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; Introduction. It has been long discussed whether .the sets-of pure- states
of C* -algebras are compact or not and some negative examples are found in
the literature (cf. [5], [6], [13], [18]). However the question that which C*- algebras
have this property is remained: unknown and it is the first motivation of :our
present paper to remove this obscurity. The result is the followmg one: Let A
be a C*-algebra. If the set of pure states of A i$ compact and that of
primitive ideals which are the kernels of one-dimensional irreducible repre-
sentations forms an open set in the structure space of A, then A is isomor-
phic to the C*-sum of a finite number of homogemeous C*-algebras.

A C*-algebra is called n-dimensionally homogeneous if each irreducible
representation of the algebra is #n-dimensional. Such C¥-algebras were partly
studied (without assuming a unit) in Kaplansky [10],[11] and Fell [4]. However,
only a few results are known about the structure of these algebras. On the
other hand, these algebras play an essential role in the construction of the com-
position series of GCR algebras. Thus the main part of the present paper is
devoted to develop the structure theory of homogeneous C*-algebras. Our
method is somewhat different trom the one usually employed in the literature.
We use the theory of fibre bundles and illustrate the structure of homogeneous
C*-algebras in terms of fibre bundles.

Let A bz an zn-dimensionally homogeneous C*-algebra and denote by Q(A4)
the structure space of A. Let M, and G be the n X n full matrix algebra and
the group of all *-automorphisms of M,. Then A defines a fibre bundle B(A),
called the structure bundle of A, over Q(A) with fibre M, and group G and
A is represented as the C*-algebra constructed by all cross-sections in B(A4). It
is shown that the #-isomorphic relation between two z-dimensionally homogene-
ous C*-algebras are equivalent 1o the equivalence relation between their structure
bundles. Moreover, using the theory of bundles we can show that two algebraically
isomorphic homogeneous C¥-algebras are necessarily *-isomorphic. Next we
shall prove that the bundle B over an arbitrary compact Hausdorff space with
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fibre M, and group G yields necessarily an #n-dimensionally homogeneous
C*-algebra A and B(A) is equivalent to B. Thus there exist non-isomorphic
n-dimensionally homogeneous C*-algebras as much as non-equivalent fibre
bundles over the compact Hausdorff spaces with fibre M, and group G. '

A typical example of a homogeneous C*-algebra is the C*-tensor product
of a commutative C*-algebra and M, but an arbitrary z-dimensionally homogene:
ous C*-algebra does not necessarily belong to this type, contrary to the case of
W *-algebras. Our result says that an 7-dimensionally: homogeneous C*-algebra
belongs to this type if and only if its structure bundle equivalent to a product
bundle.

Finally, we study the #*-automorphisms of homogeneous C*-algebras leaving
the center elementwise fixed and give the necessary and sufficient condition
that the automorphism is inner.

We are indebted to Mr. J. Glimm, Mr. K. Iwata, Mr. S. Maruyama and
Mr. K. Shiga for their valuable criticisms and suggestions.

1. The structure of C*-algebras whose sets of pure states are com-
pact.

Let A be a C*-algebra. We always assume a unit. We call a C*-algebra A
n-dimensionally homogeneous (sometimes abbreviated as n-homogeneous C*-
algebra) if any irreducible representation of A is n-dimensional. We assume
that A is acting on a fixed Hilbert space H,. and we shall denote by A the
weak closure of A on H,. We always denote by Q(A), P(A), S(4) and Q(A)
the set of pure states, the pure state space (weak closure of Q(A)), the “state
space and the structure space of A, respectively. B(H) and Cyz mean the ring
of all bounded linear operators and that of all completely continuous operators
on a Hilbert space H.

The following theorem almost clarifies the structure of C*-dlgebras having
compact set of pure states.

THEOREM 1. Let A be a C*-algebra. If the set of pure states of A is
compact and that of primitive ideals which are the kernels of one-dimen-
sional irreducible representatious forms an open set in the structure space of
A, then A is isomorphic to the C*-sum of a finite number of homogeneous
C*-algebras. The converse ‘is also true.

We divide the proof into several steps and at first assume that A has no
one-dimensional representations.

LEMMA 1.1. Let w be an arbitrary irreducible representation of A on a
Hilbert space H, then H is finite dimensional and w(A) = Cx = B(H).
PROOF. Since Q(A) is compact, one easily verifies that the homomorphic
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image of A also has this property. Therefore, by [6: Theorem 2], we see that
a(A)NCxr == {0}, so that m(4) D Cxz by the same theorem. Suppose m(A)LCy,
then there exisis a state @ with the property @(Cy) = 0. Using the same
theorem quoted above one can see that aw; + (1 — a)p € P(w(A4)) for 0<a<1
and a vector state ®;. Therefore Q(m(4)) is not compact, which is a con-
tradiction. We have m(A) = Cu. Hence Cy contains a unit, and H must be
finite dimensional. Thus, m(4) = Cyz = B(H).

LEMMA 1.2. Let w be an irreducible representation of Aon a Hilbert
space H, then w|A, the restriction of m to A, is also irreducible and w(A) =
(A)

PROOF. Take a vector state @ of H, then Q’g['n‘(A) is a_pure state. Hence
'l'l'(wf!ﬂ'(A)) is a pure state of A. As A is o weakly dense in A by [6: Theorem
5], P(A)|A = P(A) = Q(A), hence ‘m(w;|m(A))| A = ‘m(wy| w(A)) € Q(A). Tt
follows that @;|m(A)€ Q(m(A)). Since ®; is an arbitrary vector state of H and

A has no one-dimensional representations, this means that m|A is an irredu-
cible representation of A. Therefore, by the above lemma, 7w(4) = Cs = B(H)

whence m(A4) = W(Z).

LEMMA 1.3. A is a W*-algebra of finite type 1 whose homogeneous
components are finite.

PROOF. This follows immediately from Lemma 1.2. and [11: Theorem
9.1.].

m
By Lemma 1,3 we see that A =) Az, where z; are orthogonal central
{m1

projections and each Az, is an n,-dimensionally homogeneous W¥*-algebra. We
assume that n; <7,...< n,.

LEMMA 1.4. Az, is an n;-dimensionally homogeneous C*-algebra.

