ON A REPRESENTATION OF A COUNTABLY INFINITE GROUP

TEISHIRÔ SAITÔ

(Received, November 27, 1960)

Introduction. A study of crossed products of rings of operators [4] shows that any countably infinite group is isomorphic to a group of outer automorphisms of an approximately finite factor on a separable Hilbert space. Combining the discussions in [4] with those in [3] we obtain the following result.

THEOREM. Any countably infinite group is isomorphic to a group of outer automorphisms of a certain factor of type III on a separable Hilbert space.

The purpose of this paper is to prove this theorem together with the theorem of N. Suzuki [4]. In this paper, an automorphism of a factor means a *-automorphism, and a group of outer automorphisms of a factor is a group of automorphisms all of which are outer automorphisms except the unit.

1. The construction of a factor of type III which contains a singular maximal abelian subring. Let G be a given countably infinite group. Let Δ be the set of all functions α on G such that $\alpha(g) = 1$ on a finite subset of G, and = 0 elsewhere. Defining for α , $\beta \in \Delta$ the addition $\alpha + \beta$ by $[\alpha + \beta](g) = \alpha(g) + \beta(g) \pmod{2}$, we make Δ into a group with the unit 0:0(g) = 0 for all $g \in G$. Let Δ' be the set of all functions φ on Δ such that $\varphi(\alpha) = 1$ on a finite subset of Δ , and = 0 elsewhere. Δ' is a group with addition: $[\varphi + \psi](\alpha) = \varphi(\alpha) + \psi(\alpha) \pmod{2}$ for $\varphi, \psi \in \Delta'$. The unit element of Δ' is the function $0:0(\alpha) = 0$ for all $\alpha \in \Delta$.

For each $\alpha \in \Delta$, we associate the measure space $(X_{\alpha}, \mathbf{S}_{\alpha}, \mu_{\alpha})$, where X_{α} consists of two points 0 and 1, \mathbf{S}_{α} consists of all subsets of $X_{\alpha}, \mu_{\alpha}(\{0\}) = p$, $\mu_{\alpha}(\{1\}) = q$, and $q \geq p > 0$, p + q = 1. We construct the infinite product measure space (X, \mathbf{S}, μ) of $(X_{\alpha}, \mathbf{S}_{\alpha}, \mu_{\alpha})_{\alpha \in \Delta}$. Then a point $x \in X$ is a function on Δ which takes values 0, 1 only, and so Δ' is a subgroup of X when X is considered as an additive group. Let $\mathbf{H} = L_2(X, \mathbf{S}, \mu)$ and the multiplication algebra on \mathbf{H} be denoted by \mathbf{A} and an element of \mathbf{A} corresponding to a function $a \in L_{\infty}(X, \mathbf{S}, \mu)$ will be written by a.

For $\alpha \in \Delta$, $\varphi \in \Delta'$ and $g \in G$, we define one-to-one mappings $x \to x^{\alpha}$, $x \to x^{\varphi}$ and $x \to x^{\varphi}$ of X onto itself as follows:

$$egin{aligned} &x^{lpha}(m{\gamma}) = x(m{lpha} + m{\gamma}), \ &x^{arphi}(m{\gamma}) = x(m{\gamma}) + m{arphi}(m{\gamma}) \pmod{2}, \ &x^{arphi}(m{\gamma}) = x(m{\gamma}^{arphi^{-1}}), \end{aligned}$$

where γ^{a} is defined by $\gamma^{a}(h) = \gamma(gh)$, and g^{-1} is the inverse of g.

Using the above mappings, we define operators $a^{\alpha}, a^{\varphi} \in \mathbf{A}$ for each $a \in \mathbf{A}$, $\alpha \in \Delta, \varphi \in \Delta'$ by

$$[a^{\alpha}f](x) = a(x^{\alpha})f(x)$$

$$[a^{\varphi}f](x) = a(x^{\varphi})f(x) \qquad \text{for all } f \in \mathbf{H}.$$

Let (Δ', Δ) be the set of all pairs $(\varphi, \alpha), \varphi \in \Delta', \alpha \in \Delta$. For each $(\varphi, \alpha) \in (\Delta', \Delta)$ we associate a one-to-one mapping $x \to x^{(\varphi, \alpha)}$ of X onto itself, defined by

$$x^{(\varphi,\alpha)}(\gamma) = x(\alpha + \gamma) + \varphi(\gamma) \qquad (x \in X).$$

