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1. Introduction. In the previous paper [3], we defined Riemann-Cesdro
method of summability which includes well-known Riemann methods of
summability (R,p) and (R,). In this paper, we shall consider some Tauberian
theorems for this summability.

In terms of standard notations used by Zygmund [10; p.42] and others,
Cesaro transform of order a of 3 ax is defined by &% = s2/A% where s2 and
Ag are given by the relations

= é 2 Spx" 2 anX"
Asx® = (1 —x)~*"! and ¥yt = n=0 = m=0
E) n ( ) p— g (1 e x)a (1 _ x)““
It is well-known that A? ~#n*/Ia +1), = —1, —2,...., as n—o0. A
series is said to be evaluable (C, «) to sif ¢% — s as #— oo. In the following,
let « be a real number, not necessarily an integer, for which a« = — 1 and

oo

let p ba a positive integer. A series Ean is said to be evaluable to zero
n=1

by Riemann-Cesaro method of order p and index «, or briefly, to be evaluable

(R, p, &) to zero, if the series

w1 < o §inm‘)"
¢ Es”< nt

converges in some interval 0 < # < #, and its sum tends to zero as ¢ —0.
Under these definitions, summability (R,p, — 1) and (R, p,0) is reduced to
summability (R, p) and (R,), respectively. It is known [3] that summability
(R,p,a), when —1<a<p—1 and p =2, is regular, or more precisely,
summability (C, p —1—39), 0< 8 < 1, implies summability (R,»,«a) when
—1=Za<p—1-—3, while summability (R,1,«) is not regular when
—1l=zax.

Concerning summability (R,p), Kanno [5] proved the following
THEOREM K. ZLet p be a positive integer. Suppose that

(1.1) s8 = o(n?),
when 0 <y < B, and

< lal o
(1.2) X2 = oma,,

v=n

*) This paper is a continuation of the previous paper [3]. Cf. R.P.Agnew, Properties
of generalized definitions of limit, Bull. Amer. Math. Soc., 45 (1939),689-730.
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when 0<o<1 and 8=p(B—)/(B+1—p). Then, the series 2 Qn 1S

n=1
evaluable (R, D) to._zero.
Concerning summability (R, p, «), we shall prove the following

THEOREM 1. Let p be a positive odd integer. If the conditions (1.1) and

(1.2) are satisfied, then the series 2013 is evaluable (R,p, ) to zero when

n=1
—1=a=<0.

In this Theorem, we may replace the condition (1.1) by

n

> Is8| = olny*y).

v=1
The proof of this result runs similarly to the one of Theorem 1 in section
3. But a slight modification will be needed therein. Now, using Lemma 3
in section 2, we see that we may replace, in Theorem 1, the condition (1. 2)

by

(1.3) 2 (la,| — a,) = Ond).

v=n
Thus, Theorem 1 in this form is a generalizzd form of Sunouchi’s theorem
[8; Corollaries 1 and 2].
In our Theorem 1, if we put a = 0, then we have

o

CorROLLARY 1. If pisa posit‘z've odd integer, then the series 2 an is evaluable

n=1

(Ry) to zero under the conditions (1.1) and (1.2).

This Corollary when p = 1 was proved by Hirokawa and Sunouchi [4].
On the other hand, this was already proved by K.Kanno when he completed

the proof of Theorem K, but it was not published.
In Theorem 1, we have only the case 83>p—1. If 8<p—1, then

oo

the series 2 an is evaluable (C, 8) under the condition (1.1); hence it is also
n=1

evaluable (R, p, «). Therefore, we need a consideration for the critical case
B =p—1. In this case, we get the following

THEOREM 2. Let p be a positive odd integer. Suppose that

n

(1.4 > st = o(n”/log n)
and
(1.5) S al —a) = 0nrd)

v=n
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when 0< 8 < 1. Then the series 2 an is evaluable (R,p,a) when —1<a«
n=1

=<0.

