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Introduction. A study of crossed products of rings of operators [4]
shows that any countably infinite group is isomorphic to a group of outer
automorphisms of an approximately finite factor on a separable Hilbert
space. Combining the discussions in [4] with those in [3] we obtain the fol-
lowing result.

THEOREM. Any countably infinite group is isomorphic to a group of
outer automorphisms of a certain factor of type IIl on a separable Hilbert
space.

The purpose of this paper is to prove this theorem together with the
theorem of N. Suzuki [4]. In this paper, an automorphism of a factor means a
*.automorphism, and a group of outer automorphisms of a factor is a group
of automorphisms all of which are outer automorphisms except the unit.

1. The construction of a factor of type III which contains a singu-
lar maximal abelian subring. Let G be a given countably infinite group.
Let A be the set of all functions a on G such that a(g) = 1 on a finite subset
of G, and = 0 elsewhere. Defining for @, 8 € A the addition a + 8 by [a
+ B1(9) = alg) + B(g) (mod 2), we make A into a group with the unit 0:0(g)
=0 for all g € G. Let A" be the set of all functions @ on A such that @(a)
=1 on a finite subset of A, and = 0 elsewhere. A" is a group with addition:
[@ + ¥I(a) = pla) + ¥(a) (mod 2) for @,V € A’ The unit element of A’
is the function 0:0(a) = 0 for all a € A,

For each a € A, we associate the measure space (X, Sa, #,), where X
consists of two points 0 and 1, S, consists of all subsets of X,, #.({0}) =p,
#a({1})) =¢q, and ¢ = >0, p+ g = 1. We construct the infinite product mea-
sure space (X, S, u) of (X,, S,, #,)sea. Then a point x € X is a function on A
which takes values 0, 1 only, and so A" is a subgroup of X when X is consi-
dered as an additive group. Let H = L,(X, S, #) and the multiplication algebra.
on H be denoted by A and an element of A corresponding to a function
a € L.(X,S, u) will be written by a.

For a € A, @ € A" and g € G, we define one-to-one mappings = —> z%,
x— z% and £ — z° of X onto itself as follows:
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z*(y) = zla + v),
z2(y) = a(7) + @(y) (mod 2),
z(y) = 2(v),
where 7’ is defined by ¥’(h) = y(gh), and ¢~' is the inverse of g.

Using the above mappings, we define operators a% a’ € A for each a€A,

ac€ i gl by
[a"fXx) = a(z")f ()
[a°f A z) = a(2*)f(x) for all £ € H.

Let (A",A) be the set of all pairs (@, a), ¢ € A, a € A. For each (@, a)
€ (A, A) we associate a one-to-one mapping z — z%® of X onto itself,
defined by

() =2la+v)+ olv) (z€X).
For an a€A and a ¢ €A’ we define an element @*€ A’ by @*(y) = o(a + 7).
Then, as [z@P]¥® = zwP+i.a48 for (@,a), (¥,B) € (A',4), (A’,4) is a group
by the law of composition (@, a)(¥, B) = (¢* + ¥, a + B). In fact,
(@, @)0,0) = (0, 0X@, @) = (@, @)
(@, a)@*, a) = (9%, a)e, a) = (0,0).
This group will be denoted by &.

For a€ A, a € A and @ € A" we define operators A, U, and U, on the

Hilbert space H [,(®) as follows: For F(x, (¥, B)) € HR(®)
[AF)(z, (¥, B)) = a(x)F (z, (¥, B)),
[U“F](x3 (‘\I’: B)) = F(xw’ (‘,” 18) (O’ a)),

d, | T
[UF X, (. 8) = |5 @) | B, (b, )Xo, 00,

where p,(E)= w(Ep) and Ep = {z¢|x € E} for any E € S. Here we note the
following fact: For any @ € A,

duy (P T
e () H( >

@eA q
and thus if p=¢g = %, ‘Zf () = 1.

It is easily seen that A is a bounded operator for each ¢ € A and U,,.

*) By Corollary of Lemma 3 in [4] u is quasi-invariant under 4’, that is, u(E) = 0 for
EeS implies u(Ep)=0 for all p€4’. Hence g, is absolutely continuous with respect to u.
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U, are unitary operators for all @ € A, @ € A',
LEMMA 1. For each a € A, a € A and ¢ € &', we have
UAU, = A* U,AU, = A% U,U,U, = Uye,
where A¥(resp. A%) is an operator on H & 1,(®) corresponding to a* (resp.
a¥) on H.
PROOF. For F € HQ) 1,(®), we have
[UsAUF)(z, (¥, B)) = [AUFI(z", (¥, B)0, a))
= a(z")Ua F1(z*, (¥, B)(0, a))
= a(z*)F(z, (¥, B)) = [A"F Xz, (¥, B)),

du, T
(U, AUF Xz, (b, B) = | "5, (@) | TAUF a2 (¥, 8o, O))