For an $\alpha \in \Delta$ and a $\varphi \in \Delta'$ we define an element $\varphi^{\alpha} \in \Delta'$ by $\varphi^{\alpha}(\gamma) = \varphi(\alpha + \gamma)$. Then, as $[x^{(\varphi,\beta)}]^{(\psi,\alpha)} = x^{(\varphi^{\beta}+\psi,\alpha+\beta)}$ for (φ,α) , $(\psi,\beta) \in (\Delta',\Delta)$, (Δ',Δ) is a groupby the law of composition $(\varphi,\alpha)(\psi,\beta) = (\varphi^{\beta} + \psi, \alpha + \beta)$. In fact,

$$(\boldsymbol{\varphi}, \boldsymbol{\alpha})(0, 0) = (0, 0)(\boldsymbol{\varphi}, \boldsymbol{\alpha}) = (\boldsymbol{\varphi}, \boldsymbol{\alpha})$$

 $(\boldsymbol{\varphi}, \boldsymbol{\alpha})(\boldsymbol{\varphi}^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}) = (\boldsymbol{\varphi}^{\boldsymbol{\alpha}}, \boldsymbol{\alpha})(\boldsymbol{\varphi}, \boldsymbol{\alpha}) = (0, 0).$

This group will be denoted by .

For $a \in \mathbf{A}$, $\alpha \in \Delta$ and $\varphi \in \Delta'$ we define operators A, U_{α} and U_{φ} on the Hilbert space $\mathbf{H} \otimes l_2(\mathfrak{G})$ as follows: For $F(x, (\Psi, \beta)) \in \mathbf{H} \otimes l_2(\mathfrak{G})$

$$\begin{split} & [AF](x, (\boldsymbol{\psi}, \boldsymbol{\beta})) = a(x)F(x, (\boldsymbol{\psi}, \boldsymbol{\beta})), \\ & [U_{\alpha}F](x, (\boldsymbol{\psi}, \boldsymbol{\beta})) = F(x^{x}, (\boldsymbol{\psi}, \boldsymbol{\beta}) (0, \boldsymbol{\alpha})), \\ & [U_{\varphi}F](x, (\boldsymbol{\psi}, \boldsymbol{\beta})) = \left[\frac{d\mu_{\varphi}}{d\mu}(x)\right]^{\frac{1}{2}*}F(x^{\varphi}, (\boldsymbol{\psi}, \boldsymbol{\beta})(\boldsymbol{\varphi}, 0)), \end{split}$$

where $\mu_{\varphi}(E) = \mu(E\varphi)$ and $E\varphi = \{x^{\varphi} | x \in E\}$ for any $E \in S$. Here we note the following fact: For any $\varphi \in \Delta'$,

$$\frac{d\mu_{\varphi}}{d\mu}(x) = \prod_{\alpha \in \Delta} \left(\frac{p}{q}\right)^{(x(\alpha)-1/2)\varphi(\alpha)}$$

and thus if $p = q = \frac{1}{2}, \frac{d\mu_{\varphi}}{d\mu}(x) = 1.$

It is easily seen that A is a bounded operator for each $a \in \mathbf{A}$ and $U_{a,.}$

269

^{*)} By Corollary of Lemma 3 in [4] μ is quasi-invariant under Δ' , that is, $\mu(E) = 0$ for $E \in \mathbf{S}$ implies $\mu(E_{\varphi}) = 0$ for all $\varphi \in \Delta'$. Hence μ_{φ} is absolutely continuous with respect to μ_{\bullet} .

T. SAITÔ

 U_{φ} are unitary operators for all $\alpha \in \Delta, \varphi \in \Delta'$.

LEMMA 1. For each $a \in \mathbf{A}$, $\alpha \in \Delta$ and $\varphi \in \Delta'$, we have

 $U_{\alpha}AU_{\alpha} = A^{\alpha}, \ U_{\varphi}AU_{\varphi} = A^{\varphi}, \ U_{\alpha}U_{\varphi}U_{\alpha} = U_{\varphi}^{\alpha},$

where $A^{\alpha}(resp. A^{\varphi})$ is an operator on $\mathbf{H} \otimes l_2(\mathfrak{G})$ corresponding to a^{α} (resp. a^{φ}) on \mathbf{H} .

