ON DISTORTIONS IN CERTAIN QUASICONFORMAL MAPPINGS

KAZUO IKOMA AND KÊICHI SHIBATA

(Received October 21, 1960)

Let w = f(z) be a quasiconformal mapping of |z| < 1 into the w-plane in the sense of Pfluger-Ahlfors, whose maximal dilatation is not greater than a finite constant $K(\geq 1)$, then it will be simply referred to a K-QC mapping in |z| < 1.

First, we formulate, in §1, a theorem producing Schwarz-Pfluger's theorem [5], next determine in §2 the range of a real number α such that there is no positive finite $\lim_{z\to 0} |f(z)|/|z|^{\alpha}$ for any K-QC mapping w = f(z) in |z| < 1 satisfying f(0) = 0, and finally in §3, we establish, as applications, some distortion theorems supplementing completely our preceding results [3].

1. A.Pfluger [5] reported that for any K-QC mapping w = f(z) of |z| < 1onto |w| < 1 with the limit $\lim_{z \to 0} |f(z) - f(0)|/|z|^{1/K} = c$, $c \le 1 - |f(0)|^2 \le 1$ holds and c = 1 arises when $w = f(z) = e^{i\phi}z|z|^{(1/K)-1}$.

Now, we prove the following theorem producing the above Pfluger's result, and state its corollary.

THEOREM 1. Let w = f(z) be a K-QC mapping of |z| < 1 onto |w| < 1 such that f(0) = 0. If $\alpha \leq 1/K$, then there holds

$$\liminf_{z\to 0} |f(z)|/|z|^{\alpha} \leq 1,$$

where the equality holds only if $f(z) = e^{i\phi} |z|^{1/K} e^{i \arg z}$ with a real constant ϕ .

PROOF. Denote by L(r) and A(r) respectively the length and the area of the images of |z| = r and |z| < r under w = f(z). Then we have for almost all $r \in (0, 1)$,

$$L(r) = \int_0^{2\pi} \left| \frac{\partial f(re^{i\theta})}{r\partial \theta} \right| r \ d\theta,$$

and for arbitrary r, r' such that 0 < r < r' < 1,

$$A(r') - A(r) \ge \int_0^{2\pi} \int_r^{r'} J[f(re^{i\theta})] r d\theta dr,$$

where J[f] means the Jacobian of f.

By using Schwarz's inequality and the well known formula $|\partial f(re^{i\theta})/r\partial \theta|$

 $\leq KJ[f(re^{i\theta})]$ valid for almost all $z = re^{i\theta}$ in |z| < 1, we can obtain

$$rac{dA(r)}{dr} \ge rac{[L(r)]^2}{2\pi r K}.$$

Applying the isoperimetric inequality $[L(r)]^2 \ge 4\pi A(r)$, it follows that

$$\frac{dA(r)}{dr} \ge \frac{2A(r)}{rK}$$

From this, we see easily for almost all $r \in (0, 1)$,

$$\frac{d}{dr} \left\{ A(r)/r^{2/K} \right\} \ge 0.$$

Since A(r) is an increasing function of r, it is shown immediately by Vallée Poussin's theorem that $A(r)/r^{2/K}$ is a non-decreasing function of r, therefore we have

$$A(r)/\pi r^{2/K} \leq 1.$$

Put $\min_{|z|=r<1} |f(z)| = m(r)$, then it is evident from f(0) = 0 that $\pi \{m(r)\}^2 \leq A(r)$, hence we obtain

$$\lim_{z \to 0} \inf_{r \to 0} |f(z)|/|z|^{lpha} \leq \liminf_{z \to 0} |f(z)|/|z|^{1/K} \ = \lim_{r \to 0} \inf_{r \to 0} m(r)/r^{1/K} \leq \liminf_{r \to 0} \inf_{r \to 0} |A(r)/\pi r^{2/K}|^{1/2} \leq 1.$$

Next, if $\lim_{z\to 0} \inf |f(z)|/|z|^{\alpha} = 1$, then obviously $A(r) = \pi r^{2/K}$ holds. This implies that the image contour L_r of |z| = r by w = f(z) is a circle with radius $r^{1/K}$ lying in |w| < 1. After some computations using the cross ratio, it can be asserted that the modulus of the annular domain bounded by L_r and |w| = 1 is not larger than $\log (1/r^{1/K})$ and its modulus equals to the maximum $\log (1/r^{1/K})$ if and only if the center of L_r coincides with w = 0. On the other hand, by a well known property of a K-QC mapping, the modulus of the image of r < |z| < 1 under any K-QC mapping is not less than $\log (1/r^{1/K})$. Hence, the center of L_r for 0 < r < 1 is always w = 0, and so w = f(z) reduces to a K-QC mapping of 0 < r < |z| < 1 onto $r^{1/K} < |w| < 1$. Therefore, we can see, by a theorem of A.Mori [4], that $f(z) = e^{i\phi} |z|^{1/K} e^{i \arg z}$.