This Theorem is a generalized form of Theorem 5 in [3], which is a
generalization of Szisz’'s Theorem [9; Theorem 7’]. On the other hand, even
if p is a positive even integer, we may prove, by the methods analogous
to the one of the proof of Theorem 2 in section 4, that

(i) the seires 2 an s evaluable (R,p) to zero under the conditions (1.4)

n=1
and (1.5),
and

(ii) the seires 2 an is evaluable (R,) to zero provided that the condition

o n=1l
(1.4) holds and 3 (|s,| —s,) = O(n?-%).
v=n
THEOREM 3. Let p be a positive integer. 1If
(1.6) st-1 = o(n?-1/(log n)+?),

when & >0, then the series 2 an is evaluable (R,p,a) when —1<a<p—1

n=1
ora=0,p=1.
In this Theorem, we may replace the condition (1.6) by
sP71 = o(n?~ ),
where Ay > 0 and SA./n converges. The proof of this result runs similarly
to the one of Theorem 3 in section 5.
THEOREM 4. Let p be a positive integer and let a be an inte@er such

that —1<a<p—1lor a=0, p=1. Then, there exists a series >, a, which

n=1

is not evaluable (R, p, ), but it satisfies the condition
(1.7) s2-1 == o(n?-1/log n).

Since the condition (1.7) implies summability (C,p — 1)of ¥ a., we have

COROLLARY 2. Lel p be a positive integer and let o be an integer such
that —1<a<p—1lora=0, p =1. Then, summability (C,p — 1) does not
necessartly imply summability (R, D, o).

Paticular case in Corollary 2 shows that summability (C,» — 1) does not
necessarily imply summability (R,p) and (R,), respectively.

On the other hand, Rajchman and Zygmund [7] proved that summability
(C,p — 1) implies approximate summability (R,p) and (R,), respectively. As
Rajchman and Zygmund defined approximate summability (R, p) in relation
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to summability (R,p), so we may define approximate summability (R,p, o)

in relation to summability (R,p,«). We shall say that a series Zan is ap-

n=1
proximately evaluable (R,p,a) to zero if there is a set E of points having
unit density at the origin such that the series

< sin nt \?
1o 2 s (*;l;'
n=1 :

converges at all points of E, and such that its sum tends to zero as £ —0
through point of E. Let p be a posive integer and let & be an integer such
that —1<a<p—1 or a=0,p=1. Then, by the method analogous to
one of the proof of Rajchman and Zygmund’s theorem, we see that sum-
mability (C,p — 1) implies approximate summability (R,p, «).

2. Preliminary Lemmas.

LEmMMA 1. Let p be a positive odd integer. Then, we have

n

@.1 (sinwt)? = O(t-1)
and -
(2.2) > (sinvt)?/v? = O(n=2t-1).

Proof is obvious from the identity
2-1 2-1

(=1 * 2r-Xsingy = sinpt — (B)sinp =D+ ... + (—1)?( )sin 2.

»
®-)1/2

LeEMMA 2. Let p be a positive integer and let A™p(nt) denote the m-th
difference of @(nt) with respect to n." Then, we have

Arp(nt) = O(n=2tm-?),
where m is a non-negative integer and ¢(t) = (sint/t)*.

This Lemma is due to Obreschkoff [6].

LEMMA 3. Let p =1 and let s3 = o(nP) when B >0. Then

(2.3) D(la| —a) = Onr-y),
when 0 < 8§ < 1, implies
(2.4) > la,| /v = O(n-?)

and conversely.

This is a generalization of Szasz's Lemma [9; Lemma 1].
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Proor. Let 0 <! < 7 and let (2.3) hold. Then, we have

n+l n+l m
Sn—Sh= 2 az— 2 (lal —a)z— 2 (lal —a)= —Cn*-.
yan+l v=n+l van

Then, by the method analogous to one of the proof of Bosanquet’s
convexity theorem [2; Theorem 6], we have s, = O(n?-%®; hence, by (2.3),

(2 5) 2 lavl = E”Chl ~—a.,)+ Sop — Sp-1 = 0(""—8)

v=r

Consequently

ok+ly g

2 na,x/»p—z S lal

v=fn
o o+,

<nr2r S al
k=0 v=2%n

= O(n“’ > 2“"’“(2’%)"“5)
k=0
o(niSe]
k=0

= 0(n™),
which is the desired inequality (2.4). The converse part is obvious. Let
(2.4) hold. Then we have (2.5) and further (2. 3).

LEMMA 4. If p is a positive integer and —1=a =<0, then we have

sinnt

H(t) = to+1 EAg 3( nt

ney

= O(p=#¢-7*1),

Proof of Lemma is analogous to the proof of Lemma 7 in [3], which
asserts that Lemma 4 is true when p = 1.

LEMMA 5. Let p be a positive integer. Then we have
A™H/(t) = O(p-ptm-p+1)
where —1 < a <0 and A"H/[t) is the m-th difference of H/t) with respect to v.
Proof is analogous to the proof of Lemma 8 in [3].
LEMMA 6. Let p be a positive odd integer and let —1<a <0. Then
Tm(t) = 2 Hi(t) = Olm-7t-?).

