ON DISTORTIONS IN CERTAIN QUASICONFORMAL MAPPINGS

Kazuo Ikoma and KÊICHI Shibata

(Received October 21, 1960)

Let $w=f(z)$ be a quasiconformal mapping of $|z|<1$ into the w-plane in the sense of Pfluger-Ahlfors, whose maximal dilatation is not greater than a finite constant $K(\geqq 1)$, then it will be simply referred to a $K-Q C$ mapping in $|z|<1$.

First, we formulate, in $\S 1$, a theorem producing Schwarz-Pfluger's theorem [5], next determine in $\S 2$ the range of a real number α such that there is no positive finite $\lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha}$ for any $K-Q C$ mapping $w=f(z)$ in $|z|<1$ satisfying $f(0)=0$, and finally in $\S 3$, we establish, as applications, some distortion theorems supplementing completely our preceding results [3].

1. A.Pfluger [5] reported that for any $K-Q C$ mapping $w=f(z)$ of $|z|<1$ onto $|w|<1$ with the limit $\lim _{z \rightarrow 0}|f(z)-f(0)| /|z|^{1 / K}=c, c \leqq 1-|f(0)|^{2} \leqq 1$ holds and $c=1$ arises when $w=f(z)=e^{i \phi} z|z|^{(1 / K)-1}$.

Now, we prove the following theorem producing the above Pfluger's result, and state its corollary.

THEOREM 1. Let $w=f(z)$ be a $K-Q C$ mapping of $|z|<1$ onto $|w|<1$ such that $f(0)=0$. If $\alpha \leqq 1 / K$, then there holds

$$
\lim _{z \rightarrow 0} \inf |f(z)| /|z|^{\alpha} \leqq 1
$$

where the equality holds only if $f(z)=e^{i \phi}|z|^{1 / K} e^{i a r g z}$ with a real constant ϕ.
Proof. Denote by $L(r)$ and $A(r)$ respectively the length and the area of the images of $|z|=r$ and $|z|<r$ under $w=f(z)$. Then we have for almost all $r \in(0,1)$,

$$
L(r)=\int_{0}^{2 \pi}\left|\frac{\partial f\left(r e^{i \theta}\right)}{r \partial \theta}\right| r d \theta
$$

and for arbitrary r, r^{\prime} such that $0<r<r^{\prime}<1$,

$$
A\left(r^{\prime}\right)-A(r) \geqq \int_{0}^{2 \pi} \int_{r}^{r^{\prime}} J\left[f\left(r e^{i \theta}\right)\right] r d \theta d r
$$

where $J[f]$ means the Jacobian of f.
By using Schwarz's inequality and the well known formula $\left|\partial f\left(r e^{i \theta}\right) / r \partial \theta\right|$
$\leqq K J\left[f\left(r e^{i \theta}\right)\right]$ valid for almost all $z=r e^{i \theta}$ in $|z|<1$, we can obtain

$$
\frac{d A(r)}{d r} \geqq \frac{[L(r)]^{2}}{2 \pi r K}
$$

Applying the isoperimetric inequality $[L(r)]^{2} \geqq 4 \pi A(r)$, it follows that

$$
\frac{d A(r)}{d r} \geqq \frac{2 A(r)}{r K}
$$

From this, we see easily for almost all $r \in(0,1)$,

$$
\frac{d}{d r}\left\{A(r) / r^{2 / K}\right\} \geqq 0
$$

Since $A(r)$ is an increasing function of r, it is shown immediately by Vallée Poussin's theorem that $A(r) / r^{2 \mid K}$ is a non-decreasing function of r, therefore we have

$$
A(r) / \pi r^{2 i K} \leqq 1
$$

Put $\min _{|z|=r<1}|f(z)|=m(r)$, then it is evident from $f(0)=0$ that $\pi\{m(r)\}^{2} \leqq$ $A(r)$, hence we obtain

$$
\begin{aligned}
& \lim _{z \rightarrow 0}^{\inf }|f(z)| /|z|^{\alpha} \leqq \lim _{z \rightarrow 1} \inf |f(z)| /|z|^{1 / K} \\
& \quad=\lim _{r \rightarrow 0} \inf m(r) / r^{1 / K} \leqq \lim _{r \rightarrow 0} \inf \left\{A(r) / \pi r^{2 / K}\right\}^{1 / 2} \leqq 1 .
\end{aligned}
$$