PROOF. Let 7 be an irreducible representation of Az; on Hilbert space
H. Since every pure state of Az; can be extended to a pure state of Zzi, it
follows from the correspondence between states and representations of Zzi
that 7 can be extended to an irreducible repreentation 7 of Zz, on a Hilbert
space H 2 H. On the other hand, as Az; is the homomorphic image of A,
Q(Az) is compact and Az; is weakly dense in Zzi. Hence, applying Lemma
1.2 to this couple of algebras, one can see that #|Az; is an #»;-dimensional
irreducible representation of Az; on H’. Therefore we get H=H" and = is
an 7n;-dimensional irreducible representation. This completes the proof.

Now, consider a primitive ideal P of a GCR algebra. Since P is the
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kernel of some irreducible representation of the algebra, by Dixmier [3: Theorem
5], the dimension of the irreducible representation whose kernel is P is unique
(the hypothesis that the algebra is separable is unnecessary in this part of the
theorem). Thus, without the ambiguity, we can say that a primitive ideal P is
the kernel of a ( )-dimensional irreducible representation.

LEMMA 1.5. There is a one-to-one correspondence between the family of
all primitive ideals in A which are kernels of ny-dimensional irreducible
representations and that of all primitive ideals in Az,.

PROOF. Let P bz a primitive ideal of A whfch is the kernel of an -
dimensional irreducible representation. Take a pure state @ associated with P
and consider the pure state extension @ of @ to A. Denote by =, and

7, the canonical representations of @ and @. As @ € P(Z) = UP(Zz,) (where

iml

we identify P(Ez,) With its natural embedding in P(Z) (cf. [6])), there exists a
number j for E)EP(Azj).~Theref0re the representation =; is the compos-
ition of the mapping A—>Zz,~ and an irreducible representation = of sz.
By Lemma 1.2, m;]A is an irreducible representation of A, and we can
identify m, and =;|A. Hence m, is the composition of the map A—Az;
and 7| Az, The latter is an irreducible representation of Az, We have Pz; =
the kernel of 7| Az;, which is a primitive ideal of Az, Since P is a kernel
of an n-dimensional’ irreducible representation, we have, by Lemma 1.4,
n, = n; i.e. k = j. Thus Pz; = Pz, is a primitive ideal of Az, Next, if P’ is
a primitive ideal of Az, it is clear that P = {a € Al|az, € P’} is a primitive
ideal of A which is the kernel of #,-dimensional irreducible representation.
Moreover, the fact that 2(A4) coincides with the space of all maximal ideals in
A(cf. Lemma 1.1.) implies that the above correspondence is one-to-one.

LEMMA 1.6. Let P be a primitive ideal of A which is the kernel of an
ni-dimensional irreducible representation, then we have P(1—z;) = A1 — z,).

PROOF. At first, we assert that Pz, = Az, for all i=j=%. Suppose Pz, is a
proper closed ideal of Az for i ==k There exists a maximal ideal P’ of Az,
containing Pz, Set P, = {a € A|az; € P’}, then P, is an ideal of A and con-
tains P. We have P, = P for P is a maximal ideal of A by Lemma 1.1. Thus
Pz, = Pyz, = P’, that is, Pz, is a primitive ideal of Az, Therefore P is the
kernel of an #;-dimensional irreducible representation which contradicts to
i=3= k. We have Pz, = Az, for all is=*t.

To prove the conclusion of the lemma, it is sufficient to show that P(1—z;)
separates the set of pure states of A(1 — z;) by Kaplansky [11: Theorem 7.2.].
So let @ and ¥ be distinct pure states of A(1 — 2,) and @ and ¥ pure state

extensions of @ and ¥ to Z(l —z;) respectively. Since P(X(l —z))= g P(Zzi),
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we have two cases in question.

1. p € P(Zzi) and ¥ € P(Zzi) for 7= j. Consider the canonical represen-
tations =, and my, then as in the argument of the proof of Lemma 1.5
m; and =g induce the irreducible representations =, and. 7, of Az; and
Az, Put P, = {a € P(1 — z;)|az € the kernel of m}, P, = {a € P(1 — zy)|
az; € the kernel of #,}, then P, and P, are primitive ideals of P(1 — z;) and,
by Lemma 1.4, they are the kernels of 7, and n,-dimensional irreducible rep-
resentations of P(1 — 2;) respectively. Since 7, 4= n;, P, is different from P,
On the other hand one easily verifies that P is equal to the kernel of 7r¢|P(1 i)
and P, to the kernel of ms|P(1 — 2). It follows @|P(1 — 2;) =V |P(1 — z).

2.9, V< P(Zzi). From the assumption there exists an element a(l —‘zk)‘
€ A(1 — z;) (@ € A) such that @(a(l — ;) F=¥(a(1 — =)
, We have
#(az) = @pla(l. — z) = pla(l - =) +=Y(a(l — z)) = Wa:;)-

Since Pg,= Az,, we can find an element of P such as bz, = az; and we get
P(B(1 — z,)) = @(bz;) = plaz) += V(az) = ¥(bz) = VB — 2)),
ie. @|P(1--2) Y|P - 2.

This completes the proof.

LEMMA-1.7. Let {Pn, .} be the family of all primitive ideals in A
which are the kernels of ni-dimensional irreducible representations. Then for
every k, {P, .} is closed in Q(A). '

PRQOF. we shall show that [\ Pa.. = A(1 — 2)NA. Take an element &
€ ﬂPnk,a then az.€ ﬂ Py« 2i. By Lemma 1.5, {Py, .2} is the family of all

primitive ideals in Az, Hence az; = 0 ie. a € A(1 — 2) N A. Conversely, if

a€ Al — 2) N A we have az, =0 € mPnM 2z and, by Lemma 1.5, a

6 nPnk,tx.

Next, suppose that a primitive ideal P contains the intersection of {Py, }.
By the argument at the first part of the proof of Lemma 1.6, Pz, = Az; except
a number j==7 and P%; is a primitive ideal of . Az, We assume j= k. By
‘Lemma 1.6, we have P(1 — z;) = A(1 — z;) so that there exists an element
b €'P such as b(1 — z;) = 1 — 2, 'which implies (1—&)z;=1—5. As 2;,=<1~z;,

we get 1 —b € AQ —z)NA= n P,, .. Hence P contains 1 — & and thus

‘P contains 1, a contradiction. Therefore we have j = %, i.e. P is the kernel of
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an 7;-dimensional irreducible representation. This completes the proof.