PROOF. For $F \in \mathbf{H} \otimes l_2(\mathfrak{G})$, we have

$$\begin{split} [U_{\alpha}AU_{\alpha}F](x,(\psi,\beta)) &= [AU_{\alpha}F](x^{\alpha},(\psi,\beta)(0,\alpha)) \\ &= a(x^{\alpha})[U_{\alpha}F](x^{\alpha},(\psi,\beta)(0,\alpha)) \\ &= a(x^{\alpha})F(x,(\psi,\beta)) = [A^{\alpha}F](x,(\psi,\beta)), \\ [U_{\varphi}AU_{\varphi}F](x,(\psi,\beta)) &= \left[\frac{d\mu_{\varphi}}{d\mu}(x)\right]^{\frac{1}{2}}[AU_{\varphi}F](x^{\varphi},(\psi,\beta)(\varphi,0)) \\ &= \left[\frac{d\mu_{\varphi}}{d\mu}(x)\frac{d\mu_{\varphi}}{d\mu}(x^{\varphi})\right]^{\frac{1}{2}}a(x^{\varphi})F(x,(\psi,\beta)) \\ &= [A^{\varphi}F](x,(\psi,\beta)), \end{split}$$

because $\frac{d\mu_{\varphi}}{d\mu}(x)\frac{d\mu_{\varphi}}{d\mu}(x^{\varphi}) = 1$ except for a set of μ -measure 0, and

$$\begin{split} [U_{\alpha}U_{\varphi}U_{\alpha}F](x,(\boldsymbol{\psi},\boldsymbol{\beta})) &= \left[\frac{d\mu_{\varphi}}{d\mu}(x^{\alpha})\right]^{\frac{1}{2}}F(x^{\varphi^{\alpha}},(\boldsymbol{\psi},\boldsymbol{\beta})(\boldsymbol{\varphi}^{\alpha},0))\\ &= \left[\frac{d\mu_{\varphi^{\alpha}}}{d\mu}(x)\right]^{\frac{1}{2}}F(x^{\varphi^{\alpha}},(\boldsymbol{\psi},\boldsymbol{\beta})(\boldsymbol{\varphi}^{\alpha},0))\\ &= [U_{\varphi^{\alpha}}F](x,(\boldsymbol{\psi},\boldsymbol{\beta})). \end{split}$$

Put $U_{(\varphi,\alpha)} = U_{\alpha}U_{\varphi}$ for each $(\varphi, \alpha) \in \mathfrak{G}$. Then we get the following lemma.

LEMMA 2. For each $(\varphi, \alpha), (\psi, \beta) \in \mathfrak{G},$ $U_{(\varphi, \alpha)}U_{(\psi, \beta)} = U_{(\varphi, \alpha)(\psi, \beta)}, [U_{(\varphi, \alpha)}]^{-1} = U_{(\varphi, \alpha)}^{-1}.$ PROOF. $U_{(\varphi, \alpha)}U_{(\psi, \beta)} = U_{\alpha}U_{\varphi}U_{\beta}U_{\psi} = U_{\alpha}U_{\beta}U_{\beta}U_{\varphi}U_{\beta}U_{\psi}$ $= U_{\alpha+\beta}U_{\varphi}^{\beta}U_{\psi} = U_{\alpha+\beta}U_{\varphi}^{\beta}{}_{+\psi} = U_{(\varphi}^{\beta}{}_{+\psi,\alpha+\beta)}$ $= U_{(\varphi, \alpha)(\psi, \beta)},$

and $[U_{(\varphi,\alpha)}]^{-1} = U_{\varphi}U_{\alpha} = U_{\alpha}U_{\alpha}U_{\varphi}U_{\alpha} = U_{\alpha}U_{\varphi^{\alpha}} = U_{(\varphi^{\alpha},\alpha)} = U_{(\varphi,\alpha)}^{-1}.$

If q > p > 0, \mathfrak{G} is *free*, *ergodic* and *non-measurable* in the sense of [2] (cf. [3: Lemma 9]), and if $p = q = \frac{1}{2}$, \mathfrak{G} is *free*, *ergodic* and *measurable*

270

since, in this case μ is Lebesgue measure on [0.1]. Hence, employing [1: Lemma 5.2.2] and [4: Lemma 1] we have

LEMMA 3. Let **M** be the ring of operators generated by $A \ (a \in \mathbf{A})$ and $U_{(\varphi,\alpha)} \ ((\varphi,\alpha) \in \mathfrak{G})$. Then **M** is either a factor of type III or a factor of type II₁ according as either q > p > 0 or $p = q = \frac{1}{2}$. In the latter case, **M** is an approximately finite factor since \mathfrak{G} is locally finite.