Next, if $\lim _{z \rightarrow 0} \inf |f(z)| /|z|^{\alpha}=1$, then obviously $A(r)=\pi r^{2 / K}$ holds. This implies that the image contour L_{r} of $|z|=r$ by $w=f(z)$ is a circle with radius $r^{1 / K}$ lying in $|w|<1$. After some computations using the cross ratio, it can be asserted that the modulus of the annular domain bounded by L_{r} and $|w|=1$ is not larger than $\log \left(1 / r^{1 / K}\right)$ and its modulus equals to the maximum $\log \left(1 / r^{1 / K}\right)$ if and only if the center of L_{r} coincides with $w=0$. On the other hand, by a well known property of a $K-Q C$ mapping, the modulus of the image of $r<|z|<1$ under any $K-Q C$ mapping is not less than $\log \left(1 / r^{1 / K}\right)$. Hence, the center of L_{r} for $0<r<1$ is always $w=0$, and so $w=f(z)$. reduces to a $K-Q C$ mapping of $0<r<|z|<1$ onto $r^{1 / K}<|w|<1$. Therefore, we can see, by a theorem of A.Mori [4], that $f(z)=e^{i \phi}|z|^{1 / K} e^{i a r g z}$. The converse is trivial, and so our proof is completed.

As an immediate consequence of Theorem 1, we have the following
COROLLARY 1. Let $w=f(z)$ be a K-QC mapping of $|z|<1$ onto $|w|<1$ such that $f(0)=0$. If $\alpha \geqq K$, then there holds

$$
\lim _{z \rightarrow 0} \sup |f(z)| /|z|^{\alpha} \geqq 1,
$$

where the equality holds only if $f(z)=e^{i \phi}|z|^{K} e^{i a r g z}$ with a real constant ϕ.
2. We denote by \mathbb{S}_{a} the family of $K-Q C$ mappings in $|z|<1$ satisfying $f(0)=0$ and $\lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha}=1$, where α is real. Before we consider the distortion of the mapping belonging to \mathbb{S}_{α}, we precede with the following theorem indicating the range of such α as \mathbb{S}_{α} is empty.

THEOREM 2. If $w=f(z)$ is a $K-Q C$ mapping in $|z|<1$ such that $f(0)=0$ and the positive finite $\lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha}$ (α is real) exists, then there holds $1 / K \leqq \alpha \leqq K$.

PROOF. Let $\zeta=h(w)$ be a mapping which maps the image of $|z|<1$ under $w=f(z)$ conformally onto $|\zeta|<1$ and transforms the origin onto itself, then, by our assumption, the positive finite limit

$$
\begin{aligned}
\lim _{z \rightarrow 0}|h\{f(z)\}| /|z|^{\alpha} & =\lim _{w \rightarrow 0}|h(w)| /|w| \cdot \lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha} \\
& =h^{\prime}(0) \cdot \lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha}
\end{aligned}
$$

exists, which shall be denoted by $1 / \gamma$.
Moreover, we put $W=\gamma h\{f(z)\}=F(z)$, then it is obvious that $W=F(z)$ is a $K-Q C$ mapping of $|z|<1$ onto $|W|<\gamma, F(0)=0$ and $\lim _{z \rightarrow 0}|F(z)| /|z|^{a}$ $=1$. From this, corresponding to an arbitrary positive number ε, there is a positive number δ such that

$$
(1-\varepsilon)|z|^{\alpha}<|F(z)|<(1+\varepsilon)|z|^{\alpha}
$$

for $0<|z|<\delta$. Denote by A the circular annulus bounded by $|z|=r$ with $0<r<\delta$ and $|z|=1$, and by $\bmod F(A)$ the modulus of the image $F(A)$ of A under $W=F(z)$, then it is easily found that

$$
\log \frac{\gamma}{(1+\varepsilon) r^{\alpha}}<\bmod F(A)<\log \frac{\gamma}{(1-\varepsilon) r^{\alpha}}
$$

