifold $R \times S$ with an affine connection. This is also called the affine product of R and S.

Let $C(x)$ be a C-nbh of a point x in an R-reducible manifold M. In integral manifolds $R(x)$ and $S(x)$, the connected components containing x of $C(x) \cap R(x)$ and $C(x) \cap S(x)$ are intrinsic nbhs and we denote them together with the coordinates induced naturally from those of $C(x)$ by $C(x) \mid R$ and $C(x) \mid S$ respectively. Then, $C(x) \mid R$ and $C(x) \mid S$ are intrinsic coordinate nbhs and the following lemma is evident:

Lemma 2. 1. $C(x)$ is represented by the affine product of $C(x) \mid R$ and $C(x) \mid S$.
Now, under the same notations it follows by applying Whitehead's theorem [7] to M that there exist simple convex intrinsic nbhs $U(x)$ and $V(x)$ of x such that $U(x) \subset C(x) \mid R$ and $V(x) \subset C(x) \mid S$, in the geometries of $R(x)$ and $S(x)$
respectively. The word "a simple convex nbh N " means a nbh such that any two points in N are joined by one and only one path which is wholly contained in N. Now, we consider $U(x)$ and $V(x)$ as intrinsic coordinate nbhs in $C(x) \mid R$ and $C(x) \mid S$ covering them respectively. Then, we have:

Lemma 2.2. Let $W(x)$ be the affine product $U(x) \times V(x)$, then $W(x) \subset C(x)$ and $W(x)$ is a simple convex nbh of M.

Proof. It is evident that $W(x) \subset C(x)$ from Lemma 2.1. We shall denote the coordinates of any two points $x_{1}, x_{2} \in W(x)$ by $\left(x_{1}{ }^{\alpha}\right),\left(x_{2}^{\alpha}\right)$ and express the unique path in $U(x)$ joining the point ($x_{1}^{2}, 0$) to the point ($x_{2}^{2}, 0$) by $x^{a}=x^{a}(t)$, $x^{i}=0(0 \leqq t \leqq 1)$ and similarly the unique in $V(x)$ joining the point $\left(0, x_{\mathrm{s}}^{\prime}\right)$ to the point $\left(0, x_{2}^{i}\right)$ by $x^{a}=0, x^{i}=x^{i}(t)(0 \leqq t \leqq 1)$. Then it is easily seen that a curve

$$
x^{a}=x^{a}(t), x^{t}=x^{i}(t)(0 \leqq t \leqq 1)
$$

is the unique path in $W(x)$ joining x_{1} to x_{2}.
Definition 2.3. A nbh $W(x)$ such that we defined in Lemma 2.2 is called a $W-n b h$ of x.

When a vector v at a point x of M is given, we shall denote by (x, v, c), where c is a constant, the terminal point y of the path obtained by developing the vector $c v$ into M.

Lemma 2.3. Let v_{0} be a vector tangent to $R\left(x_{0}\right)$ at a point x_{0} of an R reducible manifold M and $v(\tau)$ the vector field parallel to v_{0} along a curve $x=$ $x(\tau)(0 \leqq \tau \leqq 1)$ of class C^{1} in $S\left(x_{0}\right)$, where $x_{0} \equiv x(0)$. Let $u(\tau)$ be a vector at σ $=c$ (constant), obtained by parallel displacement of $v(\tau)$ along a path $(x(\tau)$, $v(\tau), \sigma)(0 \leqq \sigma \leqq c)$. Put $y(\tau) \equiv(x(\tau), v(\tau), c)$ and $y_{0} \equiv y(0)$. Then, for $0 \leqq \tau \leqq 1$, the following properties are fulfilled:
a) $y(\tau) \subset S\left(y_{0}\right)$ and $y(\tau)$ is of class C^{1}. b) $u(\tau)$ is a parallel vector field along the curve $y(\tau)$. c) If $x(\tau)$ is a path, so is $y(\tau)$.

Proof. A) We shall first prove the lemma in a C-nbh. Let the components of v_{0} be ($v_{0}^{\tau}, 0$) and the coordinates of x_{0} be (x_{0}^{π}, x_{0}^{i}). Express the curve $x=x(\tau)$ by $x^{a}=x_{0}^{i}, x^{i}=x^{i}(\tau)$, where $x_{0}^{i}=x^{i}(0)$. Now consider a differential equations, of parallel displacement

$$
\frac{d v^{\alpha}}{d \tau}+\Gamma_{\beta \gamma}^{\alpha} v^{\beta} \frac{d x^{\gamma}}{d \tau}=0
$$

along the curve $x=x(\tau)$. It turns into

$$
\frac{d v^{a}}{d \tau}=0, \quad \frac{d v^{d}}{d \tau}+\Gamma^{i}{ }_{k} v^{j} \frac{d x^{k}}{d \tau}=0
$$

Solve them under the initial conditions $v^{a}=v_{0}^{\alpha}, v^{i}=0$ when $\tau=0$, and we get $v^{x}=v_{0}^{a}, v^{d}=0$. This is the parallel vector field $v(\tau)$. Again solve the differential equations
i. e.,

$$
\begin{gathered}
\frac{d x^{a}}{d \sigma}=v^{\alpha}, \quad \frac{d v^{\alpha}}{d \sigma}=-\Gamma_{\beta \gamma}^{\alpha} v^{\beta} v^{\gamma}, \\
\frac{d x^{a}}{d \sigma}=v^{a}, \frac{d v^{a}}{d \sigma}=-\Gamma_{b c}^{a} v^{b} v^{c} ; \frac{d x^{i}}{d \sigma}=v^{i}, \quad \frac{d v^{i}}{d \sigma}=-\Gamma_{j k}^{i} v^{i} v^{i},
\end{gathered}
$$

under the initial conditions $x^{a}=x_{0}^{\tau}, v^{a}=v_{0}^{u} ; x^{i}=x^{i}(\tau), v^{i}=0$ when $\sigma=0$, and we get $x^{a}=x^{a}\left(\sigma, x_{0}^{x}, v_{0}^{a}\right), v^{a}=v^{a}\left(\sigma, x_{0}^{\tau}, v_{0}^{\tau}\right), x^{i}=x^{i}(\tau), v^{i}=0$. If we put σ $=c$ in this solution, we get $y(\tau)$, i. e., $x^{a}=$ const., $x^{i}=x^{i}(\tau)$ and $u(\tau)$, i. e., $v^{a}=$ const., $v^{i}=0$. From these forms, the lemma is easily seen.
B) Next we shall prove our lemma in the large. Let $x(\tau) y(\tau)$ be the path $(x(\tau), v(\tau), \sigma)$ from $\sigma=0$ to $\sigma=c$. When we cover the path $\widehat{x}_{0} y_{0}$ by a finite number of C-nbhs, it follows from A) that there exists $\delta_{0}>0$ such that this lemma holds good for the arc $x=x(\tau)\left(0 \leqq \tau \leqq \delta_{0}\right)$. Now we suppose that the lemma holds good for the arc $x=\boldsymbol{x}(\tau)\left(0 \leqq \tau<\tau_{0}\right)$. Similarly by covering the path $x\left(\tau_{0}\right) y\left(\tau_{0}\right)$ by a finite number of C-nbhs, we see that there exists $\delta_{1}>0$ such that, for $\tau_{0}-\delta_{1} \leqq \tau \leqq \tau_{0}, y(\tau) \subset S\left(y\left(\tau_{0}-\delta_{1}\right)\right), y(\tau)$ is of class C^{1} and b) and c) of the lemma hold good. Hence we may see that the lemma holds good for a curve $x=x(\tau)\left(0 \leqq \tau \leqq \tau_{0}\right)$ too. Summing up these fact, Lemma 2.3 is easily shown.

When X is an affinely connected manifold, we shall denote by $T_{x}(x)$ the affine space tangent to X at a point $x \in X$. Next, when the terminal point of a curve l_{1} coincides with the initial point of another curve l_{2}, we shall denote by $l_{1} l_{2}$ the curve l_{1} followed by l_{2}.