THE CONCLUDING PROOF OF THE THEOREM. Let {P;.} be the family of
all primitive ideals which are the kernels of one-dimensional represzntations. Put
R = the kernel of {P:.}°, complement of {P;.} in Q(A), then the C*-algebra
A/R has no one-dimensional representations and Q(A4/R) is compact. Hence,
by the above discussions, we can see that all irreducible representations of A are
finite and there is a fixed upper bound for all these degrees. Denote by {Pu,a}
(y=1<n<ny<-ev-- <1n,) the family of all primitive ideals in A4 which are
the kernels of n,-dimensional irreducible representations. We - assert that this
family is closed in Q(A). Since {P, .} is clearly closed in Q(A) (cf. [11]), we
assume k= 2. Then, by Lemma 1.7, the canonical image of < {Pn,«} is closed
in Q(4/R) and since Q(A4/R) is homeomorphic to {P; a} {Ppe} is closed in

{P, «}° whence in Q(A). Put I = ﬂ P,.,. and J = mn P, o From the

definition of I and J it is clear that INJ={0}. SuppOSe that T + J is not
dense in A, then we can find a maximal ideal P such that P =2 I+ J. Since P
is primitive, P is the kernel of an #z,-dimensional irreducible representation by
Lemma 1.7. On the other hand, it is known that the family {P. «} (i = 1,2
..,m-1) is closed in Q(A) (cf. [11]), hence P is the kernel of an irreducible
representation whose dimension does not exceed #,_:. This is a contradiction.
Therefore I + J is dense in A. Hence I + J = A, so that one can see that 4
is isomorphic to the C*-sum of A/I and A/J. Continuing the same argument

for A/J, we get desired conclusion : that is, putting I, = ﬂ P, .(i=1,2,....m)

we have

A=A/, DA/L,D...... P A/I, (C*-sum)
and it is clear, by Lemma 1.7, that each A/I, is an n,dimensionally homo-
geneous C*-algebra.

To prove the converse of the theorem, we need the following

LEMMA 1.8. If A is an n-dimensionally homogeneous C*-algebra, then
Q(A) is compact.

PROOF. Since A is weakly dense in Z,Z satisfies the polynomial identity
of the same order as the one which A satisfies (cf. [11]). Hence the dimension
of any irreducible representation of A does not exceed 7 Therefore A is-a
W#*-algebra of finite type 1. Let x be a maximal ideal of the center of A We
denote by P, the minimal closed ideal in A containing x. Since Q(A) is“a
Hausdorff space by [11: Theorem 4.2]. the first part of the proof -of Lemma
12 of [6] shows that A(x) has a faithful irreducible representation where A(x)



504 J. TOMIYAMA AND M. TAKESAKI

means the homomorphic image of A by the canonical map A—A/P,. Moreover
Theorem 4 in [6] shows that Z(x) has a faithful irreducible representation.
Now, by the hypothesis A(x) is isomorphic to an 7z X n full matrix algebra
and the first part of this proot shows that Z(x) is isomorphic to a kX% matrix
algebra with 2 < n. Hence £ = n and we have A(x) = Z(x)

Take an element @& P(A), then by [6: Theorem 5] @ can be extended to
an element @< P(Z) By Theorem 4 in [11] there exists a maximal ideal x of
the center of A and an element EEP(Z(x)) such as @ = Y, (@) where V.
means the canonical mapping Z—)Z/Px. We have @ = 4, (@'| A(x)). As it is
easily seen that Q(A(x)) is compact the above argument shows that @ € Q(A)
i.e. Q(A) is compact.

Using the above lemma, we can prove easily the converse of the theorem.

In fact, suppose A = A, PA,P...PA, where {A;} are all homogeneous C*-
algebras, then P(A) = CJP(AJ where we identify P(A,) with its natural
embedding in P(A). ByidLemma 1.8 we have P(4,) = Q(4,), hence P(A)
= Q(A) considering with Q(4) = (nj Q(Ay).

Thus the whole proof is complientled.

Now, Let us consider the situation of our theorem. One might suppose
that the size of the pure state space plays an important réle in the structure
theory of a C*-algebra and, at this point of view, the case treated above is an
extreme one and it is the first step to make out this case when the pure state
space of a C*-algebra comes into our consideration. The another extreme case
is the one where the pure state space becomes the largest one, that is. it co-
incides with the state space. The next theorem gives the answer for the question
which C*-algebras are endowed with this property.

THEOREM 2. Let A be a C*-algebra, then the necessary and sufficient

condition for P(A) = S(A) is that A is a prime C*-algebra without non-zero
GCR ideal.

PROOF. The proof of the sufficiency is essentially included in the proof of
Theorem 1 in [6]. In fact, the proof of Theorem 1 in [6] is divided into
three steps and the last step is devoted to prove the result associated to the
sufficiency of our theorem. Hence it is sufficient to show the necessity of the
theorem.

Suppose that P(A) = S(A). We shall show that A is a prime C¥-algebra.
Let I and J be closed ideals in A sush as I N J = {0} then one easily verifies
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that 7ﬂj= {9}, where Tand 7 mean the weak closures of I and J in Z
Since T(resp. J) is a weikly closed ’Nidea’lv of A we can find a central projection
z,(resp. 2,) such as I = Az, (resp. J = Az,). We have 2,2, = 0. Hence for an
arbitrary element ¥ € P(A), Y(z, ¥(z,) = 0.

By [6: Theorem 5], P(A)|A = P(4) = S(A). If we suppose that I== {0}
and J== {0}, there exists a state @ of A such thaL¢(I)=l=0 and o(J) 0.
Putting @ as an extension of @ to an element of P(A), we get @(I)==0 and
@(J) == 0, which contradicts to @(z,)@(z;) = 0. Thus, if 7N J = {0} we have
I= {0} or J = {0}; A is a prime C*-algebra.