On the other hand, by a well known result of a $K-Q C$ mapping, there holds in general

$$
\frac{1}{K} \log \frac{1}{r} \leqq \bmod F(A) \leqq K \log \frac{1}{r}
$$

Thus, we obtain for such ε and r as above that

$$
\log \frac{\gamma}{(1+\varepsilon) r^{\alpha}}<K \log \frac{1}{r}
$$

and further

$$
\frac{1}{K} \log \frac{1}{r}<\log \frac{\gamma}{(1-\varepsilon) r^{\alpha}}
$$

from which follow

$$
\frac{\log \frac{\gamma}{1+\varepsilon}}{\log \frac{1}{r}}+\alpha<K
$$

and

$$
\frac{1}{K}<\frac{\log \frac{\gamma}{1-\varepsilon}}{\log \frac{1}{r}}+\alpha
$$

Here, by making $r \rightarrow 0$, it is concluded that $\alpha \leqq K$ and $1 / K \leqq \alpha$ i.e. $1 / K$ $\leqq \alpha \leqq K . \quad$ q. e. d.

Theorem 2 implies that the family \mathfrak{S}_{α} is empty for $\alpha<1 / K$ or $\alpha>K$. Furthermore, it will be shown in $\S 3$ that \mathbb{S}_{α} is not empty for $1 / K \leqq \alpha \leqq K$.
3. Applying our theorems in $\S 1$ and $\S 2$, we have the following theorems concerning the existence of the positive lower bound of $\min _{0<|z|=r<1}|f(z)|$ and the upper bound of $\max _{0<|z|=r<1}|f(z)|$ for $f(z) \in \mathbb{S}_{\alpha}$.

THEOREM 3. The positive lower bound of $\min _{|z|=r<1}|f(z)|$ for $f(z) \in \mathbb{S}_{\alpha}$ exists if and only if $\alpha=1 / K$.

THEOREM 4. The finite upper bound of $\max _{|z|=r<1}|f(z)|$ for $f(z) \in \mathbb{S}_{\alpha}$ exists if and only if $\alpha=K$.

The latter implies immediately the following
COROLLARY 2. The family \mathfrak{S}_{α} is normal if and only if $\alpha=K$.
By Theorem 2, \mathbb{S}_{α} is empty for $\alpha<1 / K$ or $\alpha>K$, and so it is sufficient to prove in the case where $1 / K \leqq \alpha \leqq K$. As proof for the necessity in Theorems 3 and 4, we shall present some examples of quasiconformal mappings in the sense of Grötzsch whose dilatations are not larger than K.*)

Proof of Theorem 3. First, Pfluger's estimate [6]:

[^0]$$
\min _{|z|=r<1}|f(z)| \geqq \frac{1}{4}\left\{4 r /(1+r)^{2}\right\}^{1 / K}
$$
proves the sufficiency.
Next, in the case $1 / K<\alpha \leqq 1$, consider the following mapping $w=f_{n}(z)$:
\[

$$
\begin{equation*}
w=|z|^{\alpha}\left\{1-\left(1-r_{n}\right)|z|^{(x K-1) r_{n} \mid K\left(1-r_{n}\right)}\right\} e^{\operatorname{iar} z}, \tag{1}
\end{equation*}
$$

\]

where $|z|<1,0<r_{n}<1$, and $r_{n} \rightarrow 0$ as $n \rightarrow \infty$.
After some elementary calculations, it can be seen that every dilatation of (1) on $|z|=r<1$ is equal to

$$
\left\{1-\left(1-r_{n}\right) r^{(\alpha K-1) r_{n} / K\left(1-r_{n}\right)}\right\} / \alpha\left\{1-\left(1-r_{n} / \alpha K\right) r^{(\alpha K-1) r_{n} / K\left(1-r_{n}\right)}\right\}
$$

which is a number lying between 1 and K. Moreover, the mapping (1) transforms the origin onto itself and $\lim _{z \rightarrow 0}|w| /|z|^{\alpha}=1$. Thus (1) is a $K-Q C$ mapping of $|z|<1$ onto $|w|<r_{n}$, and hence $w=f_{n}(z)$ belongs to \mathbb{S}_{a}.