Lemma 2.4. Let C be $a C$-nbh of an R-reducible manifold M and $l: x^{\alpha}=$ $x^{\alpha}(t)(0 \leqq t \leqq 1)$ be a curve of class C^{1} in C. Consider two curves $l_{1}: x^{a}=x^{a}(t)$, $x^{i}=x^{i}(0)$ and $l_{2}: x^{a}=x^{a}(1), x^{i}=x^{i}(t)(0 \leqq t \leqq 1)$, then the closed curve $l_{1} l_{2} l^{-1}$ gives rise to the unit element of the holonomy group H at ($x^{\alpha}(0)$).

Proof. Consider the differential equations of developement

$$
\begin{equation*}
\frac{d x}{d t}=\frac{d x^{\alpha}}{d t} e_{a}, \quad \frac{d e_{a}}{d t}=\Gamma_{a b}^{c} \frac{d x^{b}}{d t} e_{c}, \quad \frac{d e_{i}}{d t}=\Gamma_{i j}^{k} \frac{d x^{j}}{d t} e_{k} \tag{3}
\end{equation*}
$$

and put $x_{0} \equiv\left(x^{\alpha}(0)\right)$. Solve (3) in $T_{M}\left(x_{0}\right)$ along l under the initial conditions that x for $t=0$ takes x_{0} and e_{α} for $t=0$ coincides with the natural frame $\left(e_{0 \alpha}\right)$ at x_{0}. We denote the solutions by $x(t)$ and $e_{\alpha}(t)$ and put $\left.y \equiv x_{1} 1\right), e_{1 \alpha} \equiv$ $e_{\alpha}(1)$.

Again solve (3) in $T_{M}\left(x_{0}\right)$ along l_{1} under the same initial conditions for $t=0$. We denote the solutions by $x^{\prime}(t)$ and $e_{\alpha}^{\prime}(t)$, then we get $\left(e_{\alpha}^{\prime}(1)\right)=\left(e_{1 a}, e_{0 i}\right)$ and put $y_{1} \equiv x^{\prime}(1)$. Under the above values y_{1} and ($e_{1 a}, e_{0 i}$) as initial conditions for $t=0$, solve (3) in $T_{s}\left(x_{0}\right)$ along l_{2}. We denote the solutions by $x^{\prime \prime}(t)$ and $\boldsymbol{e}_{\alpha}^{\prime \prime}(t)$, then we get $e_{\alpha}^{\prime \prime}(1)=\left(e_{1 a}, e_{1 i}\right)$ and put $y_{2} \equiv x^{\prime \prime}(1)$. From this it follows directly that the closed curve $l_{1} l_{2} l^{-1}$ gives rise to the unit element of the homogeneous holonomy group h at x_{0}. On the other hand, we may find that y coincides with y_{2}. Hence Lemma 2.4 is proved.

We shall here give the following remarks: If l is a path, so are l_{1} and l_{2}. The curve obtained by developing $l_{1} l_{2} l^{-1}$ is a triangle $x_{0} y_{1} y_{2 .}$. Vectors $\overrightarrow{x_{0} y_{1}}$ and $\overrightarrow{y_{1} y_{2}}$ are equal to the natural projections of a vector $\overrightarrow{x_{0} y_{2}}$ into $T_{R}\left(x_{0}\right)$ and $T_{s}\left(x_{0}\right)$ respectively.

Definition 2.4. Suppose that through a point x_{0} a path l_{0} and a curve $\widehat{x}_{0} \widehat{x}_{1}$ of class D^{1} are given in M. Let v_{0} be the vector obtained by developing
l_{0} into $T_{s 1}\left(x_{0}\right)$ and let v_{1} be the vector at x_{1}, obtained by parallel displacement of v_{0} along $\widehat{x} 0_{0} \widehat{x}_{1}$. Again let l_{1} be the path obtained by developing v_{1} into M. Then l_{0} and l_{1} are said to be parallel along the curve $\widehat{x}_{0} \widehat{x}_{1}$.

Lemma 2.5. Suppose that a map (not necessarily continuous) f of the square $\{(\sigma, \tau): 0 \leqq \sigma, \tau \leqq 1\}$ into an R-reducible manifold M satisfies the following conditions:

1) $f(\sigma, 0)(0 \leqq \sigma \leqq 1)$ is of class C^{1} and $f(\sigma, 0) \subset R(o)$, where $\left.o \equiv f(0,0) .2\right)$ $f(0, \tau)(0 \leqq \tau \leqq 1)$ is a path and $f(0, \tau) \subset S(o)$. 3) $f(c, \tau)(0 \leqq \tau \leqq 1)$ and the path $f(0, \tau)$ are parallel along $f(\sigma, 0)$, where c is an arbitrary constant.

Then the following properties are fulfilled:
a) The closed curve $l_{1}: f(\sigma, 0) f(1, \tau) f(\sigma, 1)^{-1} f(0, \tau)^{-1}(0 \leqq \sigma, \tau \leqq 1)$ gives rise to the unit element of the holonomy group H at o. b) If $f(\sigma, 0)$ is a path, $f(\sigma, 0)$ and $f(\sigma, 1)$ are parallel along $f(0, \tau)$.

Note that from Lemma 2.3, $f(\sigma, 1)(0 \leqq \sigma \leqq 1)$ is of class C^{1}.
Proof. Consider a closed curve

$$
l_{c}: f(\sigma, 0) f(c, \tau) f(\sigma, 1)^{-1} f(0, \tau)^{-1}(0 \leqq \sigma \leqq c, 0 \leqq \tau \leqq 1) .
$$

Cover the path $f(0, \tau)$ by a finite number of C-nbhs. By making use of Lemma 2.3 and 2.4 for every C-nbh in turn. we understand easily that there exists $\delta_{0}>0$ such that a closed curve l_{δ} for any δ in $0 \leqq \delta \leqq \delta_{0}$ gives rise to the unit element of H. Now suppose that a closed curve $l_{c^{\prime}}$ for any c^{\prime} in $0 \leqq c^{\prime}<c$ gives rise to the unit element of H. Similarly, cover the path $f(c, \tau)$ by a finite number of C-nbhs, then there exists $\delta_{1}>0$ such that a closed curve

$$
\begin{gathered}
l: f\left(\sigma_{1}, 0\right) f(c, \tau) f\left(\sigma_{3}, 1\right)^{-1} f\left(c-\delta_{1}, \tau\right)^{-1} f\left(\sigma_{3}, 0\right)^{-1} \\
\left(0 \leqq \sigma_{1} \leqq c, c-\delta_{1} \leqq \sigma_{2} \leqq c, \quad 0 \leqq \sigma_{3} \leqq c-\delta_{1}, 0 \leqq \tau \leqq 1\right)
\end{gathered}
$$

gives rise to the unit element of H. Hence it follows that the closed curve $l l_{c-\delta_{1}}$ i. e., l_{c}, gives rise to the unit element. Summing up these facts a) is easily proved. If $f(\sigma, 0)$ is a path, we get a parallelogram by developing l_{1} into $T_{M}(o)$. Hence b) is also shown easily.

Definition 2.5. When $x(t)(0 \leqq t \leqq 1)$ is a curve in M on which points $x\left(t_{\lambda}\right)\left(\lambda=0,1, \ldots, m ; 0 \equiv t_{0}<t_{1}<\ldots<t_{m} \equiv 1\right)$ are specified and curves $x(t)$ $\left(t_{\nu-1} \leqq t \leqq t_{\nu}\right)(\nu=1,2, \ldots, m)$ are all paths, then the curve $x(t)$ is called a broken-path and the points $x\left(t_{\lambda}\right)$ are called its vertices.