As an immediate consequence of Theorem 1, we have the following

COROLLARY 1. Let w = f(z) be a K-QC mapping of |z| < 1 onto |w| < 1 such that f(0) = 0. If $\alpha \ge K$, then there holds

242

$$\lim \sup |f(z)|/|z|^{\alpha} \ge 1,$$

where the equality holds only if $f(z) = e^{i\phi} |z|^{\kappa} e^{i \arg z}$ with a real constant ϕ .

2. We denote by \mathfrak{S}_{α} the family of K-QC mappings in |z| < 1 satisfying f(0) = 0 and $\lim_{z \to 0} |f(z)|/|z|^{\alpha} = 1$, where α is real. Before we consider the distortion of the mapping belonging to \mathfrak{S}_{α} , we precede with the following theorem indicating the range of such α as \mathfrak{S}_{α} is empty.

THEOREM 2. If w = f(z) is a K-QC mapping in |z| < 1 such that f(0) = 0 and the positive finite $\lim_{z \to 0} |f(z)|/|z|^{\alpha}$ (α is real) exists, then there holds $1/K \leq \alpha \leq K$.

PROOF. Let $\zeta = h(w)$ be a mapping which maps the image of |z| < 1under w = f(z) conformally onto $|\zeta| < 1$ and transforms the origin onto itself, then, by our assumption, the positive finite limit

$$\lim_{z \to 0} |h\{f(z)\}| / |z|^{\alpha} = \lim_{w \to 0} |h(w)| / |w| \cdot \lim_{z \to 0} |f(z)| / |z|^{\alpha} \\ = h'(0) \cdot \lim_{z \to 0} |f(z)| / |z|^{\alpha}$$

exists, which shall be denoted by $1/\gamma$.

Moreover, we put $W = \gamma h\{f(z)\} = F(z)$, then it is obvious that W = F(z)is a K-QC mapping of |z| < 1 onto $|W| < \gamma$, F(0) = 0 and $\lim_{z \to 0} |F(z)|/|z|^{\alpha} = 1$. From this, corresponding to an arbitrary positive number \mathcal{E} , there is a positive number δ such that

$$(1-\mathbf{\epsilon})|z|^{\mathbf{\alpha}} < |F(z)| < (1+\mathbf{\epsilon})|z|^{\mathbf{\alpha}}$$

for $0 < |z| < \delta$. Denote by A the circular annulus bounded by |z| = r with $0 < r < \delta$ and |z| = 1, and by mod F(A) the modulus of the image F(A) of A under W = F(z), then it is easily found that

$$\log \frac{\gamma}{(1+\varepsilon)r^{\alpha}} < \mod F(A) < \log \frac{\gamma}{(1-\varepsilon)r^{\alpha}}.$$

On the other hand, by a well known result of a K-QC mapping, there holds in general

$$\frac{1}{K}\log \frac{1}{r} \leq \mod F(A) \leq K \log \frac{1}{r}.$$

Thus, we obtain for such \mathcal{E} and r as above that

$$\log \frac{\gamma}{(1+\varepsilon)r^{\omega}} < K \log \frac{1}{r}$$

and further

$$\frac{1}{K}\log\frac{1}{r} < \log\frac{\gamma}{(1-\varepsilon)r^{\alpha}},$$

from which follow

$$\frac{\log \frac{\gamma}{1+\varepsilon}}{\log \frac{1}{r}} + \alpha < K$$

and

$$\frac{1}{K} < \frac{\log \frac{\gamma}{1-\varepsilon}}{\log \frac{1}{r}} + \alpha.$$

Here, by making $r \to 0$, it is concluded that $\alpha \leq K$ and $1/K \leq \alpha$ i.e. $1/K \leq \alpha \leq K$. $q \in d$.

Theorem 2 implies that the family \mathfrak{S}_{α} is empty for $\alpha < 1/K$ or $\alpha > K$. Furthermore, it will be shown in §3 that \mathfrak{S}_{α} is not empty for $1/K \leq \alpha \leq K$.

3. Applying our theorems in §1 and §2, we have the following theorems concerning the existence of the positive lower bound of $\min_{0 < |z| = r < 1} |f(z)|$ and the upper bound of $\max_{0 < |z| = r < 1} |f(z)|$ for $f(z) \in \mathfrak{S}_{\alpha}$.