2. The proof of the theorem. First we observe that the subalgebra $\mathbf{P} \subseteq \mathbf{M}$ generated by $U_{(0,\alpha)}$ ($\alpha \in \Delta$) is a singular maximal abelian subalgebra of \mathbf{M} , i.e. the subalgebra of \mathbf{M} generated by the unitary operators $U \in \mathbf{M}$ satisfying $U \mathbf{P} U^* \subseteq \mathbf{P}$ coincides with \mathbf{P} . In fact, Δ is an abelian group and hence the discussion in the proof of [3: Theorem 2] is directly applicable, and the conclusion for \mathbf{P} is obtained.

For each $g \in G$ we define a one-to-one mapping of Δ' onto itself $\varphi \rightarrow \varphi''$ by $\varphi'(\gamma) = \varphi(\gamma'')$. The element $(\varphi', \gamma')((\varphi, \alpha) \in \mathfrak{G}, g \in G)$ will be denoted by $(\varphi, \alpha)''$ shortly. Using these we define the unitary operator U_{σ} on $\mathbf{H} \otimes l_2(\mathfrak{G})$ for each $g \in G$ by

$$[U_g F](x, (\boldsymbol{\psi}, \boldsymbol{\beta})) = F(x^g, (\boldsymbol{\psi}, \boldsymbol{\beta})^g).$$

Then the following lemma is obtained.

LEMMA 4. For $(\varphi, \alpha) \in \mathfrak{G}$, $g \in G$ and $a \in \mathbf{A}$ we have

$$U_{g^{-1}}U_{(\varphi, \alpha)}U_{g} = U_{(\varphi, \alpha)^{g}}, \quad U_{g^{-1}}AU_{g} = A^{g}$$

where A^{g} is defined by $[A^{g}F](x,(\psi,\beta)) = a(x^{g^{-1}})F(x,(\psi,\beta))$ for $F \in \mathbf{H} \otimes l_{2}(\mathfrak{G})$.

PROOF. For $F \in \mathbf{H} \otimes l_2(\mathfrak{G})$, we have

$$egin{aligned} & [U_{g^{-1}}AU_{g}F](x,(oldsymbol{\psi},oldsymbol{eta})) = [AU_{g}F](x^{g^{-1}},(oldsymbol{\psi},oldsymbol{eta})^{g^{-1}}) \ & = a(x^{g^{-1}})[U_{g}F](x^{g^{-1}},(oldsymbol{\psi},oldsymbol{eta})_{g^{-1}}) \ & = a(x^{g^{-1}})F(x,(oldsymbol{\psi},oldsymbol{eta})) = [A^{g}F](x,(oldsymbol{\psi},oldsymbol{eta})), \end{aligned}$$

and the second equality is proved.

To prove the first equality, we show at first that for each $x \in X$, $g \in G$, $\alpha \in \Delta$, $\varphi \in \Delta'$ and $(\psi, \beta) \in \mathfrak{G}$,

$$egin{aligned} &(((x^{g^{-1}})^{lpha})^{arphi})^{arphi}=x^{(arphi,\, lpha)eta}, \ &((oldsymbol{\psi},oldsymbol{eta})_{g^{-1}}(arphi, lpha))^{arphi}=(oldsymbol{\psi},oldsymbol{eta})(arphi, lpha)^{arphi}. \end{aligned}$$

In fact,

$$(((x^{g^{-1}})^{lpha})^{arphi})^{arphi}(oldsymbol{\gamma}) = ((x^{g^{-1}})^{lpha})^{arphi}(oldsymbol{\gamma}^{g^{-1}}) = (x^{g^{-1}})^{lpha}(oldsymbol{\gamma}^{g^{-1}}) + oldsymbol{arphi}(oldsymbol{\gamma}^{g^{-1}}) = x^{g^{-1}}(lpha + oldsymbol{\gamma}^{g^{-1}}) + oldsymbol{arphi}^{arphi}(oldsymbol{\gamma}) = x(lpha^{arphi} + oldsymbol{\gamma}) + oldsymbol{arphi}^{arphi}(oldsymbol{\gamma})$$