In an R-reducible manifold M, let $x^{\prime}(t)$ be the broken-line obtained by developing a broken-path $x(t)$ of M into $T_{u(x}\left(x_{j}\right)$, where $x_{0} \equiv x^{\prime}(0)$. Again let $y(t)$ be the broken-path obtained by developing into M the natural projection $y^{\prime}(t)$ of $x^{\prime}(t)$ into $T_{s}\left(x_{0}\right)$ (relative to $T_{R}\left(x_{0}\right)$), then $y(t) \subset S\left(x_{0}\right)$. In such a case, the broken-path $y(t)$ is called the natural projection of $x(t)$ into $S\left(x_{0}\right)$. Then we have:

Lemma 2.6. The point $y(t)$ lies on the integral manifold $R(x(t))$.
Proof. For $0 \equiv t_{0}<t_{1}<\ldots<t_{k} \equiv 1$ we may suppose that every curve $x(t)$ which corresponds to $t_{\nu-1} \leqq t \leqq t_{\nu}(\nu=1, \ldots, k)$ is a path contained in a W-nbh W_{ν}. Put $x_{\nu} \equiv x\left(t_{\nu}\right), x_{\nu}^{\prime} \equiv x^{\prime}\left(t_{\nu}\right)$ and so on. Denote the path $x(t)$
$\left(t_{\nu-1} \leqq t \leqq t_{v}\right)$ by $x_{\nu-1}^{-} x_{\nu}$, the vector $x^{\prime}(t)\left(t_{\nu-1} \leqq t \leqq t_{\nu}\right)$ by $\overrightarrow{x_{\nu-1}^{\prime} x_{v}^{\prime}}$ and so on, where $x_{0}=x_{0}^{\prime}=y_{0}^{\prime}=y_{0}$. In order to prove the lemma we shall make use of Lemmas 2.3, 2.4 and 2.5 repeatedly.
 contained in W_{1}. Hence the lemma holds good for $t_{0} \leqq t \leqq t_{1}$. Consider the path $\widehat{y_{i}} x_{1}$ in W_{1}. Take a point x_{12} such that $\widehat{x_{1} x_{12}}$ is parallel to $\widehat{y_{1} y_{2}}$ along $\widehat{y_{1} x_{1}}$. Develope the broken-path $\widehat{y_{3} y_{1}} \widehat{y}_{1} x_{1} \widehat{x}_{1} \widehat{x}_{12}$ into $T_{3 y}\left(x_{0}\right)$ and we denote the terminal point by $x_{12}^{\prime}, ~ \overrightarrow{x_{1} x_{12}}$ is equal to $\overrightarrow{y_{1}^{\prime} y_{2}^{\prime}}$, i. e., the natural projection of $\overrightarrow{x_{1}^{\prime} x_{2}^{\prime}}$ into $T_{s}\left(x_{0}\right)$. Hence $\overparen{x_{1} x_{12}}$ is the natural projection of $\widehat{x_{1} x_{2}}$ into $S\left(x_{1}\right)$, and $\overparen{x_{1} x_{12}} \subset W_{2}$. Consequently we may show that the lemma holds good for $t_{1} \leqq t \leqq t_{2}$. Next let $\widehat{y_{3} x_{12}}$, be the path parallel to $\widehat{y_{1} \widehat{x}_{1}}$ along $\widehat{y_{1} y_{2}}$, and $\widehat{x_{12}} x_{2}$ be the path in W_{2}. Then the closed broken-path $\widehat{x_{1} x_{1}} \widehat{x_{1} x_{2}} \widehat{x_{1} x_{1:}} \widehat{x_{12} y_{2}} \widehat{y_{2} y_{1}} \widehat{y_{1} y_{0}}$ gives rise to the unit element of the holonomy group H at x_{0}. Take a point x_{23} such that $x_{2} x_{23}$ is parallel to $\widehat{y}_{2} y_{3}$ along the broken-path $\overparen{y_{2} x_{12}}{\widetilde{x_{12}} x_{2}}^{2}$. In the same manner as above, $\widehat{x_{2}} x_{23}$ is the natural projection of $\widehat{x_{2} x_{3}}$ into $S\left(x_{2}\right)$ and $\widehat{x_{2} x_{23}} \subset W_{3}$. Hence the lemma holds good for $t_{2} \leqq t \leqq t_{3}$. If we continue this manner, it is evident that Lemma 2.6 is proved.

Let E be the p-cube consisting of points $\left(t_{1}, \ldots, t_{p}\right)$ in the p-dimensional Euclidean space E^{ν} such that $0 \leqq t_{\nu} \leqq 1(\nu=1, \ldots, p)$. In particular, the $(p-1)$-faces defined by $t_{p}=0$ and $t_{p}=1$ in E are denoted by E_{0} and E_{1} respectively.

Lemma 2.7. Let U be a simple convex nbh of M. Suppose that a map ϕ of E into U satisfies the following conditions:

1) ϕ is continuous in $E_{0} \cup E_{1}$. 2) When t_{1}, \ldots, t_{p-1} are regarded as constants, $\phi\left(t_{1}, \ldots, t_{p}\right)\left(0 \leqq t_{p} \leqq 1\right)$ defines a path. Then, ϕ is a continuous map.

Since this follows from the theory of differential equations, we do not give its proof here.

Lemma 2.8. Suppose that a continuous map ϕ of E into an R-reducible manifold M satisfies the following conditions : 1) $\phi\left(E_{0}\right)=x_{0}$, where x_{0} is a fixed point. 2) When t_{1}, \ldots, t_{p-1} are regarded as constants, $\phi\left(t_{1}, \ldots, t_{p}\right)\left(0 \leqq t_{p}\right.$ $\leqq 1$) is a broken-path which we denote by $\phi_{t_{1} \ldots t_{p}-1}\left(t_{p}\right)$. 3) Vertices of $\phi_{t_{1} \ldots t_{p-1}}\left(t_{p}\right)$ consist only of points corresponding to $t_{p}=0,1 / m, \ldots,(m-1) / m, 1$.

Then there exists a continuous map $\psi: E \rightarrow S\left(x_{0}\right)$ for which the following properties are fulfilled:
a) $\psi\left(E_{0}\right)=\phi\left(E_{0}\right)=x_{0}$. b) Two points, $\psi\left(t_{1}, \ldots, t_{p}\right)$ and $\phi\left(t_{1}, \ldots, t_{p}\right)$ for the same value $\left(t_{1}, \ldots, t_{p}\right)$ lie always on the same integral manifold R. c) For $\left(t_{1}, \ldots, t_{p}\right)$ such that $\phi_{t_{1} \ldots t_{p-1}}\left(t_{p}\right)\left(0 \leqq t_{p} \leqq 1\right)$ is contained in $S\left(x_{0}\right), \psi\left(t_{1}, \ldots\right.$. , $\left.t_{p}\right)=\phi\left(t_{1}, \ldots, t_{p}\right)$.

Proof. Let $\phi_{t_{1} \ldots t_{p-1}}^{\prime}\left(t_{p}\right)$ be the development of a broken-path $\phi_{t_{1} \ldots, t_{p-1}}\left(t_{p}\right)$ into $T_{s t}\left(x_{0}\right)$. Now consider the map

$$
\phi^{\prime}: E \rightarrow T_{M}\left(x_{0}\right) \quad\left(\left(t_{1}, \ldots, t_{p}\right) \rightarrow \phi_{t_{1} \ldots t_{p-1}}\left(t_{p}\right)\right),
$$

then we get

$$
\begin{align*}
\phi^{\prime}\left(t_{1}, \ldots, t_{p}\right)= & \left(m t_{p}-\lambda\right) \phi^{\prime}\left(t_{1}, \ldots, t_{p-1},(\lambda+1) / m\right) \\
& +\left(\lambda+1-m t_{p}\right) \phi^{\prime}\left(t_{1}, \ldots, t_{p-1}, \lambda / m\right) \tag{4}
\end{align*}
$$

for $\lambda / m \leqq t_{p} \leqq(\lambda+1) / m(\lambda=0,1, \ldots \ldots m-1)$. From the continuity of ϕ we. have

$$
\begin{array}{ll}
& \phi_{1_{1+\Delta t_{1} \ldots t_{p-1}+\Delta t_{p-1}}\left(t_{p}\right) \rightarrow \phi_{t_{1} \ldots t_{p-1}}\left(t_{p}\right)\left(\Delta t_{\nu} \rightarrow 0 ; \nu=1, \ldots, p-1\right) .} \\
\text { Hence, } & \phi_{t_{1}+\Delta t_{1} \ldots, t_{p-1}+\Delta t_{p-1}(\lambda / m) \rightarrow \phi_{1 \ldots}^{\prime \prime}\left({ }^{\prime}, p-1\right.}(\lambda / m)(\lambda=0.1, \ldots, m), \\
\text { i. e., } & \phi^{\prime}\left(t_{1}+\Delta t_{1}, \ldots ., t_{p-1}+\Delta t_{p-1}, \lambda / m\right) \rightarrow \phi^{\prime}\left(t_{1}, \ldots, t_{p-1}, \lambda / m\right) .
\end{array}
$$