Next, suppose that A has a non-zero GCR ideal, then A has a non-zero
CCR ideal I. Since A becomes a prime C¥-algebra, I is isomorphic to
the algebra of all completely continuous operators on some Hilbert space
(cf. [11: Lemma 7.14]). Take an arbitrary state @ of I and denote by @ the
state extension of @ to A. As @ € S(A) = P(A) there exists a net of pure
states {@.} of A with @ = liin @.. We have liin @.|I = @. Therefore we may

assume that @.|I==0 for all @. We assert that all @.|I are pure states of I
In fact, by Glimm [6: Lemma 3], {®@.]|I} are all states of I and suppose that

@] I = %(g)} + @;) for some states @i, ®; of I. Denoting by @, and @, the

state extensions of @; and @; to A we get an extension of @.|I to A,—;——

(@:+ @,). However, as shown in the proof of Theorem 2 of Glimm [6] the
state extension from a closed ideal to the whole algebra is unique, and we get

Po = % (@, + @,) which implies @, = @ ; = @,. Hence @.|I = @, = @,. Thus

{@«|I} are pure states of I and @ is the limit of the net {®@.|I}. This con-
tradicts the structure of I noted above. Therefore A has no non-zero GCR
ideal. This completes the proof.

2. The structure of homogeneous C*-algebras.

Let A be an zn-dimensionally homogeneous C*-algebra with unit. Throu-
ghout this section, M, means an 7 X n full matrix algebra and G the group
of all *-automorphisms of M,. If R is a subset of the structure space 2(A)
of A, we denote by A(R) the quotient algebra by the kernel of R and by a(R)
the canonical image of @ € A in A(R). A matrix of M, is always denoted
with indices 7,j (or &,1) such as (\;;), (@;;). Most of the notations and termi-
nologies in the theory of fibre bundles are referred to Steenrod [14]. We use
the notations GL(n, C), U(n), SU(n) etc. as usual.

Let Gy be the group of all automorphisms of M,. Before going into
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discussions, we need some considerations on the topologies of G, and G.
Consider the simple convergence topology on G, and G. Since an arbitrary
element of G, is considered to be a bounded linear operator on the vector space
M,, G, is embedded into the full operator algebra B(M,), which is isomorphic
to M,z, n* X n* full matrix algebra. Hence G, can be embedded into GL(»*C)
and one verifies easily that this embedding is topologically isomorphic, so that
the image of G, in GL(n* C) is a closed subgroup of GL(n? C). Therefore G,
becomes a topological group (furthermore a Lie group) by the simple convergence
topology over M,. On the other hand, let T, be the center of GL(n,C) then
it is well known that GL(n,C) is homomorphic to G, and the kernel of this
homomorphism is 7. By the straight-forward calculation, we see that this
homomorphism is a continuous, hence open homomorphism. Thus G, is
topologically isomorphic to GL(n,C)/T, and a similar treatment shows that the
group G with the simple convergence topology is topologically isomorphic’ to
the factor group U(n)/T, where T denotes the center of U(n). We notice that
both Gy and G are topological transformation groups of M,
The following lemma plays the key point of our discussions.

LEMMA. For any point P of Q(A), there exists a neighborhood U of P such

as A(U) ;C((T)@)Mn, the C*-tensor product of C(U) and M,, where U
means the closure of U.

PROOF. Take a point Py € Q(A). Define a continuous function y(x) over
(—o0, ) as follows;

7{(—00, - %]U{%}U[g— +oo)} =1, ¥y(0) = v(1) =0,

and y(x) is linear on [——1—,0}, [O, L],[L, 1}, [1, i] Let a be an ele-
2 2 2 2

ment of A such as a(P,) is a non-zero projection, then we have v(a(Py))

= q(a)(Py) = 0. Denote by U the set of {P € QA); ||v(@)(P)|] < %, lla(P)||

> —Z’—} Since Q(A) is a Hausdorff space, ||a(P)|| is a continuous function on

0(A) and hence U is a neighborhood of P, (cf.[11; Theorem 4. 2 and 4. 1]).
Next, choose the function &(x) defined by; 8((—00,-%}): 0, 8([%,+ 0°>>

=1, &) is linear on [—i—, %} If P<€ U, then the spectrum o(a(P)) of
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a(P) is contained in [— L,_l_]u[ﬁ_,i] but not in [—— —1—, L] Hence
. . : 4 4 4 4 4 4

8(a)(P) is a non-zero projection in A(P) and 8(a)(P,) = a(P,).

"By the assumptions, A(P) = M, for all P € Q(A). Therefore there exist n
elements a,, @,,-..,a, in A ‘such that ay(P), a;(Py),-..,an(Py) are orthogonal
minimal projections in A(P,). Applying the above arguments to a, we get a
neighborhood U, of P, such that, putting e; = 8(a,), e,(P) is always a non-zero
projection for P € U, and e,(Py)= a,(P,). Suppose inductively that we have
chosen U,... (_/m, m < n, to be neighborhoods of P, and e,,...,e, in A such
that feP); i = 1.2,....,m} are non-zero orthogonal projections for P& ﬂ Ui

i=l

and e(P,) = a(P,). Applying the first argument to (1 — Z%) Am+ (l.— Zei>
i=1 =1

we can fmd again a ne1ghborhood Upnii of Py such that if we define emy: =

m

8((1 _ Zei) At <1 —>e )), em«1 (P) is a non-zero projection for any
| i 1 L.

1 =1

PG Um+1 and it is clear that the system {U.,U,,-.-,Un, Uns1; €1, €25 €m,
ens+1} also satisfies the inductive assumption. Therefore, we can get a neigh-
borhood U-of P, and n-elements e, €,,...,¢, in A such as {e(P)|i =1, 2,...,n}
are non-zero orthogonal minimal projections in A(P) for any P € U.

.- Since.e; Ae(P,) < 0, there exists an element b; € e;Ae; such as b(Py)+0.
We have 4¥b(P,) 3= 0. Hence, by the continuity of ||&/8:(P) || (cf. [11]), we get
a neighborhood U; of P, such as &%6(P) > 0 for any P € U,. In this case it
is no loss of generality that we may identify this U; with the above preceding
U,, so that b%6(P) >0 for all P€ U and i = 1,2,...,n. Notice that the kernel

of U coincides with the kernel of U. Now, {e(U); ¢ = 1,2,...,n} are orth-

ogonal abelian projections and >_ e U) = 1 in A(U). Since the structure space
i=1

of A(U) is homeomorphic to U, one easily verifies that e,Ae; (U) may be
identified with C(U), the ring of all continuous functions on U(cf. [11; Lemma
4.1]). Theréfore 56 (P) > 0 (P € U) imply that there exists ¢; € A such that
ci(U ) > 0 and cbfb,(U)=bfb,c(U) = e,(U). Take an element »,€ A with «(U)
=b(U)c(U)"*. We have

wfu(U) = "6} U)b(U)e(U)"* = c(U)bibU) = e;(U).