 $=x^{(\varphi,\alpha)^g}(\gamma),$

and

$$egin{aligned} &((oldsymbol{\psi},oldsymbol{eta})^{g^{-1}}(oldsymbol{arphi},lpha))^{g} = ((oldsymbol{\psi}^{g^{-1}})^{lpha}+oldsymbol{arphi},oldsymbol{eta}+lpha)^{g} = (((oldsymbol{\psi}^{g^{-1}})^{lpha})^{g}+oldsymbol{arphi},oldsymbol{eta}+lpha^{g}) \ &= (oldsymbol{\psi}^{lpha g}+oldsymbol{arphi}^{g},oldsymbol{eta}+lpha^{g}) = (oldsymbol{\psi},oldsymbol{eta})(oldsymbol{arphi}^{g},lpha^{g}) \ &= (oldsymbol{\psi},oldsymbol{eta})(oldsymbol{arphi},lpha)^{g}. \end{aligned}$$

Using these relations we obtain

$$\begin{split} & [U_{g^{-1}}U_{(\varphi,\alpha)}U_gF](x,(\psi,\beta)) \\ & = \left[\frac{d\mu_{\varphi}}{d\mu}\left((x^{g^{-1}})^{\alpha}\right)\right]^{\frac{1}{2}}F((((x^{g^{-1}})^{\alpha})^{\varphi})^{\theta},\ ((\psi,\beta)^{g^{-1}}(\varphi,\alpha))^{\theta}) \\ & = \left[\frac{d\mu_{\varphi}^{g}}{d\mu}\left(x^{\alpha\theta}\right)\right]^{\frac{1}{2}}F(x^{(\varphi,\alpha)^{\theta}},(\psi,\beta)(\varphi,\alpha)^{\theta}) \\ & = [U_{(\varphi,\alpha)}{}^{g}F](x,(\psi,\beta)). \end{split}$$

for $F \in \mathbf{H} \otimes l_2(\mathfrak{G})$, and thus we get

$$U_{g-1}U_{(\varphi,\alpha)}U_g = U_{(\varphi,\alpha)}^g.$$

From Lemma 4 we have

LEMMA 5. The mapping $g \to U_{\mathfrak{g}}$ $(g \in G)$ is a faithful unitary representation of G on $\mathbf{H} \otimes l_2(\mathfrak{G})$ and the mapping $T \to U_{\mathfrak{g}^{-1}}TU_{\mathfrak{g}}$ $(T \in \mathbf{M})$ defines an automorphism of \mathbf{M} .

PROOF OF THE THEOREM. It is sufficient to show that for each $g \in G$, $g \neq e$, the unit of G, the mapping $T \to U_{g^{-1}}TU_g$ ($T \in \mathbf{M}$) defines an outer automorphism of \mathbf{M} . Suppose that there is a $g \in G$ such that the mapping $T \to U_{g^{-1}}TU_g$ defines an inner automorphism of \mathbf{M} . Then there exists a unitary operator $U \in \mathbf{M}$, and

$$U^{-1}TU = U_{g-1}TU_g$$
 for all $T \in \mathbf{M}$.

In particular we get

$$U^{-1}U_{(0,\alpha)}U = U_{q-1}U_{(0,\alpha)}U_q = U_{(0,\alpha^q)} \in \mathbf{P}$$
 for all $\alpha \in \Delta$.

Hence, by the singularity of **P**, $U \in \mathbf{P}$ and $(0, \alpha) = (0, \alpha'')$ for all $\alpha \in \Delta$. Thus $\alpha = \alpha''$ for all $\alpha \in \Delta$ and g = e. Therefore $T \to U_{g-1}TU_g(T \in \mathbf{M})$ defines an outer automorphism of **M** for each $g \in G$, $g \neq e$, and the proof is completed.

REFERENCES

 F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. of Math., 44 (1943), 716-808.

272

- [2] J. VON NEUMANN, On rings of operators III, Ann. of Math., 41 (1940), 94-161.
 [3] L. PUKANSZKY, Some examples of factors, Publicationes Mathematicae, Debrecen, 4 (1955), 135-156. [4] N. SUZUKI, A linear representation of a countably infinite group, Proc. Japan Acad.,
- 34 (1958), 575-579.

MATHEMATICAL INSTITTUE, TOHOKU UNIVERSITY.