Proof is also similar to the proof of Lemma 9 in [3].

¥) The Author learned this result from Mr. Kenji Yano, whom the Author expresses
his hearty thanks.



18 H. HIROKAWA

LEMMA 7. Let p be a positive integer and let —1 < a <0. If sb = o(n®),
then we have

par1 2 <sm nt ) 2 suH(t).

n=1
Proor. If ¢ = —1 or a =0, then Lemma is obvious. Hence we shall
consider the case —1 < a < 0. Since

n

51 = 2 Axls,

k=1
we have
t nz_lsn nt =k28k t EAI'L—k ‘ nt
= =1 n=k

k=1
Here, we shall prove that this rearrangement is permissible. For this purpose,
it is sufficient to prove that, for fixed ¢ >0,

t““EsL 2 Ajz (smm‘) =o0(; as N— oo,

N=N+1

Since

> Az 1(““"”) = O'N-%N — k + 1%-1),

Nn=N+1

we have, using Abel's transformation and s? = o(n?),

oo

N-1 . b4
pa+1 2 S 2 As- (sm nt ) a1 23; 2 A=t (sn;:u )

k=N+1 k=1 n=XN+1

snm‘
t”'”S 2 An o1 ( 1

1=N+1 nt

N
= o<2k"N"’(N — k412 > + o(N*-N-?)

k=1
= 0o{1).
Thus, the rearrangement is permissible and Lemma is proved.

LEMMA 8. Let us put

vann=[Z - () (R

r=0
where p and q are positive integers such that @ < p. Then, for all large enough
positive integer k, there exists a positive integer m, such that

g, mk, 2m/k) = (2mk)~?,
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when m = my.

ProoFr. Let us put
— q
wp,0= Z(~1r ()a—r»
Then, we have @(p,1) =1 and @(g,q) = q!. If we suppose that @(p,q) =q!
and @(p,g+1)=(g+1)! when p=g+1, then we may prove that
@p+1,q+1)=(g+1). Hence, by. the mathematical induction, we see
that @(p,q) =q! for all p and g such that p=g=1. Thus we get

(= 1r(2) = (= 1ygtp,0) 0.

r=0

Therefore we have

lim lim (mk)¥(a, mk, 2m]k) = | 2~ 17 (2) 72| >0
r=0

k>0 m->co

Thus we have the Lemma.

3. Proof of Theorem 1. Let us put 7, = 2:=nla,,|/v, then we have

|@n| = n(#n — 7n4+1). Hence, by (1.2),
B =03 lal)=0(Z _ 7 —nru.) = 0 v1*¢) + O = O().

Therefore, from (1.1), using Dixson-Ferrer’s convexity theorem [1], we have
(3.2) sv = o(nB-n+yB) 0<v<g.
In particular, if 8 > p, then

sP = o(n(B(B-p)wp)lﬁ) = o(n®).
On 'the other hand, if 8=<p, then we have easily s = o(n?). Hence, by
Lemma 7, for the proof it is sufficient to prove that the series

oo

2 San(t)

n=1
is convergent in some interval 0 < ¢ < #, and its sum tends to zero as £ —0.
Let us write 2 =[8] + 1 and let

M+k

Zsﬂn(t) (2 + ‘ >=U+V,

n=1 n=M+k+1
where M = [(§2)~?], & being an arbitrarily fixed positive number, and
b _B+l-p
p—38 y+1—p
Using Abel's transformation, we have, from Lemma 6 and (1.2),

P___

o

V= siHit)

B=M+k+1
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2 Qn+1 2 Hy(t) + Sarsp+1 2 H,t)

n=M+k+1 v=n v=M+k

= 0<t v lauln- ) + O(t-?Me-7)

n=M
= O@~?M?-?) = O@-2(&L)®-9) = O(&).

Next, we shall prove, using the method of the proof of Theorem K,
that U = o(1). By repeated use of Abel's transformation k-times, we have
M+k

U= 2 SuH ()

n=1
M

k
= 0 SSAHAE) + 2 Sk A Hirskoyan (2)

n=1 v=1

k
=Uu+ EWV’

y=1
say, wWhere
W, = o( MPB-+VvYB . pf-2 fv-P)
= o(t.,_p_ B8 (8(.3—!/)+Yv—1’ﬁ))
= 0(1), v=12 .:.., k—1,
by Lemma 5 and (3.2), and, since st = o(n¥+Y-8),
Wy = o M*+Y =B « M-?¢h-2)
= O(Mlc-t-y—ﬁ-ptk—z))