Consequently $\phi^{\prime}\left(t_{1}, \ldots, t_{p-1}, \lambda / m\right)$ is continuous. From this and (4), $\phi^{\prime}\left(t_{1}\right.$, t_{p}) is also continuous.
Next, let $\psi_{t_{1}, . t_{p-1}}^{\prime}\left(t_{p}\right)$ be the natural projection of a broken-line $\phi_{t_{10}, \ldots t_{p-v}}^{\prime}$ $\left(t_{p}\right)$ into $T_{s}\left(x_{0}\right)$. Then it follows directly that the map

$$
\psi^{\prime}: E \rightarrow T_{s}\left(x_{0}\right) \quad\left(\left(t_{1}, \ldots, t_{p}\right) \rightarrow \psi_{t_{1}, t_{p}-1}^{\prime}\left(t_{p}\right)\right)
$$

is continuous. Again let $\psi_{t_{1} \ldots t_{p-1}}\left(t_{p}\right)$ be the development of a ibroken-line $\psi_{t_{1} \ldots t_{p-1}}^{\prime}\left(t_{p}\right)$ into $S\left(x_{j}\right)$. Consider the map

$$
\psi: E \rightarrow S\left(x_{6}\right) \quad\left(\left(t_{1}, \ldots, t_{p}\right) \rightarrow \psi_{t_{1} \ldots, t_{p}-x}\left(t_{p}\right)\right) .
$$

By the similar manner, it is possible to deduce that the map ψ is continuous. It follows directly that ψ satisfies a) and c), and b) holds good by virtue of Lemma 2.6.

Theorem 1. Let f be a continuous map of the boundary ∂E of E into a maximal intergal manifold, say S, of an R-reducible manifold M. If f is homotopic in M to a constant map, then it is homotopic in S to a constant map.

Proof. We shall suppose $f\left(E_{0}\right)=x_{0}$ and $f\left(E_{1}\right)=x_{1}$, where $x_{0}, x_{1} \in S$. This assumption does not lose its generality of our theorem. Since M has a metric independent of the connection, we denote the distance between x and y by $d(x, y)$. From the given conditions, we may extend the map f to a continuous map $E \rightarrow M$ and denote such a map again by f. Put $D \equiv f(E)$, then D is a compact subset of M. Next, in a nbh $W(x)$ at a point x there exists always the greatest positive number (or infinity) δ such that $W(x) \supset\{y$: $\boldsymbol{d}(x, y)<\delta\} . \delta$ is called the radius of $W(x)$.

Choose at every point x of D a W nbh of x such that the greatest lower bound of these radii is a positive number. This is possible because D is compact. We denote the W-nbh by $W(x)$ and the greatest lower bound by δ_{0}. Once more, choose at every point x of D a W-nbh of x, contained in a nbh $\left\{y: d(x, y)<\delta_{0} / 2\right\}$, such that the greatest lower bound of these radii takes a positive number. This is also possible and we denote the W-nbh by $\boldsymbol{w}(\boldsymbol{x})$ and the greatest lower bound by δ_{1}. Next, at a point t of E, when there exists the greatest p-cube with the center t, whose $(p-1)$-faces are respectively parallel to those of E and its interior is wholly contained in $f^{-1}(w(f(t)) \cap D) \cup\left(E^{p}-E\right)$, we denote the length of the side by $\rho(t)$. If the p-cube does not exist, put $\rho(t) \equiv 2$. Then it follows easily that the greatest lower bound ρ_{0} of $\rho(t)$ for all $t \in E$ is a positive number.

Moreover, take a positive integer m such that $1 / m<\rho_{0}$ and divide E into $m^{p} p$-cubes, whose sides are of the same length $1 / m$ and their faces
are respectively parallel to those of E. We call every one of the p-cubes a small p-cube and its $(p-1)$-faces small ($p-1$)-faces. We denote by $A_{q_{1} \ldots q_{p}}$ a small p-cube i. e., the set of points $\left(t_{1}, \ldots, t_{p}\right)$ satisfying $q_{\nu} / m \leqq t_{\nu} \leqq\left(\boldsymbol{q}_{\nu}+1\right) / m$ ($\nu=1, \ldots, p ; q_{\nu}=0,1, \ldots, m-1$), and by $o_{a_{1}} \ldots q_{p}$ its center. Put $x_{q_{1}} \ldots q_{p}$ $\equiv f\left(o_{q_{1}} \ldots q_{p}\right)$, then we have

$$
f\left(A_{q_{1} \ldots q_{p}}\right) \subset w\left(x_{q_{1} \ldots q_{p}}\right) .
$$

In two small $(p-1)$-faces $t_{p}=q_{p} / m$ and $t_{p}=\left(q_{p}+1\right) / m$ of $A_{q 1 \ldots q_{p}}$, take points $\left(t_{1}, \ldots, t_{p-1}, \boldsymbol{q}_{p} / m\right)$ and $\left(t_{1}, \ldots, t_{p-1},\left(q_{p}+1\right) / m\right)$ respectively and consider in $w\left(x_{q 1} \ldots q_{p}\right)$ only one path $l\left(t_{1}, \ldots, t_{p}\right)$ with the parameter $t_{p}\left(\boldsymbol{q}_{p} / m \leqq t_{p} \leqq\left(q_{p}+\right.\right.$ $1) / m)$, joining a point $f\left(t_{1} \ldots, t_{p-1}, q_{p} / m\right)$ to a point $f\left(t_{1}, \ldots, t_{p-1},\left(q_{p}+1\right) / m\right)$. Then from Lemma 2.7 we get a continuous map

$$
\begin{equation*}
\phi_{\eta 1} \cdots q_{p}: A_{q_{1} \cdots q_{p}} \rightarrow w\left(x_{q_{1}} \ldots \cdots q_{p}\right) \quad\left(\left(t_{1}, \ldots, t_{p}\right) \rightarrow l\left(t_{1}, \ldots, t_{p}\right)\right) . \tag{5}
\end{equation*}
$$

Choose another small p-cube A^{\prime} whose t_{p}-coordinates satisfy $q_{p} / m \leqq t_{p}$ $\leqq\left(q_{p}+1\right) / m$ and suppose $N \equiv A^{\prime} \cap A_{q_{1} \cdots q_{p}} \neq 0$. We denote any point of N by ($\left.t_{1}^{\prime}, \ldots ., t_{p-1}^{\prime}, t_{p}\right)$ and put $w^{\prime} \equiv w\left(f\left(o^{\prime}\right)\right.$), where o^{\prime} is the center A^{\prime}. Let l and l^{\prime} be two paths joining a point $f\left(t_{1}^{\prime}, \ldots, t_{p-1}^{\prime}, q_{p} / m\right)$ to another point $f\left(t_{1}^{\prime}, \ldots .\right.$, $\left.t_{p-1}^{\prime},\left(q_{p}+1\right) / m\right)$ in $w\left(x_{q_{1} \ldots q_{p}}\right)$ and w^{\prime} respectively. Let y_{0} be a point of $f(N)$ and y be an arbitrary point of $w\left(x_{q_{1} \cdots q_{p}},\right)$ then

Hence,

$$
\begin{gathered}
d\left(y, y_{0}\right) \leqq d\left(y, x_{q_{1} \ldots q_{p}}\right)+d\left(x_{t_{1}, \ldots q_{p}}, y_{0}\right)<\delta_{0} / 2+\delta_{0} / 2=\delta_{0} . \\
w\left(x_{a_{1} \ldots q_{p}}\right) \subset W\left(y_{0}\right) . \\
w^{\prime} \subset W\left(y_{0}\right) .
\end{gathered}
$$

Similarly,
However, since $W\left(y_{0}\right)$ is a simple convex nbh, we have $l=l^{\prime}$. Consequently if $\phi^{\prime}: A^{\prime} \rightarrow w^{\prime}$ is the continuous map analogus to (5) and t is any point of N, we get

$$
\dot{\phi}_{q_{1} \cdots q_{p}}(t)=\phi^{\prime}(t) .
$$

From this and (5), we get a continuous map $\phi_{q_{p}}$ of the part $\left\{\left(\mathrm{t}_{1} \ldots, t_{p}\right)\right.$: $\left.q_{p} / m \leqq t_{p} \leqq\left(q_{p}+1\right) / m\right\}$ of E into M, regarded as the union of maps $\phi_{q_{1} \ldots q_{p}}$ with $\boldsymbol{q}_{p}=$ const. Then, we have $\phi_{q_{p}}\left(t_{1}, \ldots, t_{p-1}, q_{p} / m\right)=f\left(t_{1}, \ldots, t_{p-1}, q_{p} / m\right)$ and $\phi_{q_{p}}\left(t_{1}, \ldots, t_{p-1},\left(q_{p}+1\right) / m\right)=f\left(t_{1}, \ldots, t_{p-1},\left(q_{p}+1\right) / m\right)$ for $0 \leqq t_{1}, \ldots, t_{p-1}$ $\leqq 1$.