On the other hand, it is evident that $\lim _{n \rightarrow \infty} f_{n}(r)=0$.
In the case $1<\alpha \leqq K$, make the composite mapping $w=f_{n}(z)$ of the following

$$
\begin{align*}
r_{0} s /(1-s)^{2} & =z /(1-z)^{2} \tag{2}\\
t & =|s|^{\alpha} e^{\text {targs }} \tag{3}\\
w & =r_{0}^{\alpha} t /(1-t)^{2}, \tag{4}
\end{align*}
$$

where $|z|<1, r_{0}=4 r n /(n+r)^{2}, n=1,2, \ldots \ldots \ldots$, and r is fixed arbitrarily in the open interval $(0,1)$.

Then, it is easily ascertained quite similarly to the argument in [3] that $w=f_{n}(z)$ belongs to \mathfrak{S}_{α}, while it can be obtained by some elementary computations that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{n}(-r) & =-\lim _{n \rightarrow \infty}\left\{4 n r /(n+r)^{2}\right\}^{\alpha}(n+r)^{2} / 4 n(1+r)^{2} \\
& =-\left\{r^{\alpha} /(1+r)^{2}\right\} \cdot \lim _{n \rightarrow \infty}\left\{4 n /(n+r)^{2}\right\}^{\alpha-1}=0 .
\end{aligned}
$$

PROOF OF THEOREM 4. First, we consider the case $\alpha=K$. By a well known result of Stoïlow, $w=f(z)$ can be represented in the form $f(z)=$ $g\{\boldsymbol{\varphi}(z)\}$, where $\zeta=\boldsymbol{\varphi}(z)$ is a $K-Q C$ mapping of $|z|<1$ onto $|\zeta|<1$ and w $=g(\zeta)$ is a regular schlicht function in $|\zeta|<1$. In particular, we shall choose $\boldsymbol{\varphi}(z)$ such that $\boldsymbol{\varphi}(0)=0$.

Denote by ρ the largest distance from $\zeta=0$ to the image contour Λ_{r} of $|z|=r$ under $\zeta=\boldsymbol{\rho}(z)$, then obviously

$$
\max _{|z|=r}|f(z)|=\max _{\zeta \circ n \Lambda_{r}}|g(\zeta)| \leqq \max _{|\xi|=\rho}|g(\zeta)| .
$$

According to a generalization of Schwarz-Grötzsch's theorem by Hersch-Pfluger [2] or A.Mori [4], there holds for $0<|z|<1$,

$$
|\boldsymbol{\varphi}(z)| \leqq k\left\{q^{1 / K}(|z|)\right\}
$$

where $k\{q\}=\theta_{2}^{2}(0) / \theta_{3}^{2}(0)$ and θ_{2}, θ_{3} are elliptic theta functions. Hence we have

$$
\max _{|\zeta|=\rho}|g(\zeta)| \leqq \max _{|\xi|=k\{q| | K(r)\}}|g(\zeta)| .
$$

Further, Koebe's distortion theorem implies that

$$
\max _{|\zeta|=k\{q 1 / K(r)\}}|g(\zeta)| \leqq\left|g^{\prime}(0)\right| k\left\{q^{1 / K}(r)\right\} /\left[1-k\left\{q^{1, K}(r)\right\}\right]^{2} .
$$

From our normalization, it follows that

$$
\begin{aligned}
1 & =\lim _{z \rightarrow 0}|f(z)| /|z|^{\alpha}=\lim _{\zeta \rightarrow 0}|g(\zeta)| /|\zeta| \cdot \lim _{z \rightarrow 0}|\boldsymbol{\varphi}(z)| /|\boldsymbol{z}|^{\alpha} \\
& =\left|g^{\prime}(0)\right| \cdot \lim _{z \rightarrow 0}|\boldsymbol{\varphi}(z)| /|z|^{\alpha} .
\end{aligned}
$$