Besides, as «fu,(U) is a non-zero projection, % (U) is a non-zero projection.
It follows that uu%(P)= e,(P) for each P € U. Thus uui(U) = e(U).
Put u;; = wu. By the above discussions, {u;;(U); i,j =1,2,...,n} are the
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matrix units of A(U), hence A(U) is isomc/)zphic to the C*-tensor product of
e,Ae,(U) and M,. After all, A(U) = C(U)QM,. This completes the proof.

Now, let {U.} be the family of open sets corresponding to each point
of Q(A) in the preceding lemma. Denoting by {«fj} those elements of A which
induce the matrix units of A(U.), we have

n

a(U.) =2 af(U)ui(U.) for any a € A

i=1
where {af(U)} may be considered to be continuous functions on U.. Put
B = U) A(P) and define the map pr from B to Q(A) as pr(a(P)) = P. Let

PeQ(4

¢. be the map from U, X M, to pr ¥(U.), defined by
¢a(P s (Xij)) = Z )\'uut‘;(P )-
i,5=1

It is clear that ¢. is a one-to-one mapping from U, x M, onto pr - (U.). If
P € U, N Ug, we have, for any a € A

aU. NUp) = > a(Ua N Uputs (U N Up) = 3 ab(U N Ug)us (U N Up).
1,4 1,

Put gg.(P)(afi(P))] = (afs(P)), then it is not difficult to conclude that gs.(P)E€G.
Moreover,

$u(P, (@i (P))= 2 afs(P)ui(P) = Z; ay(P)uy(P) = ¢(P, (a(P)))
1,4 i,

= ¢g(P, goo (P)(ais(P))D).
Suppose P, converges to P in U, Us Let (\;;) be an arbitrary element of M,
and @ = D>_ Muly € A, then
)

a(Ue N Up) = 2_ Mjuiy(Ua N Up) = 2 al(Ue N Upufy(Ua N ).
i,J i,J

Since {af(P)} are continuous functions on Up, af(P,) converges to afj(P)
for each 7, j = 1,2,...,n. Therefore

98P i)] = (af(Po))— (@l (P)) = gel P (i)

Hence ¢g.(P,) converges to gg.(P) in G i.e. gpa is a continuous mapping from
Ua n Uﬁ -into G.
Let us consider the topology on pr~%U.) induced by ¢. from U. x M,
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then one easily verifies that this induces the unique topology on pr~'(U.N Up).
Therefore {¢.} defines a topology on B. In the following we consider the
space B endowed with this topology. Then,we have

THEOREM 3. Let A be an n-dimensionally homogeneous C*-algebra, then
A defines a fibre bundle B(A) = {B, pr, N A), M,, G}.

PROOF. By the definitions of the topology of B and the above arguments
the following results are obvious;

) pr is a continuous map from B to Q(A4),

(ii) ¢« is a homeomorphism from U, x M, to pr ¥ U.),

Gii) Palepar; M,—r M, (P€ U.NUp) coincides with the operation
of an element ¢g.(P) of G and the map gs.: U.NUsg—>G is continuous
on U.NU, Be

Moreover it is clear that pr ¢.(P,(\;;)) = P and pr~'(P) is homeomorphic
to M, for each P € Q(A). Therefore B = {B, pr, UA), M,, U,, ¢} is a
coordinate bundle.

On the other hand, the above discussio/r& shows that if U and g\' are
open sets in Q(A) such as A(U)%C(U)@ M, and A(U’)%C(U’)@M,.
where U and U’ mean the closures of U and U’, we get, for corresponding
functions ¢ and ¢  to U and U’,

&P, (\yp) = ¢(P, g(PY[(\p)])  for each P€ U N U,

where g(P) denotes an element of G corresponding to the couple of (¢, ") and
P e UN U’ Besides, g(P) is a continuous function on U (1 U". This means
that the coordinate bundle B = {B, pr, Q(4), M, G, U, ¢.} defines uniquely
the fibre bundle B(A) = {B, pr, U(A), M,, G} independent from the covering
{U.} provided that each element of the covering has the above mentioned
property.

DEFINITION. We call this fibre bundle B(A) the structure bundle of A.

Denote by Y(A) the set of all onto *-homomorphisms from A to M, and
consider the pointwise convergence topology on Y(A). Define the map A7
Y(A)—0(A) as 57(6) = 67(0) for § € Y(A) and the map ¢u: Ux x G—
7~ (U.) such as

:ﬁ;a(P, g9)@) = g7 '[(a(P))] for P € U., g €G and a € A. Then it is easily
checked that A7 is a continuous map and ;a a one-to-one map from U. x G
onto pr Y (U.).

THEOREM 4. B = {Y(A), p#A),G,G, U, b} is the associated principal
bundle of B = {B, pr, WA), M,, G, U., ¢.}
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PROOF. By the definition of Y(A) and A7 it is clear that the fibre over
the point P'€ ©(A) is homeomorphic to G. Suppose that (P, g-) converges to
(P,g) in U. x G. Since af5(P) is a continuous function on U, for each a € 4
and 4,j = 1,2,..,n, the matrix (afj(P,)) converges to (afj(P)). On the other
hand ¢5;' converges to g_1 Hence, we get

Gl o, go)a) = g5 (@ (P~ 7' [(a5(P)] = 3P, 9)(@)

because G is a topological transformation group of M,. Thus ga(P, g) is a
continuous map. Conversely if Ea (Ps, gs) cngerg_es to ax(P, ¢) in pri(U),
then ]57'('&;4(1?0, ga))——— P, converges to pr(puP, ¢)) = P. On the other hand, ﬂ)r an
arbitrary matrix (x;;) € M, put ‘@ = >_ N\uf then ¢ P, go)a) = g;’[(xij)] and
0
;&a(P, gXa) = g7 [(\)].. Hence g5'[(Ni5)] converges to g:[(h”)],» that is, 95" con-
verges:to g7 in G. Therefore g, converges to g and ¢z’ is continuous.
At last, for P € U. N Ug we have

BPygXa) = g~ [(@i(PN] = g7'g5t (P)(ah(PY)]
= 6., galP)g)a).