Again if we make the map $\phi: E \rightarrow M$ as the union of maps $\phi_{q_{p}}\left(\boldsymbol{q}_{p}=0\right.$, $1, \ldots, m-1), \phi$ is evidently continuous and satisfies

$$
\begin{equation*}
f\left(t_{1}, \ldots, t_{p-1}, \lambda / m\right)=\phi\left(t_{1}, \ldots, t_{p-1}, \lambda / m\right) \quad(\lambda=0,1, \ldots, m) . \tag{6}
\end{equation*}
$$

In the next place, we take a small $(p-1)$-face contained in ∂E, such that $\boldsymbol{q}_{p} / m \leqq t_{p} \leqq\left(\boldsymbol{q}_{p}+1\right) / m$, for example $B_{a_{2} \cdots q_{p}} \equiv\left\{\left(0, t_{3}, \ldots, t_{p}\right): \boldsymbol{q}_{z^{2}} / m \leqq t_{z}\right.$ $\left.\leqq\left(q_{2}+1\right) / m, \ldots, q_{p} / m \leqq t_{p} \leqq\left(q_{p}+1\right) / m\right\} . \quad B_{q_{2} \ldots q_{p}}$ is a small $(p-1)$-face of $A_{0 q_{2} \ldots q_{p}}$. Now we have $f\left(B_{q_{2} \ldots q_{p}}\right) \subset S$ from the assumption of f. On the other hand both $f\left(B_{q_{2} \cdots q_{p}}\right)$ and $\phi\left(B_{q_{2} \cdots q_{p}}\right) \subset \boldsymbol{w}\left(x_{0 q_{2} \cdots q_{p}}\right)$. Consequently $f\left(B_{q_{2} \cdots q_{p}}\right)$ and $\phi\left(B_{q_{2} \ldots q_{p}}\right)$ are contained in a simple convex intrinsic nbh V, i. e. a connected component of $w\left(x_{0 q_{2} \ldots q_{\nu}}\right) \cap S$ in S, by virtue of Definition 2.3 and (6). Take any point $\left(0, t_{2}, \ldots, t_{p}\right) \in B_{q_{2} \ldots q_{p}}$ and make in $w\left(x_{v_{2}} \ldots q_{p}\right)$ a path $l\left(0, t_{2}, \ldots, t_{p}, \tau\right)$
$(0 \leqq \tau \leqq 1)$ such that $l\left(0, t_{2}, \ldots, t_{p}, 0\right)=f\left(0, t_{2}, \ldots, t_{p}\right)$ and $l\left(0, t_{2}, \ldots, t_{p}, 1\right)$
$=\phi\left(0, t_{2}, \ldots, t_{p}\right)$. From Lemma. 2.7 we get a continuous map

$$
\begin{equation*}
i_{q_{2} \cdots q_{p}}: B_{q_{2} \cdots q_{p}} \times I \rightarrow V \quad\left(\left(0, t_{2}, \ldots, t_{p}, \tau\right) \rightarrow l\left(0, t_{2}, \ldots, t_{p}, \tau\right)\right), \tag{7}
\end{equation*}
$$

where $I \equiv\{\tau: 0 \leqq \tau \leqq 1\}$. Again choose another small $(p-1)$-face B, contained in ∂E, such that $\boldsymbol{q}_{\nu} / m \leqq t_{p} \leqq\left(\boldsymbol{q}_{p+1}\right) / m$ and $B \cap B_{q_{2} \cdots q_{p}} \neq 0$. Let A be the small p-cube containing B and o be the center of A. Put $w=w(f(o))$ and let $\left(0, t_{2}, \ldots, t_{p}\right)$ be a point of $B_{q_{2} \cdots q_{p}} \cap B$. Let l and l^{\prime} be paths joining $f(0$, $\left.t_{2}, \ldots, t_{p}\right)$ to $\phi\left(0, t_{2}, \ldots, t_{p}\right)$ in $w\left(x_{0 q_{2} \ldots q_{p}}\right)$ and w respectively. Then we get $l=l^{\prime}$, because $w\left(x_{\mathrm{V}_{2} \ldots q_{p}}\right)$ and w are contained in a W-nbh. Here we note that, if $A=A_{0 q_{2} \ldots q_{p}}$, we have $l=l^{\prime}$ directly. Then, as the union of maps (7) of all small $(p-1)$-faces is contained in the part $(\partial E)_{q_{p}}$ of ∂E such that q_{p} / m $\leqq t_{p} \leqq\left(\dot{q}_{p}+1\right) / m$, we have a continuous map

$$
l_{q_{l}}:(\partial E)_{q_{p}} \times I \rightarrow S
$$

where $l_{q_{p}}$ in $t_{p}=\boldsymbol{q}_{p} / m$ and $t_{p}=\left(\boldsymbol{q}_{p}+1\right) / m$ is independent of τ from (6), $l_{q_{p}}$ $=f$ in $\tau=0$ and $l_{q_{p}}=\phi$ in $\tau=1$. Consequently we have a continuous map

$$
\begin{equation*}
g: \partial E \times I \rightarrow S \tag{8}
\end{equation*}
$$

by making the union of maps $l_{q_{p}}\left(\boldsymbol{q}_{p}=0,1, \ldots, m-1\right)$. g satisfies $g\left(E_{0} \times I\right)$ $=x_{0}, \quad g\left(E_{1} \times I\right)=x_{1}$ and $g(t \times 0)=f(t), g(t \times 1)=\phi(t)$ for $t \in \partial E$. From (8), $f \mid \partial E$ is homotopic to $\phi \mid \partial E$ in S, leaving x_{0} and x_{1} fixed.

Hence it is sufficient to show that $\phi \mid \partial E$ is homotopic to a constant map in S. In fact the continuous map $\phi: E \rightarrow M$ satisfies wholly the conditions of Lemma 2.8. Moreover $\phi\left(E_{1}\right)=x_{1} \in S$ and $\phi(\partial E) \subset S$. Hence we have the continuous map

$$
\begin{equation*}
\psi: E \rightarrow S \tag{9}
\end{equation*}
$$

For any point $t \in \partial E-E_{1}+\partial E_{1}, \psi(t)=\phi(t)$, hence $\psi\left(\partial E_{1}\right)=x_{1}$. On the other hand, $\psi\left(E_{1}\right) \subset R\left(x_{1}\right)$, hence $\psi\left(E_{1}\right) \subset S \cap R\left(x_{1}\right)$. Consequently $\psi\left(E_{1}\right)=x_{1}$, from b) of §1. Since we have $\psi(t)=\phi(t)$ for $t \in \partial E$, it follows from (9) that $\phi \mid \partial E$ is homotopic in S to a constant map.

Corollary. The p-dimensional homotopy group of any maximal integral manifold of an R-reducible manifold M is isomorphic into the p-dimensional homotopy group of M under the homomorphism induced by the inclusion map.

Proof. We shall attempt the proof with respect to an integral manifold S. Consider the inclusion map $i: S \rightarrow M$ and we get the homomorphism i_{*} : $\pi_{p}(S) \rightarrow \pi_{p}(M)$ induced by i. Let N be the kernel of i_{*}. Since any element of N is mapped to the unit element of $\pi_{p}(M)$ under $i_{*}, \quad N$ is of the unit element of $\pi_{p}(S)$ from Theorem 1. Consequently our Corollary is proved.