Here, since $\lim _{z \rightarrow 0}|\boldsymbol{\varphi}(z)| /|z|^{\alpha} \geqq 1$ from Corollary 1 in $\S 1$, there holds $\left|g^{\prime}(0)\right|$ $\leqq 1$. Thus, we obtain

$$
\max _{|\zeta|=k|q| \mid K(r)\}}|g(\zeta)| \leqq k\left\{q^{1 / K}(r)\right\} /\left[1-k\left\{q^{1 / K}(r)\right\}\right]^{2},
$$

so that

$$
\max _{|z|=r<1}|f(z)| \leqq k\left\{q^{1 / K}(r)\right\} /\left[1-k\left\{q^{1 / K}(r)\right\}\right]^{2} .
$$

Next, in the case $1 \leqq \alpha<K$, take the following mapping $w=f_{n}(z)$:

$$
\begin{equation*}
w=|z|^{\alpha}\left\{1+\left(r_{n}-1\right)|z|^{\alpha /\left(r_{n}-1\right)}\right\} e^{\operatorname{iarg} z}, \tag{5}
\end{equation*}
$$

where $|z|<1, r_{n}>K /(K-\alpha)$ and $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Then, it can be found without great difficulty that every dilatation of (5) on $|z|=r<1$ equals to

$$
\boldsymbol{\alpha}\left(1+r_{n} r^{\alpha /\left(r_{n}-1\right)}\right) /\left(1+r_{n} r^{\alpha /\left(r_{n}-1\right)}-r^{\alpha /\left(r_{n}-1\right)}\right)
$$

which is a number lying between 1 and K. Hence, (5) is a K - QC mapping of $|z|<1$ onto $|\zeta|<r_{n}$ with $\zeta(0)=0$ and $\lim _{z \rightarrow 0}|\zeta| /|z|^{\alpha}=1$, and so $w=f_{n}(z)$ belongs to \mathbb{S}_{α}.

On the other hand, it is obvious that $\lim _{n \rightarrow \infty} f_{n}(r)=\infty$.
Finally, in the case $1 / K \leqq \alpha<1$, consider the composite mapping $w=f_{n}(z)$ of those with the same forms as (3), (4) and (5) mentioned above, then it is shown as in [3] that $w=f_{n}(z)$ belongs to \mathbb{S}_{α}, while it can be obtained by formally the same computation as before that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{n}(-r) & =-\lim _{n \rightarrow \infty}\left\{4 n r /(n+r)^{2}\right\}^{\infty} \cdot(n+r)^{2} / 4 n(1+r)^{2} \\
& =-\left\{r^{\infty} /(1+r)^{2}\right\} \cdot \lim _{n \rightarrow \infty}\left\{(n+r)^{2} / 4 n\right\}^{1-\infty}=-\infty
\end{aligned}
$$

Thus our proof is completed.

REFERENCES

[1] J. Hersch, Contribution à la théorie des fonctions pseudo-analytiques, Comm. Math. Helv., 30 (1956), 1-19.
[2] J. Hersch and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris, 234 (1952), 43-45.
[3] K. IKOMA, Note on the distortions in certain quasiconformal mappings, Jap. Journ. Math., 29 (1959), 9-12.
[4] A. MORI, On quasi-conformality and pseudo-analyticity, Sûgaku, 7 (1955), 75-89 (in Japanese), or, Trans. Amer. Math. Soc., 84 (1957), 56-77.
[5] A. Pfluger, Quelques théorèmes sur une classe de fonctions pseudo-analytiques, C.R. Acad. Sci. Paris, 231 (1950), 1022-1023.
[6] A. PFlUGER, Quasikonforme Abbildungen und logarithmische Kapazität, Ann. Inst. Fourier, 2 (1950-1951), 69-80.

Yamagata University and University of Ôsaka Prefecture.

[^0]: *) As is well known, these mappings are equivalent to continuously differentiable $K-Q C$ mappings. (see e. g. Hersch [1])