4 q,
= [ % ) e (@) [ sty (9 8)
= [AF . (¥, 8),

!becauseﬁ (x)f!'u—“’ (%) = 1 except for a set of p-measure 0, and

du du

du, 1,
[UUUF Xz 0, ) = | 8 2| F”, o, 89 0)

dﬂ: —} @
=[5 @[ FE", (b, BXe", )
= [UsF 1z, (¥, B)).
Put Uy = UsU, for each (p,a) € . Then we get the following

lemma.
LEMMA 2. For each (p,a),({,B) € ©,
UpaUwp = Ugmus [Uwal’ = Uga
PROOF. Uy, oyUq sy =U,U,UgUy = UsUgUsU,UsUy
= UaspULUy = UaspUpfry = Uiy urm
= U,arw.p)>
and [Uy.al™ = UU, = UUUUs = UsUy* = U0y = Uy~
If ¢g>p>0, 6 is free, ergodic and non-measurable in the sense of [2]
(cf. [3: Lemma 9]), and if p=g¢ = —;~, & is free, ergodic and measurable
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since, in this case # is Lebesgue measure on [0.1]. Hence, employing [1:
Lemma 5.2.2] and [4: Lemma 1] we have

LEMMA 3. Let M be the ring of operators generated by A (a € A) and
U,y (@, ) € ). Then M is either a factor of type Il or a factor of type
II, according as either ¢ > p>0 or p=q = é—. In the latter case, M is

an approximately finite factor since & is locally finite.

2. The proof of the theorem. First we observe that the subalgebra
P &M generated by Uga (@ € A) is a singular maximal abelian subalgebra
of M, i.e. the subalgebra of M generated by the unitary operators U € M
satisfying U P U* & P coincides with P. In fact, A is an abelian group and
hence the discussion in the proof of [3: Theorem 2] is directly applicable, and
the conclusion for P is obtained.

For each g € G we define a one-to-one mapping of A’ onto itself @—>¢@’
by @°(v) = @(y?7?). The element (¢, ¥") (@, @) € &, g9 € G) will be denoted by
(@, @)’ shortly. Using these we define the unitary operator U, on H ) 7,(®)
for each g € G by

[UFlx, (¥, B)) = F(z’, (¥, B)").
Then the following lemma is obtained.
LEMMA 4. For (p,a) € &, g € G and a € A we have
UptU Uy = Ugpayr, U,m1AU, = A°
where A° is defined by [A°F )z, (¥, B)) =a(x" HF (x, (¥,B)) for FEH &I,(®).
PROOF. For F € HK) 1,(®), we have
(U, AU Flx, (¥, B) = [AUFX"", (¥, BY ™)
= a(z" NUF =, (¥, 8)™)
= a(a’ F (z, (¥, B) = [A’F 1z, (¥, B)),

and the second equality is proved.
To prove the first equality, we show at first that for each z € X, g € G,
ach geAand (¥,8) €6,

(")) = ztea?,
(¥, By (@, @) = (¥, BYp, @)’.
In fact, v
(@) () = (@) &™) = @) ™) + @)
=2 (a+97) + @'(v) = 2(@ + v) + ()
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= z@a)(y),
and
(¥, B8 (@, @) = (¥ 7) + @,87 +a) =((¥7)) +¢,8+a’)
=W + @', 8 + a’) = (¥, 8)(¢’, &)
= (¥, B)e, a)’.

Using these relations we obtain

[Ue-U,yUoF Xz, (¥, 3))
d @ —1 T 1 .
=[G @ TRy, @8 (9, @)

dpy’ T 4
=[ ;ﬂ (xw)] F(z’, (¥, B)@, @)

= [Utp,ayFI(z, (¥, B)).
for F € HR 1,(®), and thus we get
UirUcp, Uy = Utg,ay’-
From Lemma 4 we have

LEMMA 5. The mapping 9— U, (g € G) is a faithful unitary represen-
tation of G on HQ) 1,(®) and the mapping T — U,TU, (T € M) defines
an automorphism of M.

PROOF OF THE THEOREM. It is sufficient to show that for each ¢ € G,
g+ e, the unit of G, the mapping T — Uy TU, (T € M) defines an outer
automorphism of M. Suppose that there is a g € G such that the mapping
T — U,+TU, defines an inner automorphism of M. Then there exists a unitary
operator U € M, and

U™'TU = UTU, for all T € M.

In particular we get
U_IU(o,a)U = U UpayU, = Upan € P for all a € A,
Hence, by the singularity of P, U € P and (0, @) = (0, &) for all a € A,
Thus a=a’ for all a € A and g =e Therefore T — UTUL(T € M)

defines an outer automorphism of M for each g € G, g=e, and the proof
is completed.
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