Therefore the coordinate transformation ge.(P) of B coincides with the one of
B and so B =.{Y(A), pr, UA), M,,G,G,U., ;S;} is the associated principal
bundle of B = {B, pr, QA), M, G, Unyba}. -~

‘ Céngxder again 't‘h\e‘ coordinate bundle B ="{B, pr. Q(A), M,, G, U, ¢} and
let A, be the space of all cross-sections of B. Then A, becomes an algebra
under the pointwise addition and multiplication and natural scalar multi-
pliéation. Besides, one easily verifies that A, is complete under the norm H f ||=
Isaggn”f(P)H Define the =*-operation on A, as f*(P)= (f(P))* for f € A,,
then it is almost clear that A, bacomes a C¥*-algebra with this *-operation. The
felation ‘between two C*-algebras A and A, is given in the following

. THEOREM 5. An n-‘di}nensz‘onll‘y homogeneous C*-algebra Ais %-isomorphic
to the C*-algebra A, defined by all 'cross-sections in the structure bundle
B(A).

7 PROOF. By the definition of the topology of B, it is clear that the map:
IS O(A) - a(P) € B defines a cross-section f, in B for each a € A. Then
the ‘map: a€ A—f, € A, is an isomorphism from A into A,. In the following
we shall show that this mapping is onto. Take an arbitary element f € A, and
define the M,-valued function a(#) on Y(A) as follows;

a6) = g [(fEP)] i 6 = $ulP, g),
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where

f(P) = 2_fi5(P)usy(P).
4J

The value of @(#) is independent of the representation of 6, in fact,> i
6 = ¢,(P, g), we have
g FEPN] = ¢ gaa(PY(FHP)] = g (D]

The same argument as in the proof of the continuity of <;l:ocL 'in Theorem . 4
shows that a(#) is a continuous functlon Moreover, for § = r]Sa(P g)

a(g-6) = alg-$LP.g") = ab(P, g'g ™) = g9 (fi(P)]

= g[a(é’)]
where g+6 means the =- hoxnomorphlsm glo(a)] (a € A). Therefore, by [10;
Theorem 9. 2], there exists a correﬁpondmg element a € A such as (i(a) = a(0)
and one can easily verify the rest of the proof ie. f=f. Thus A is isomor-
ph1c to' A,.

With the aid of this theorem, we can prove the followmg natural cor-
respondence between two *-isomorphic n-dimensionally homogeneous C*-algebras
and their structure bundles.

THEOREM 6. Let A, and A, be n-dimensionally homogeneous C*-algebras,
then A, is *-homomorphic to A, if and only if there exists a bundle map h
From B(A,) to B(A,) such as its induced map h from Q(AZ) to QA,) is

one-to-one. .

COROLLARY. Let A, and A, be n-dmensionall homogeneous C*-algebras,
then A, is *-isomorphic to A, if and only if B(A,) is equivalent to B(A,).

We take the slightly different definition from that of Steenrod [14] for
the equivalence of coordmate bundles, that is, two coordinate bundles with the
same fibre and group ‘are said to be equlvalent if there exists a bundle map
which induces the homeomorphism between their base spaces. The equivalence
of two fibre bundles are understood in the analogous way. We notice that all
reults in [14] are not essentially changed under this definition of the equi-
valence relation.

PROOF OF THEOREM Let 7 be a *-homomorphism from A4, onto A4, and
S)B = {B,, ory, ‘Q'(A ), M,,G, L ;', d’:/} and ’SB = {B,, P, 0(4,), M,, G, U, ¢a}
the coordinate bundles belongmg to %(Al) and B(4,) respectlvely Then
for any P € Q(A,) we have = '(P) 6 Q(A,). Hence 7 induces the map h:
0(A,)— Q(A,) defined by A(P) = “‘(P) and the map h: B, ~ B, defined- by
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hB(P)) = w ' (B)(R(p)) for bE A,. Clearly h is continuous and one-to-one. A
simple computation shows that prh = hpr,, hence h carries fibres into fibres
and induces the map %. Take an arbitrary element P€ U, N A~'(Uy) and con-
sider the map

.aVa(P )[(Xu)] = Sb;,—hl(l’)'h '¢'a.P[(7\tj)] for ()w) € M,

One may easily verify that this mapping is a *-automorphism of M, i.e.
Gv{P) € G. Suppose P, converges to P in U. N A~ Uy). Put b= nuf
]

and 7~ '(5) (A(P)) = X_ al{(W(P))v}{h(P)), then the matrix (a};(A(P,))) converges to

1
the matrix (a;(h(P))), for A(P,) converges to A(P) and a};(P) is a continuous
function on Uy for each i,j. Therefore gra(Pr)[(\;)] = (ai(A(P,))) converges
to gyvo(P)[(Ay)] = (a(R(P))), which implies that the map gy«(P) is a continuous
map from U.NA YUy) into G. Hence, by [14: Lemma 2.6] 4 is a bundle map.
Next, suppose that there exists a bundle map ~ from the bundle B, = {B,,
pra, UA,), M,,G, U} to the bundle B, = {B,, pry, U(4,), M,, G, U,, ¢y}
which induces the one-to-one continuous mapping %~ from Q(A4,) to Q(4,).
Since 2(A4;) is a compact space and Q(A,) a Hausdorff space, ™' is continuous

and a slight modification of Lemma 2.7 in [14] shows that A~ is continuous,
too.

For a € A,, put w(a)(P) = h~'(a(R(P))) (P € Q(A,)), then m(a)(P) is a
cross-section of B,. Hence, by Theorem 5, we can say that m(a) belongs to

A,. For P€ U. N B~'(Uy), put a,(P) = >_ Mus(P) and ax(P) = > Nyui(P)
7 47
then

h(ay(P) + ai(P)) = h¢(P, (s + M) = S3(A(P), gvalPN (s + Nip)])
= $/(A(P), Gr(PIMp)]) + ¢y (A(P), gra(PAN':)])
= h¢o(P, (My)) + hpoP, (i) = h(a,(P)) + h(ay(P))
Similarly
h(a,(P)a,P)) = ha,(P))h(a,(P)), and
h(a,(P)¥) = h(a,(P))*.