_ o(tk—p— = (k+v—/s—p))
= o(1).
Since

ZAkﬂlsB

=1
we write U, in the form

n
= > s8> AkZB-1 AMH (1)

=1 n=p
M p+N M-N-1 w+N
p=1 t=p pm=1 7n=p+N+1 #_M2-N+1 n%l
=U, + U, —Us,
say, where IV = [t-!]. Since
N N k-8
2 A= DA = A~ ey = 00

e Pe—-p+1)



RIEMANN-CESARO METHODS OF SUMMABILITY 11 21

we have, by Lemma 5,

M w+N M
U, = 0(2 s3] 2 Ak=B1 p-» tk—zl+1> = 0<tk—zz+1.tﬂ—k Eﬂ-plsm)
=1 n=p =1

= o(t;-2+1 My-p+1) = g($B-P+D-p(=2+D) = ¢(1),
On the other hand, using Abel’s transformation in the inner sum, we have,
since A3-P-1— A% = AL

M-N-1 M
U.= 2 s8 2 AsET AHL2)
p=1 n=pyu+N+1
M-N=-1 M-1
= > sﬁ{—{ > Ak Ak—lmm+A';;B—IAE—1HNW1@)}
p=1 n=pu+N4+1

+ Ats;_ﬁ;m'c-lﬂu(t)] = U+ U,

say, pwhere
M-N-1 M-N-1

U, = 2 SﬁA’j{_ﬁ[l A1 H(2) = 0( 2 ISﬁI(M——p)*"B‘I.M“’t"“’)
=1 =1

n
= O(tk'pM'P NE-B-1 |s§|) = o(2F=+1 M1-v+1)
m=1
= o(tﬁ—9+1-p(7-p+1)) = o(1).

Since

M-1
> AR-E- AIHL(F) — AR-B-1 AR Hy,, (2
n=pu+N+1
M-1

N=p+N+1

— 0<t7c—p/l‘-p 2 n!c-B—z) + O@s-7+1 y-»)

n=N
= O(tB-7+1 4~7),
wethave, by (1.1),

M-N-1

;= 0(#r X pristl)

=1
= O(tﬂ—pﬂ My—p+1) = o(tﬂ—pﬂ—p(v—m-l)) — 0(1)

and then we have U, = o(1). Lastly we have

M p+N
n= 3w S awam
u=M-N+1 n=M+1

M m+N .
=0( PRI A{g;ﬁ-ltk—wn-r)

},,=y_N+1 Ne=M+]
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i w+N

=o(#rmr 3 s X Az
p=M-N+1 n=p
an

- O(tlc—p+1 M-? 2 lsﬁ_l'Nk'B>

u=M-N+1
— 0(t5—11+1 M-p+y+1) = O(t(ﬁ——p+1)—p(y—p+1)) = 0(1)

Thus, summing up the above estimations, we have
lim sup | ZSan(t)l = 0(e).
t>0 n=1
Since & is an arbitrary positive number, we have
Ii =
lim Eann(t) 0,

and Theorem is completely proved.

4. Proof of Theorem 2. From (1.4), we have s? = o(n?); hence, by
Lemma 3, we may replace (1.5) by (2.4), and, by Lemma 7, for the proof

of Theorem it is sufficient to prove that the series 2 spHu(t) is convergent
n=1

in some interval 0 < ¢ < ¢, and its sum tend to zero as ¢—0. Convergence
of the series follows from the estimation of V below. Let us write

3 M =

D suH(2) = (Z + > ) =U+V

n=1 n=1 n=M+1
where M = [¢"] and 78 >p. Since x? — (x — 1)? = O(x*~1), we have, using
(2.4), ss» = O(n*-%) by the method analogous to one which we obtained (3.1).
Furthermore, by Dixon and Ferrer's convexity theorem [1], using (1.4), we
get
4.1 sy = o(n@*-8r-1ip)

when 0 < v <p. Then we have, by (2.4) and Lemma 6,

V= 3 suHt)

n=M+1

= — X Gn 2 H) + 5w > HAR)

n=M+1 van v=M+1

O(t-”i (a,,l/nv) + O(M»-3-2M-)

n=M
= O@t-?M3%) = O@t"-?) = o(1).
Now, using Abel’s transformation (p — 1)-times, we have

M
U= 2 suHat)

n=l
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M-p+1 p-1
2 ATIH) + 2 S A Hip(8)
n=l v=1
-1
= UO =+ 2 Uv,

v=1

say, where, by (4.1),

U,= O(Mp -2 't" » M-» ) — O(t,_nM—s(l-%)

= ot * (=32 o(1), v=12...., p—1
Putting N = [¢-1], we write

(2+ E )=U3+UO'.