THEOREM 3. The positive lower bound of $\min_{|z|=r<1} |f(z)|$ for $f(z) \in \mathfrak{S}_{\alpha}$ exists if and only if $\alpha = 1/K$.

THEOREM 4. The finite upper bound of $\max_{|z|=r<1} |f(z)|$ for $f(z) \in \mathfrak{S}_{\alpha}$ exists if and only if $\alpha = K$.

The latter implies immediately the following

COROLLARY 2. The family \mathfrak{S}_{α} is normal if and only if $\alpha = K$.

By Theorem 2, \mathfrak{S}_{α} is empty for $\alpha < 1/K$ or $\alpha > K$, and so it is sufficient to prove in the case where $1/K \leq \alpha \leq K$. As proof for the necessity in Theorems 3 and 4, we shall present some examples of quasiconformal mappings in the sense of Grötzsch whose dilatations are not larger than K^{*}

PROOF OF THEOREM 3. First, Pfluger's estimate [6]:

244

^{*)} As is well known, these mappings are equivalent to continuously differentiable K-QC mappings. (see e. g. Hersch [1])

$$\min_{|z|=r<1} |f(z)| \ge \frac{1}{4} \left\{ \frac{4r}{(1+r)^2} \right\}^{1/K}$$

proves the sufficiency.

Next, in the case $1/K < \alpha \leq 1$, consider the following mapping $w = f_n(z)$:

(1)
$$w = |z|^{\alpha} \{1 - (1 - r_n) |z|^{(\alpha K - 1)r_n/K(1 - r_n)} \} e^{i \arg z},$$

where |z| < 1, $0 < r_n < 1$, and $r_n \rightarrow 0$ as $n \rightarrow \infty$.

After some elementary calculations, it can be seen that every dilatation of (1) on |z| = r < 1 is equal to

$$\{1 - (1 - r_n) r^{(\alpha K - 1)r_n/K(1 - r_n)}\} / \alpha \{1 - (1 - r_n/\alpha K) r^{(\alpha K - 1)r_n/K(1 - r_n)}\}$$

which is a number lying between 1 and K. Moreover, the mapping (1) transforms the origin onto itself and $\lim_{z\to 0} |w|/|z|^{\alpha} = 1$. Thus (1) is a K-QC mapping of |z| < 1 onto $|w| < r_n$, and hence $w = f_n(z)$ belongs to \mathfrak{S}_{α} .

On the other hand, it is evident that $\lim_{n\to\infty} f_n(r) = 0$.

In the case $1 < \alpha \leq K$, make the composite mapping $w = f_n(z)$ of the following

(2)
$$r_0 s/(1-s)^2 = z/(1-z)^2$$

$$(3) t = |s|^{\alpha} e^{i \arg s},$$

(4)
$$w = r_0^{a} t / (1-t)^2$$

where |z| < 1, $r_0 = 4rn/(n + r)^2$, $n = 1, 2, \dots, n$ and r is fixed arbitrarily in the open interval (0, 1).

Then, it is easily ascertained quite similarly to the argument in [3] that $w = f_n(z)$ belongs to \mathfrak{S}_{α} , while it can be obtained by some elementary computations that

$$\lim_{n \to \infty} f_n(-r) = -\lim_{n \to \infty} \left\{ 4nr/(n+r)^2 \right\}^{\alpha} (n+r)^2 / 4n(1+r)^2 \\ = -\left\{ r^{\alpha}/(1+r)^2 \right\} \cdot \lim_{n \to \infty} \left\{ 4n/(n+r)^2 \right\}^{\alpha-1} = 0.$$
q. e. d.

PROOF OF THEOREM 4. First, we consider the case $\alpha = K$. By a well known result of Stoïlow, w = f(z) can be represented in the form $f(z) = g\{\varphi(z)\}$, where $\zeta = \varphi(z)$ is a K-QC mapping of |z| < 1 onto $|\zeta| < 1$ and $w = g(\zeta)$ is a regular schlicht function in $|\zeta| < 1$. In particular, we shall choose $\varphi(z)$ such that $\varphi(0) = 0$.

