SUPPLEMENTS TO MY FORMER PAPER : "ON AHLFORS' DISCS THEOREM AND ITS APPLICATION"

(This Journal, vol. 8(1956), 101-107.)

KAZUO IKOMA

(Received February 20, 1961)

In my paper mentioned in the title, Ahlfors' disce theorem, and as its application, Bloch's theorem were extended to the certain family of K-pseudo-analytic functions in the sense of Grötzsch.

Now, the above theorem hold good also for the wider certain family of K-pseudoanalytic functions in the sense of Pfluger-Ahlfors¹, because the same lemmas as Lemmas 1,2 and 3 used for Ahlfors' discs theorem in the former paper² can be deduced almost similarly also for this family.

Mentioning especially the theorem of Bloch type, it is as follows.

THEOREM 1. (An extension of Bloch's theorem). Let w = f(z) be a non-constant K-pseudoanalytic function of |z| < 1 in the sense of Pfluger-Ahlfors and suppose that f(0) = 0 and $\lim_{z\to 0} |f(z)|/|z|^{1/K} = 1$, then the Riemann surface generated by w = f(z) on the w-sphere contains a schlicht spherical disc whose radius $\geq \beta > 0$, β being a constant independent of f(z).

Next, impose on f(z) the more general condition that f(0) = 0 and the finite positive $\lim_{z \to 0} |f(z)|/|z|^{\alpha}$ (α is real) exists, then there holds $1/K \leq \alpha \leq K$ as was proved in Ikoma-Shibata [1].³ In other words, the family of K-pseudo-analytic functions satisfying such condition is empty for both $\alpha < 1/K$ and $\alpha > K$.

Now, there arises, in the case $\alpha \neq 1/K$, a question whether or not. the analogous conclusion to one in the above Theorem 1 will hold good under the normal condition that f(0) = 0 and $\lim_{x \to 0} |f(z)|/|z|^{\alpha} = 1$.

This question is answered negatively as follows even for the family \mathfrak{S}^{α}

¹⁾ Such a K-pseudoanalytic function means a constant or an interior transformation w = f(z) from a domain of the z-plane into the Riemann covering surface spread over a domain of the w-plane which is a quasiconformal mapping with the maximal dilatation $\leq K$ in the sense of Pfluger-Ahlfors.

²⁾ This means the paper mentioned in the title.

³⁾ Ikoma-Shibata [1]: On distortions in certain quasiconformal mappings, to appear in Tôhoku Math. Journ., 13 (1961).

 $(\alpha \pm 1/K)$ of K-quasiconformal mappings in the sense of Grötzsch satisfying the above normal condition.

In the case $1/K < \alpha \leq 1$, take the following mapping of |z| < 1 onto $|w| < r_n$ given in $[1]^4$:

(1)
$$w = |z|^{\alpha} \{1 - (1 - r_n) |z|^{(\alpha K - 1)r_n/K(1 - r_n)}\} e^{i \arg z},$$

where $0 < r_n < 1$ and $r_n \to 0$ is $n \to \infty$, then we found that it belongs to the family \mathfrak{S}_{α} .

In the case $1 < \alpha \leq K$, consider the mapping $w = f_n(z)$ of |z| < 1 onto $|w| < r_0^{\alpha-1}$ composed of

(2)
$$\frac{r_0 s}{(1-s)^2} = \frac{z}{(1-z)^2},$$

(3)
$$t = |s|^{\alpha} e^{i \arg s},$$

(4)
$$\frac{r_0 t}{(1-t)^2} = \frac{r_0^{\alpha-1} w}{(r_0^{\alpha-1} - w)^2},$$

where $r_0 = 4rn/(n+r)^2$ (n = 1, 2,) and r is fixed arbitrarily in the open interval (0, 1), then obviously it belongs to \mathfrak{S}_{α} .

By making $n \to \infty$ in each case, it is immediately seen that there exists no so-called Bloch's constant for \mathfrak{S}_{α} ($\alpha \neq 1/K$).

From the above results, we can state the following

THEOREM 2. (A precision of Theorem 1). For the family of non-constant K-pseudoanalytic functions w = f(z) of |z| < 1 in the sense of Pfluger-Ahlfors satisfying that f(0) = 0 and $\lim_{z\to 0} |f(z)|/|z|^{\alpha} = 1$, where α is real, there exists the so-called Bloch's constant if and only if $\alpha = 1/K$. Further, if $|\alpha \neq 1/K$, then there exists no Bloch's constant even for the family \mathfrak{S}_{α} .

DEPARTMENT OF MATHEMATICS, YAMAGATA UNIVERSITY.

372

⁴⁾ Ikoma-Shibata, loc. cit. 3).