3. Simply-connected R-reducible manifolds

S. Sasaki [4] proved that any two points of M cannot necessarily be joined by a path, but we have:

Lemma 3.1. Any two points x and y of M can be joined by a broken-path.

Proof. Consider a curve l joining x and y and cover l by a finite number of simple convex nbhs. Then we can make a broken-path joining x and y.

Lemma 3.2. Lot x and y be any two points of an R-reducible manifold M, then $R(x) \cap S(y) \neq 0$.

This is evident from Lemmas 2.6 and 3.1.
Definition 3.1. Let $v(x)$ be a. vector field over an integral manifold S of a C-reducible manifold M, where $x \in S$. If $v\left(x_{1}\right)$ and $v\left(x_{2}\right)$ at any two points x_{1} and x_{2} are parallel regardless of curves $\widetilde{x_{1} x_{2}}$ of class D^{1} in $S, v(x)$ is called a parallel vector field over S.

Lemma 3.3. Lot v_{0} be a vector at x_{0}, tangent to $R\left(x_{0}\right)$ of an R-reducible manifold M. When $S\left(x_{0}\right)$ is simply-connecied, there exists a vector field $v(x)$ over $S\left(x_{0}\right)$ parallel to v_{0}, where $x \in S\left(x_{0}\right)$.

Proof. Consider a closed curve l of class D^{1}, with the endpoint x_{0} in $S\left(x_{0}\right)$ and let v_{1} be the vector at the terminal point x_{0}, obtained by parallel displacement of v_{0} along l. From the proof of Lemma 2.3, it follows that v_{1} is tangent to $R\left(x_{j}\right)$. Suppose $v_{1} \neq v_{0}$. Then there exists $c>0$ such that $y_{0} \neq y_{1}$, where $y_{i j} \equiv\left(x_{0}, v_{10}, c\right)$ and $y_{1} \equiv\left(x_{0}, v_{1}, c\right)$. From Lemma 2.3, $y_{0}, y_{1} \in R\left(x_{0}\right)$ $\cap S\left(y_{0}\right)$. Contract l to x_{0} and we get a curve $\widehat{y_{1} y_{0}}$ as the locus of y_{1}. Here $\widehat{y_{1}} y_{0} \subset R\left(x_{j}\right) \cap S\left(y_{0}\right)$. This is contradictory to b) of $\S 1$. Hence $v_{1}=v_{0}$. From this, Lemma 3.3 is easily shown.

Lemma 3.4 Under the same assumption and notations as Lemma 3.3 put $y \equiv(x, v(x), c)$ and $y_{0} \equiv\left(x_{0}, v_{j}, c\right)$, where c is a constant. If $S_{1}\left(y_{0}\right)$ is simply-connected too, $S\left(x_{0}\right)$ is equivalent to $S\left(y_{0}\right)$ under the map

$$
f: S\left(x_{0}\right) \rightarrow S\left(y_{0}\right) \quad(x \rightarrow y) .
$$

The word "equivalent" in such a case means the equivalence as affinely connected manifolds.

Proof. Let $u(y)$ be the vector at y, obtained by parallel displacement of $v(x)$ along a path $(x, v(x), t)(0 \leqq t \leqq c)$. For two distinct points x_{1} and x_{2} in $S\left(x_{i}\right), y_{i}$ and y_{2} are also distinct, where $y_{1} \equiv\left(x_{1}, v\left(x_{1}\right), c\right)$ etc. In fact, if $y_{1}=$ y_{2}, we have the closed curve l in $S\left(y_{0}\right)$ as the image under f of a curve $\widehat{x_{1} x_{2}}$ of class D^{1} in $S\left(x_{0}\right)$. From Lemma $2.3 u^{\prime} y_{1}$) and $u\left(y_{2}\right)$ are parallel along l. However since $S\left(y_{0}\right)$ is simply-connected, $u\left(y_{1}\right)=u\left(y_{2}\right)$ by virtue of Lemma 3.3. Hence we get $x_{1}=x_{2}$, because x_{1} and x_{2} are represented as $\left(y_{1}, u\left(y_{1}\right)\right.$, $-c)$. This is contradictory to the fact that x_{1} and x_{2} are distinct points. Consequently, when we put $S^{\prime} \equiv f\left(S\left(x_{0}\right)\right)$, then $S\left(x_{0}\right)$ and S^{\prime} correspond one-to-one under f to each other, where $S^{\prime} \subset S\left(y_{0}\right)$. Moreover $S\left(x_{0}\right)$ and S^{\prime} are equivalent under f. In fact if we cover a path $\widehat{x y}=(x, v(x), t)(0 \leqq t \leqq c)$ by a finite number of C-nbhs, we get in $S\left(x_{0}\right)$ and S^{\prime} two intrinsic nbhs of x and y respectively, equivalent under f. From, this fact the equivalence of $S\left(x_{0}\right)$ and S^{\prime} is easily shown.

Hence it is sufficient to show $S\left(y_{0}\right)=S^{\prime}$. Take a point $y_{1} \in S\left(y_{0}\right)$ and make a curve $\widehat{y_{0} y_{1}}$ of class D^{1} in $S\left(y_{0}\right)$. We get a vector $u\left(y_{1}\right)$ at y_{1}, by parallel displacement of $u\left(y_{0}\right)$ along $\widehat{y}_{0} \widehat{y}_{1}$. Put $x_{1} \equiv\left(y_{1}, u\left(y_{1}\right),-c\right)$. From Lemma 2.3,
$x_{1} \in S\left(x_{0}\right)$ and $\left(x_{1}, v\left(x_{1}\right), c\right)=y_{1}$. Hence $S\left(y_{0}\right)=S^{\prime}$.
Definition 3.2. In an R-reducible manifold M, let l_{1} be a broken-path $\widehat{x_{0} x_{1}} \widetilde{x_{1} x_{2} \ldots \ldots x_{h-1}} \widehat{x_{h}}$ in $R\left(x_{0}\right)$ with the vertices $x_{6}, x_{1}, \ldots, x_{h}$ and let l be a curve $x_{0} \widehat{y}_{0}$ of class D^{1} in $S\left(x_{0}\right)$. First displace $\widehat{x_{0}} x_{1}$ parallelly along l, and we get a path $\widehat{y_{0} y_{1}}$ at y_{0} and a curve $\widehat{x_{1} y_{1}}$ as the locus of x_{1}. Again displace $\widehat{x_{1} x_{2}}$ parallelly along $\widehat{x_{1} y_{1}}$, and we get a path $\widehat{y_{1} y_{2}}$ at y_{1} and a curve $\widehat{x_{2} y_{2}}$ as the locus of x_{2}. Continuing this process successively, we get a broken-path $\widehat{y_{0} y_{1}}$ $\widehat{y_{1}} y_{2} \ldots . . \widehat{y_{n-1}} y_{n}$ and a curve $\widehat{x_{n} y_{n}}$. The broken-path $\widehat{y_{0} y_{1}} \widehat{y_{1} y_{2}} \ldots . . y_{h-1} y_{n}$ is called to be parallel to l_{1} along l.

It follows that the broken-path $\widehat{y_{0} y_{1}} \widehat{y_{1} y_{2}} \ldots . y_{n-1} y_{n}$ coincides with the development of the broken-line at y_{0} parallel to the development of the given broken-path l_{1} and $\widehat{x_{\nu}} y_{\nu} \subset S\left(x_{v}\right)(\nu=1,2, \ldots, h)$ from Lemmas 2.3 and 2.5. Moreover when l is a broken-path, the curve $\widehat{x_{l} y_{n}}$ coincides with the brokenpath obtained by parallel displacement of l along l_{1}.