N=N+1

Then we have
N-1

= > s? APHy(t) + spA?! Hl?)

n=1

—o< + ( N1
logn °\ log N N")

= o(Nt/ + o(1) = o(1),

and putting s, = Eksl |s2-1],

oy = o > |sv—1|n-v)
n=N+1

M-1
O< 2 Su (™Y - (n + 1P + syM-? — sy (N + 1)-1’\

e N$

1l

II

n? M- _ N? B
(Elogn s +"<logM'M ")+o(10gN-N )
= oflogr) + o(1) = o(1),
and the proof of Theorem is complete.

5. Proof of Theorem 3. From (1.6), we have, for -1 < a<p—1,
s% = o(n?~1/(log n)+?).

fa+1 2 (sm nt )

converges (absolutely) for ¢ > 0. Now, let us write

tmz (S"‘”t> '(2+ 2) U+,

n=M+1

Hence the series



24 H. HIROKAWA

where M = [exp (2-")] and 76 >p. Then we have

V= o(t”‘-”"1 > n-i(log n)‘1‘5>

n=iM
= o(t*-?+1 (log M)~%) = o(t"+*-2+1) = o(1).
On the other hand, we shall prove that U = o(1). We suppose that a is not
an integer. The case that « is an integer may be easily deduced by the
following argument. Since

n
L) 2 @-D op—1
Sp = ZA"—VSV )

we have

U = to+1 é(slpfni) EA"Z’.'ZSﬁ -1
= o+l 2 so- ‘ZA (Smnt )

n

= tw+1(2 + 2 )sp— > Ax- 5(811711:1t>

v=N+1 n=y
= Ul + U'.!)

say, where N = [£-1]. Now, we see that, by the method analogous to one
which we obtained Lemma 7 and 8 in [3],

sin nt
nt

o »
Q) = =41 X Az ( = O(r-)
and

Qv(t) - Qv+1(t) = O(D—pt).

Then, we have easily U; = 0(1) and

Dll-'l

v=N+1
Thus Theorem is completely proved.

6. Proof of Theorem 4. By the repeated Abel transformation (p —
o — 1)-times, we have
m . me=—p+a+l . »
sinnt \? . A [ SIDAE
t"‘“;sﬁ:(T = go+1 z sh-l Av-@ 1<m. ‘)
-1 n=1
P-a-2
+ ta+l1 2 S:It;+l Av
v=0
where, using Lemma 2 and (1.7), for fixed ¢,
p-a-2
1%+1 2 szt;;rlA.;

v=0

sin(m + v)t \*
(m+v)t >’

p-aw-2

3 o) -

v=0

sin(m-{—u)t)
(m+v)t
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as m— . Therefore the series

. h sinnt \* - . sinnt \*
a+1 E o E -1 - -
©1 ! n=1 ° n< nt and 22! n=1 s A ( nt )

are equiconvergent for fixed £. Thus, for the proof, it is sufficient to prove
that (1.7) does not necessarily imply the convergence of the second series in
(6.1) in some interval 0 < £ < #;,. Let us write

(6.2 por1 N sp-1 Av-a-1 ( sinnf ) Zencv.(t),

n=1

where &, = s2~'log n/n?-! and ca(f) = 2%+1 1—7(1)g—-n AP-2-1 (su:z_;zt)” when n = 2.

Then we have by (1.7), & = o(1) as n— co. In order that the sequence-to-
function transformation (6.2) is convergence-preserving, by the Kojima-Schur

Theorem?, 2 |ea(t)| must be uniformly bounded in 0 < ¢ < #,. But, this series

n=2
is'divergent at some point in an arbitrary neighbourhood of origin. Let ¢ =
27r/k and let 2 be an arbitrarily fixed positive integer, but large enough.
Then we have, using Lemma 8,

2 lea(t)| = th @— Iv(p —a —1,m, )]

oy B0
>t lzlog(ku [Vip —a—1, k1)

1
=t IE’Q,,’_’;I " (kv)log (kv) ~ *

This shows that 2;2 lea(t)| is divergent at ¢ = 27/k and the transforma-
tion (6.2) is not convergence-preserving. Therefore (1.7) does not necessarily
imply the convergence of the first series in (6.1). Thus, Theorem is com-
pletely proved.
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