Denote by ρ the largest distance from $\zeta = 0$ to the image contour Λ_r of |z| = r under $\zeta = \varphi(z)$, then obviously

$$\max_{|z|=r} |f(z)| = \max_{\zeta \text{ on } \Delta_r} |g(\zeta)| \leq \max_{|\zeta|=\rho} |g(\zeta)|.$$

According to a generalization of Schwarz-Grötzsch's theorem by Hersch-Pfluger [2] or A.Mori [4], there holds for 0 < |z| < 1,

$$ert arphi(z) ert \leq k \{q^{1/K}(ert z ert)\},$$

where $k\{q\} = \theta_2^2(0)/\theta_3^2(0)$ and θ_2 , θ_3 are elliptic theta functions. Hence we have

$$\max_{|\boldsymbol{\zeta}|=\rho} |g(\boldsymbol{\zeta})| \leq \max_{|\boldsymbol{\zeta}|=k\{q^1/K} |g(\boldsymbol{\zeta})|.$$

Further, Koebe's distortion theorem implies that

$$\max_{|\zeta|=k\{q^{1/K}(r)\}} |g(\zeta)| \leq |g'(0)| k\{q^{1/K}(r)\}/[1-k\{q^{1,K}(r)\}]^2.$$

From our normalization, it follows that

$$\begin{split} 1 &= \lim_{z \to 0} |f(z)| / |z|^{\alpha} = \lim_{\zeta \to 0} |g(\zeta)| / |\zeta| \cdot \lim_{z \to 0} |\varphi(z)| / |z|^{\alpha} \\ &= |g'(0)| \cdot \lim_{z \to 0} |\varphi(z)| / |z|^{\alpha}. \end{split}$$

Here, since $\lim_{z\to 0} |\varphi(z)|/|z|^{\alpha} \ge 1$ from Corollary 1 in §1, there holds $|g'(0)| \le 1$. Thus, we obtain

$$\max_{|\zeta|=k\{q^{1/K}(r)\}} |g(\zeta)| \leq k\{q^{1/K}(r)\}/[1-k\{q^{1/K}(r)\}]^2,$$

so that

$$\max_{|z|=r<1} |f(z)| \leq k \{q^{1/K}(r)\}/[1-k\{q^{1/K}(r)\}]^2.$$

Next, in the case $1 \leq \alpha < K$, take the following mapping $w = f_n(z)$:

(5)
$$w = |z|^{\alpha} \{1 + (r_n - 1) |z|^{\alpha/(r_n - 1)} \} e^{i \arg z},$$

where |z| < 1, $r_n > K/(K - \alpha)$ and $r_n \to \infty$ as $n \to \infty$.

Then, it can be found without great difficulty that every dilatation of (5) on |z| = r < 1 equals to

$$\alpha(1 + r_n r^{\alpha/(r_n-1)})/(1 + r_n r^{\alpha/(r_n-1)} - r^{\alpha/(r_n-1)})$$

which is a number lying between 1 and K. Hence, (5) is a K-QC mapping of |z| < 1 onto $|\zeta| < r_n$ with $\zeta(0) = 0$ and $\lim_{z\to 0} |\zeta|/|z|^{\alpha} = 1$, and so $w = f_n(z)$ belongs to \mathfrak{S}_{α} .

On the other hand, it is obvious that $\lim_{n\to\infty} f_n(r) = \infty$.

Finally, in the case $1/K \leq \alpha < 1$, consider the composite mapping $w = f_n(z)$ of those with the same forms as (3), (4) and (5) mentioned above, then it is shown as in [3] that $w = f_n(z)$ belongs to \mathfrak{S}_{α} , while it can be obtained by formally the same computation as before that

246

$$\lim_{n\to\infty} f_n(-r) = -\lim_{n\to\infty} \left\{ \frac{4nr}{(n+r)^2} \cdot (n+r)^2 - \frac{4n(1+r)^2}{(n+r)^2} - \frac{4n(1+r)^2}{(n+r)^2} + \lim_{n\to\infty} \frac{4(n+r)^2}{(n+r)^2} + \frac{4n(1+r)^2}{(n+r)^2} - \infty \right\}$$

Thus our proof is completed.

REFERENCES

- J. HERSCH, Contribution à la théorie des fonctions pseudo-analytiques, Comm. Math. Helv., 30 (1956), 1-19.
- [2] J. HERSCH and A. PFLUGER, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris, 234 (1952), 43-45.
- [3] K.IKOMA, Note on the distortions in certain quasiconformal mappings, Jap. Journ. Math., 29 (1959), 9-12.
- [4] A.MORI, On quasi-conformality and pseudo-analyticity, Sûgaku, 7 (1955), 75-89 (in Japanese), or, Trans. Amer. Math. Soc., 84 (1957), 56-77.
- [5] A. PFLUGER, Quelques théorèmes sur une classe de fonctions pseudo-analytiques, C.R. Acad. Sci. Paris, 231 (1950), 1022-1023.
- [6] A.PFLUGER, Quasikonforme Abbildungen und logarithmische Kapazität, Ann. Inst. Fourier, 2 (1950-1951), 69-80.

YAMAGATA UNIVERSITY AND UNIVERSITY OF OSAKA PREFECTURE.