Lemma 3.5. When all S of an R-reducible manifold M are simply connected and a broken-path $\widehat{x}_{0} y_{0}$ of M is given in $R\left(x_{0}\right)$, we have: a) There exists over $S\left(x_{\mathrm{c}}\right)$ a broken-path field parallel to $\widehat{x}_{0} \widehat{y}_{0}$. b) If y is the terminal point of its broken-path at any point x of $S\left(x_{0}\right), S\left(x_{0}\right)$ and $S\left(y_{0}\right)$ are equivalent under the map

$$
f: S\left(x_{0}\right) \rightarrow S\left(y_{0}\right) \quad(x \rightarrow y) .
$$

This is obvious from Lemmas 3.3 and 3.4.
Definition 3.3. We call such a map f as is defined in Lemma 3.5 an equivalent map with respect to a broken-path $x_{0} \widehat{y}_{0}$.

Lemma 3.6. Suppose that all R and S of an R-reducible manifold M are simply-connected and g_{0} and h_{0} are any two broken-paths in $R\left(x_{0}\right) \cdot$ joining x_{0} to y_{0}. Then the equivaleut map with respect to g_{0} coincides with the one with respect to h_{0}.

Proof. Let $g(x)$ and $h(x)$ be two broken-path fields over $S\left(x_{0}\right)$ parallel to g_{0} and h_{0} respectively, where $x \in S\left(x_{0}\right)$. It is sufficient to show that the terminal point y_{1} of an element $g\left(x_{1}\right)$ coincides with the terminal point y_{2} of an element $h\left(x_{1}\right)$. If we consider a broken-path $\widehat{x_{1} x_{1}}, y_{1}$ is also regarded as the terminal point of the broken-path at y_{0}, parallel to $\widetilde{x}_{0} x_{1}$ along g_{0} and so is y_{2}, along h_{0}. Since any R is simply-connected, y_{1} coincides with y_{2} from Lemma 3.5.

Theorem 2. When all R and S of an R-reducible manifold M are simplyconnected, the affine product $\widetilde{M} \equiv R(o) \times S(o), o \in M$, is equivalent to the covering space of M.

Proof. We put $R_{0} \equiv R(o)$ and $S_{0} \equiv S(o)$. A point \tilde{x} of \widetilde{M} is always represented by (y, z), where $y \in R_{0}$ and $z \in S_{0}$. Let $\widehat{o y}$ be a broken path in R_{0} joining o to y and $\widehat{o z}$ a broken-path in S_{0} joining o to z. Let x be the terminal point
of the broken-path at z, obtained by parallel displacement of $\widehat{o y}$ along $\widehat{o z}$ in M, and $x \in S(y) \cap R(z)$. From Lemma 3.6 we see that the point x does not depend on the broken-paths $\overparen{o y}$ and $\overparen{o z}$, but does depend upon the points y and z. Now consider a map

$$
f: \widetilde{M} \rightarrow M \quad(\widetilde{x} \rightarrow x) .
$$

A) Let x be a point of M. We can take a point y of $R_{0} \cap S(x)$, for $R_{0} \cap$ $S(x) \neq 0$ by virtue of Lemma 3.2. Let z be the terminal point of the brokenpath at x, obtained by parallel displacement of $\widehat{o y}^{-1}$ along $\widehat{y x}$, where $\widehat{o y}$ and $\widehat{y x}$ are arbitrary broken-paths in R_{0} and $S(x)$ respectively. Then $z \in S_{0}$. Now if we denote by \widetilde{x} a point (y, z) in $\widetilde{M}, f(\widetilde{x})=x$. Consequently $f(\widetilde{M})=M$.
B) Let $y_{\lambda}, \lambda \in J$, be all points of $R_{0} \cap S(x)$ for $x \in M$, where J is the indexset. Let z_{λ} be a point determined from y_{λ} in the same manner as A), then $z_{\lambda} \in R(x) \cap S_{0}$. Make two broken-paths $\overparen{o y_{\lambda}}$ and $\overparen{o z_{\lambda}}$ in R_{0} and S_{0} respectively. On the other hand, consider a W-nbh $W(x)$. By virtue of Definition 2.3, $W(x)$ is necessarily represented by the affine product $U(x) \times V(x)$, where $U(x) \subset$ $R(x)$ and $V(x) \subset S(x)$. Let $U\left(y_{\lambda}\right)$ be the image of $U(x)$, obtained by the equivalent map with respect to $\widehat{o z_{\lambda}^{-1}}$. Let $V\left(z_{\lambda}\right)$ be the analogous image of $V(x)$ with respect to $\widehat{o y}_{\lambda}^{-1}$. Denote by $\widetilde{x}_{\text {, }}$ a point $\left(y_{\lambda}, z_{\lambda}\right)$ in \widetilde{M}, then the product $\widetilde{W}_{\lambda} \equiv U\left(y_{\lambda}\right) \times V\left(z_{\lambda}\right)$ is regarded as a nbh of \widetilde{x}_{λ} and is equivalent to W under f.
C) We have $f^{-1}(x)=\bigcup_{\lambda e s} \widetilde{x}_{\lambda}$ from B). Now we shall verify

$$
\widetilde{W}_{\lambda} \cap \widetilde{W}_{\mu}=0, \quad \lambda, \mu \in J \quad(\lambda \neq \mu) .
$$

In fact, suppose that $\widetilde{W}_{\lambda} \cap \widetilde{W}_{\mu} \neq 0$, then there is a point $\widetilde{u} \in \widetilde{W}_{\wedge} \cap \widetilde{W}_{\mu}$. Put $u \equiv f(\widetilde{u})$ and $u \in W(x)$. Let $\tilde{u} \tilde{x_{\lambda}}$ be one and only one path in \widetilde{W}_{λ}, and $\widetilde{\sim} \widetilde{x}_{\mu}$ in \widehat{W}_{μ}. Since $f\left(\widetilde{\widetilde{u} \tilde{x}_{\lambda}}\right)$ and $f\left(\widetilde{\tilde{u} \tilde{x}_{\mu}}\right)$ are contained in $W(x)$, these are the same path $\overparen{u x}$. Hence the directions at \tilde{u} of two paths $\widetilde{\sim} \widetilde{x_{\lambda}}$ and $\widetilde{\widetilde{u x_{\lambda}}}$ can not coincide, because $\widetilde{x_{\lambda}} \neq \widetilde{x_{\mu}}$. Consequently there exist two distinct points $\widetilde{u_{1}}$ and \tilde{u}_{2} in \widetilde{W}_{λ} such that $\tilde{u}_{1} \in \tilde{\tilde{u} \tilde{x}_{1}}, \tilde{u}_{2} \in \widetilde{\tilde{u} \tilde{x}_{\mu}}$ and $f\left(\tilde{u_{1}}\right)=f\left(\widetilde{u_{2}}\right) \in W(x)$. This contradicts to the equivalence of \widetilde{W}_{λ} and $W(x)$ under f. Hence $\widetilde{W}_{\lambda} \cap \widetilde{W}_{\mu}=0$.

Summing up the above results, we see that the map $f: \widetilde{M} \rightarrow M$ is a covering.

Corollary. When an R-reducible manifold M is simply-connected, M is equivalent to the affine product $R(o) \times S(o)$, where $o \in M$.

It follows directly from Corollary of Theorem 1 and Theorem 2. This Corollary is an extension of de Rham's theorem referred in the introduction.

4. \boldsymbol{R}-reducible manifolds whose fundamental groups are cyclic of order two

Definition 4.1. Let $p^{\prime}(x)$ be the number of points contained in $R(x) \cap S(x)$
for a point x of a C-reducible manifold $M . p(x)$ is called the multiplicity at x of M. Especially if $p(x)$ is constant over M, the number p is called the multipicitity of M. It may be finite or infinite.

Lemma 4.1. When all R and S of an R-reducible manifold M are simplyconnected, $p(x)$ is constant over M, where $x \in M$.

Proof. Consider the affine product $\widetilde{M} \equiv R(o) \times S(o)$, where $o \in M$. From Theorem 2, \widetilde{M} is equivalent to the covering space of M. Denote its covering by f, and the number p of points contained in $f^{-1}(x)$ is independent of x. From the proof of Theorem 2, p is also the number of points contained in $R(o) \times S(x)$. From this it is easily proved that $p(x)$ is constant over M.