Hence 7 is a *-homomorphism from A, into A.,.
We shall show that 7 is an onto map. Let @ and ¥ be pure states of A,
and m,, m, their canonical representations. Denote by P,,P, their kernels. Then

there exists a pure state @(resp. ¥) of m(A4,) (resp. my(A4,)) and a =*-isomor-
phism 6,(resp. 6,) between A,(P,) and m,(A4,) (resp. A,(P,) and m,(A,)) such
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that

@(a) = @ (6:(a(P))) (resp. Y(a) = ¥ (6,(a(Py))))
for all @ € A,. Suppose @ =1, then we can find an element a € A, such as
@(a) +=Y(a). Moreover there exists an element & € A, such as b(A(P,))=h(a(P,))
and b(A(P,)) = h(a(P,)) even if a(P,) = a(P,) or not. Then we get

(b)) = @' (6(w(6XP1)) = @16:(h~ (B(R(PY))] = @ (6:(a(P1))
= @(a) F=V¥(a) = ¥(0(a(Py)) = ¥ (6:(m(B)(P,))) = ¥(w(b))

That is, m(A,) separates the set of pure states of A; Hence,by [11: Theorem
7. 2], we have m(A,) = A,.

In the case that A, is *-isomorphic to A,, the induced map % is a con-
tinuous one-to-one map from Q(A4,) onto Q(A4,), hence A is a homeomorphism
between the base spaces of the structure bundles. Thus A, is =%-isomorphic to

A, if and only if B(A4,) is equivalent to B(A,).

THEOREM 7. Let A, and A, be n-dimensionally homogeneous C*-algebras.
If they are algebraically isomorphic each other, then there exists a *-isomor-
phism between them, that is, A, and A, are *-isomorphic each other.

PROOF, Let 7 be an isomorphism from A, onto A,, then o is bicontinuous
and we can see that P € Q(A,) if and only if m(P) € Q(A,). Hence, by the
analogous argument as in the proof of the above theorem, one easily verifies
that the bundle B(A,) is G,-equivalent to the bundle B(4,).

Since G, is topologically isomorphic to the quotient group of GL(n,C) by
its center and G the quotient group of U(n) by its center, a straight-foward
calculation using the structure of GL(n, C) and U(n) shows that the homo-
geneous space G,/G is a solid space. Therefore, by [14 : Theorem 12.7], B(4,)
is G-equivalent to B(4,), which completes the proof.

COROLLARY. If A, is homomorphic to A,, then A, is also *-homomorphic
to A,.

PROOF. Let m be a homomorphism from A, onto A, As = is continuous,
the kernel I of 7 is a closed two-sided ideal of A,. Hence I is self-adjoint. Put
A7 = A,/I, then clearly A] is an zn-homogeneous C*-algebra and 7 induces an
isomorphism from Aj onto A, By the above theorem A; is =*-isomorphic to
A,, hence A, is *-homomorphic to A,.

Next, we shall prove the construction theorem for z-homogeneous C*-algeb-
ras from the bundles {B, pr,Q, M, G} where £ is an arbitrary compact
Hausdorff space.
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THEOREM 8. Let the fibre bundle B = {B, pr,Q, M,, G} be given where
Q denotes an arbitrary compact Hausdorff space, then there exists, except
the relation by x-isomorphism, uniquely an - -dimensionally homogeneous
C*-algebra A such that the structure bundle B(A) is equivalent to B.

PROOF Let' M (®) bz the fibre over the point @ € Q and {U.}, {¢.} the
coordinate neighborhoods and coordinate functions of 8. Without loss of gene-
rality, we may, assume that M,(®) is an algebra and, M,(®) is #*-isomorphic to
M, by the map ¢ = Po Let A be the set of all cross-sections in B. We
consider . the pomtw1s° add1t10n multiplication, #*-operation and natural scalar
multiplication“in A, than A bzcomes a *- algebra. For a € A, define the norm
lla]| = sup la(®)||, then it is almost clear that A bscomes d C*-algebra under

this norm structure. We shall show that 4 is an z-homogeneous C*-algebra. Take
an arbitrary point @ € Q and put Ps; = {a € Ala(w,) = 0}, then P,, is a closed
ideal of A. We assert that A/P,, = M,(®,). Suppose ®, € U, and consider the
map: a € A—a(w,) € M, (w,), then clearly this mapping is a *-homomorphism
from A into M,(®,). Let & be an arbitrary element of Mn(m(,) There exists a
nelghborhood U of @, such as U < U, and we can find a continuous function
S on Q such as flo))=1 and f(U°) =0 (U° means the complement of U).
We define the function a(®) as

a(“’_) = ¢u(o, f (“’)Pa(b)) for o € U,
=0 for ® € U

One easily verifies that a(w) is a cross-section of B, ie. a € A and a(w,) =b.
We have A/P,, = M,(o,).

Next, let Z bz the center of A. The above result implies that if @ € Z,
then a(w) f(®)-1 for some f € C(Q) where 1 means the identity of M, (o).
Conversely, for any function f € C(Q) the cross-section a, defined by a (@)
= f(®)+1 belongs to Z. Therefore Z = C(Q) and the spectrum of Z is homeo-
motphic with .

Now consider an arbltrary irreducible representatlon 7 of A, then 7 induces
an irreducible representation of Z having the kernel = '(0) N Z, which defines
a point @, € Q. Take the primitive ideal P,, constructed above and let a be
an arbitrary element of P,,. If ®, converges to @, in U,, p(a(w,)) converges
to pula(w,)). Hence for any & > 0 there exists an index o, such that ||p(a(®,))
— pla(wy))|| <& for o = o,. We have,

[a(@)ll = lla(@)l]| = |l|pla(@o))]] — [|pLal(e,))]]]
= llpda(@) — plal@))l <,
that is, f(®) = ||la(®)|| € C(Q) and a; € = %(0) N Z. Moreover a*a(®) < ||a(®)||*-1
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implies a*a <a;. Hence, a€ 7 %(0) that is P.,,C 7w %0). As P,, is a maximal
ideal of A, we get P,, = m 0). Thus any irreducible representation of A is
n-dimensional.