Lemma 4.2. Let \widetilde{M} be the covering space of an R-reducible manifold M. When f is its covering and \widetilde{o} is any point of \bar{M}, the following properties are fulfilled:
a) \widetilde{M} is an R-reducible manifold and equivalent to the affine product \widetilde{R}_{0} $\times \widetilde{S}_{0}$, where \widetilde{R}_{0} and \widetilde{S}_{0} are the r - and s-dimensional maximal integral manifolds through \widetilde{o} respectively. b) Any maximal integral manifold, say \widetilde{R}_{0}, is the covering space of $R(o)$ and f is its covering, where $o \equiv \widetilde{f(o)}$.

Proof. It follows that \widetilde{M} is separable (since $\pi_{1}(M)$ is at most countable) and metric. Thus a) is easily shown. Hence, it is sufficient to show $f\left(\widetilde{R_{0}}\right)=R_{0}$, because \widetilde{R}_{0} is simply-connected. For a point $\widetilde{y} \in \widetilde{R}_{0}$, consider a curve $\widetilde{\sigma} \widetilde{y}$ in \widetilde{R}_{0}, then $f(\widetilde{\sigma} \overline{o y}) \subset R(o)$. Hence $f\left(\widetilde{R}_{\mathrm{J}}\right) \subset R(o)$. Next, for a point $y \in R(o)$, consider
 $f\left(\widetilde{R_{0}}\right) \supset R_{0}$. Consequently $f\left(\widetilde{R_{0}}\right)=R(o)$.

Lemma 4.3. When an R-reducible manifold M has multiplicity one, M is equivalent to the affine product $R(o) \times S(o)$, where $o \in M$.

This is easily proved.
In the following we shall adopt the following convention: For any manifold $X, \pi_{1}(X)=1$ means that X is simply-connected, and $\pi_{1}(X)=2$ means that the fundamental group of X is cyclic of order two.

Theorem 3. When $\pi_{l}(M)=2$ for an R-reducible manifold M, M has either one of the following structures:
a) $\pi_{3}(R)=1, \pi_{1}(S)=1$ for any R, S of M and M has multiplicity two.
b) $\pi_{1}(R)=1, \pi_{1}(S)=2$ for any R, S of M and M is equivalent to the affine product $R(o) \times S(o)$, where $o \in M$.
c) $\pi_{1}(R)=1$ for any R of M, and all S of M are divided into two nonvacuous classes, one satisfying $\pi_{1}(S)=1$ and the other satisfying $\pi_{1}(S)=2$. The multiplicity at a point of S is two or one according to $\pi_{1}(S)=1$ or 2 .

Similarly the structures obtained by exchanging R and S do also exist.
Conversely there exist R-reducible manifolds M with any one of the structures mentioned above and $\pi_{1}(M)=2$.

Proof. From Corollary of Theorem 1, $\pi_{1}(R)$ and $\pi_{1}(S)$ for any R and S
are of order one or two, because $\pi_{l}(M)=2$. Consequently we have only the following cases:
A) $\pi_{i}(R)=1$ and $\pi_{1}(S)=1$ for any R and S.
B) $\pi_{1}(R)=1$ for any R and $\pi_{1}(S)=2$ for any S.
C) $\pi_{1}(R)=1$ for any R and there exist at least two S_{1} and S_{2} such that $\pi_{l}\left(S_{1}\right)=1$ and $\pi_{1}\left(S_{2}\right)=2$.
D) There exists at least a pair R_{0} and S_{0} such that $\pi_{1}\left(R_{0}\right)=2$, and $\pi_{1}\left(\mathrm{~S}_{0}\right)=2$. Here we do not enumerate cases obtained by exchanging R and S.

The case A). By virtue of Lenma 4.1, there exists the multipicity p of M. Suppose $p \neq 2$. From Theorem 2, the affine product $\widetilde{M} \equiv R(o) \times S(o)$ is the covering space of M and let f be its covering, where $o \in M$. For a point $x \in M, f^{-1}(x)$ does not consist of two points. Hence $\pi_{1}(M) \neq 2$, so we have arrived at a contradiction. Consequently p must be two.

We shall show the existence of the case A) by an example :
Let \widetilde{R} and \widetilde{S} be r-and s-dimensional spheres respectively. For a point $\in \widetilde{R}$ let $f(y)$ be its antipodal point, and similarly, for a point $z \in \widetilde{S}$ let $f(z)$ be its antipodal point. Define the isometric map of the metric product $\widetilde{R} \times$ \widetilde{S} onto itself by

$$
(y, z) \rightarrow(f(y), f(z)) .
$$

We denote this map by f again and put $\widetilde{M} \equiv \widetilde{R} \times \widetilde{S .}$ In \widetilde{M} if we identify any point $x \in \widetilde{M}$ with $f(x)$, we get a reducible Riemannian manifold M. It follows easily that M satisfies a) of Theorem 3.

The case B). Suppose that the multiplicity at a point o is not one, and $R(o) \cap S(o)$ contains at least a point x distinct from o. We shall use notations of Lemma 4.2 and consider \widetilde{o} as a point of $f^{-1}(o)$. By virtue of $\pi_{1}(R)=1$, $f: \widetilde{R}_{0} \rightarrow R(o)$ is an equivalent map. Hence there exists one and only one point $\widetilde{x} \in \widetilde{R_{0}}$ such that $f(\widetilde{x})=x$. For a curve $\widehat{x o}$ in $S(x)$ consider a curve of $\widetilde{f^{-1}(\widetilde{x o})}$ with the initial point \widetilde{x}, then it follows that there exists a point $\widetilde{o_{2}} \in \widetilde{S}(\tilde{x)}$ such that $f\left(\widetilde{o_{2}}\right)=o$, where $\widetilde{S}(\widetilde{x})$ is the s-dimensional maximal integral manifold through \widetilde{x} of \widetilde{M}.

On the other hand, since $\widetilde{S_{0}}$ is the covering space of $S(o)$ and $\pi_{1}(S(o))$ $=2$, there exists a point $\widetilde{o_{1}} \in \widetilde{S_{0}}$ such that $f\left(\widetilde{\left.o_{1}\right)}=o\right.$, distinct from $\widetilde{\sigma_{0}}$. Hence $f^{-1}(o)$ contains at least three point $\widetilde{o}, \widetilde{o_{1}}$ and $\widetilde{o_{2}}$. This is contradictory to the fact that \widetilde{M} is the covering space of M. Consequently the multiplicity of M exists and it is one. From Lemma 4.3, M is equivalent to the affine product $R(o) \times S(o)$ and satisfies b) of Theorem 3 .

The case C). It is shown by Lemma 4.2 that the multiplicity at a point of S is two or one according to $\pi_{1}(S)=1$ or 2 . By an example, we shall show the existence of the case C). Let \widetilde{R} be the r-dimensional Euclidean space and o be a point of \widetilde{R}. Let \widetilde{S} be an s-dimensional sphere. Let $f(y)$ be
the symmetric point of $y \in \widetilde{R}$ with respect to o and $f(z)$ the antipodal point of $z \in \widetilde{S}$. Consider the metric product $\widetilde{M} \equiv \widetilde{R} \times \widetilde{S}$ and denote again by f the isometric map of \widetilde{M} onto itself, such that

$$
(y, z) \rightarrow(f(y), f(z)) .
$$

In \widetilde{M} if we identify any point $x \in \widetilde{M}$ with $f(x)$, we get a reducible Riemannian manifold M. It follows easily that M satisfies c) of Theorem 3.

The case D). By Lemma 4.2, we can show that this case does not occur.

Bibliography

[1] M. Abe, Sur la réductibilité du groupe d'holonomie, I. Les espaces à connexion affine, Proc. Imp. Acad. Tokyo, 20 (1944), 56-60.
[2] C. Chevalley, Theory of Lie groups I. Princeton Univ. Press, (1946).
[3] G. de Rham. Sur la réductibilité d'un espace de Riemann, Comment, Math. Helv., 26(1952), 328-344.
[4] S. SASAKI, A boundary value problem of some special ordinary differential equations of the second order, J. Math. Soc. Japan, 1(1949), 79-90.
[5] N. Steenrod, The topology of fibre bundles. Princeton Univ. Press, (1951).
[6] A. G. Walker, The fibring of Riemannian manifolds, Proc. London Math. Soc., third series, 3(1953), 1-19.
[7] J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math., 3 (1932), 33-42.