Let {B’, pr, Q(A), M,, G, U5, ¢y} be the structure bundle of A. For a
point b € B, there exists a cross-section a(®) such that a(@)=> where pr(b)=ow.
We define the map A: B—> B as h(b) = a(P,). This is clearly well-defined and
we notice: that ‘the restriction of £ to M,(®) is a. *-isemiorphism from M,(®)
to A(P.). Let h be the map defined by A(®) = P,. By the preceeding chsr!us-
sions, A is a homeomorphlsm from Q to Q(A). Moreover we have prh = hpr.
Thus & carries fibres'into fibres and induces the map A. Put gy.(@)= gby h(m)h¢xw
for © € U, N A U7). One verifies easily that gy.(w) € G ‘and they satisfy; p

Gre@)ges(®) = gre@), ® € Ua N Us N B YUY,
gr(Ho)gral@) = (@), o € Us N EXU; N UY)

where gus and gsy denote the coordinate transformations of B and %(A),
respectlvely Take an arbitrary matrix (7\”) and suppose s converges to “wy in

U.Nh I(U 7). Let Adulw,(\y) = Zb (A(w))ul(h(w)). We see that h(w,) con-
verges to A(w,) and as B}(P) is a contmuous function on Uy for each i, j,
Fral@n)[(vy)] = (Glfh(w.)) — Fral@o)[(Mi)] = (B (R(wy)).

Therefore the map; » € U, N A HUY) = gvl@) € G is continuous. It follews
from [14: Lemma 2.6] that 4 is a bundle map from B to B(A).

The above theorem offers a new method for the construction of ‘the “z-
homogeneous C*-algebras, in fact there exist a large-number of non-isomorphic
n-homogeneous C¥-algebras according to the number. of non-equivalent .fibre
bundles over the compact Hausdorff spaces with fibre. M, and group G.

Now. it is well known that an n-dimensionally homogeneous W* algebra
is isomorphic to the W*-tensor product of a commutative W*-algebra and M,
One might suspect that the analogous result holds for an arbitrary »- -homo-
geneous C*-algebra. However this is not -the'case as we shall show in the follow-
ing discussions. At first, we have

THEOREM 9. An n-dimensionally homogeneous C*-algebra A s isomorphic
to the C*-tensor product of a commutative C*-algebra and M, if and only
if the structure bundle B(A) of A is equivalent to the product bundle.

PROOF. Combining [14 : Corollary 8.4] with Theorem 4 and, th"re‘ cross-
section theorem (cf. [14 : p. 36]) one verifies easily that it is sufficient to prove
the following result; an n-dimensionally homogeneous C*-algebra is. isomor-
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phic to the C*-tensor product of a commutative C*-algebra and M, if and
only if the principal bundle {Y(A), pr, Q(A). G,G} admits a cross-section.
Suppose that the bundle {Y(A), o7, Q(A), G,G} admits a cross-section f.
For any element a € A, put a(P) = f(P)a) (P € Q(A)). Then, clearly a(P) is
a M,-valued continuous function on 2(A) and the map: @ — a is a *-homomor-
phism from A to C(Q(A), M,,), the ring of all M,-valued continuous functions
on Q(A). If a(P) =0 for all P € Q(A), then a belongs to every kernel of f(P)
(P € ©(A)) which coincide with Q(A) because f is a cross-section. Hence a =0,
and A is isomorphically embedded into C(Q(A),M,). Then, by Kaplansky [11:
Theorem 3. 4], we see that A is isomorphic to C(Q(A), M,,). On the other hand,
bX Grothendieck [8] and Takesaki [15], C(Q(A), M,,) is isomorphic to C(Q(A4))
@Mm the C*-tensor product of C(Q(A4)) and M,. Thus we have A =C(Q(A4))

pay
@ M,. R
Next we assume that A = C Q) M, for some commutative C*-algebra C.

We may assume that C = C(Q) for a compact space 2. As we mentioned above,
C(Q)@Mn = C(Q, M,), so that, by Corollary of Theorem 6, we can set A =
C(Q, M,). It follows that the center Z of A is isomorphic to C(Q). Take a
primitive ideal P of A, then P Z is a primitive ideal of Z. Hence PN Z
defines a point wr € Q. By Kaplansky [10: Theorem 9.1] the mapping P—>PNZ
is a homeomorphism between Q(A) and Q(Z). Therefore the above mapping
P — wp gives a homeomorphism between Q(A) and Q. Moreover, since P =
{a € A|la(w) = 0} is a primitive ideal of A and A is central (cf. [10], [11])
we have

P = {a € A|alwr) = 0}.

Now each @ € Q defines an element 6, of Y(A) by 6.a) = a(lw) for
a € A. Put f(P) = fwp for each P € Q(A), then f is a cross-section of {Y(A4),

prQ(A), G, G}. In fact, it is clear that f(P) is a continuous function on Q(A)
to Y(A) and

pr(f(P)) = the kernel of f(P) = {a € A|bwr(a) = 0} = {a € A|a(wr) = 0}
= P.
This completes the proof.

Theorem 8 shows that the theory of fibre bundles of #-homogeneous
C*-algebras becomes a trivial one if all #-homogeneous C*-algebras are isomorphic
to the C*-tensor products of some commutative C*-algebras and M,. But as we
mentioned above, this is not true. We can show the following
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THEOREM 10. For every n > 1, there exists an n-dimensionally homo-
geneous C*-algebra which is not isomorphic to the C*-tensor product of a
commutative C*-algebra and M,

PROOF. Considering Theorem 7 and Theorem 8, it sufficies to prove
that there exists a principal bundle over a compact space with group G which
is not equivalent to a product bundle. For the convenience of discussions, we
take the notation G, for G. Then the group G, may be considerod to be a
closed subgroup of G,h:; by the suitable identification. Since G,i; is a Lie
group, by the bundle struccture theorem (cf. [14: §7.4 and 7.5]), G, becomes
a fibre bundle over G,,/G, with fibre G, and group G,. Thus we get a prin-
cipal bundle over the compact space G,.,/G, with group G,. We assert that
this bundle is not equivalent to the product bundle for » = 2. In fact, if this
bundle is equivalent to the product bundle we have

Gn+1 = Gn+1/Gn X Gn-
Hence, by [14: §17. 7], we get
7"1(Gn+1) = "rl(Gn-H./ G,) + Wl(Gn)-

But this relation does not hold for 7z = 2 as shown in the following discus-
sions.

At first, it is known that U(n) = TSU(#). Hence a well-known isomor-
phism theorem for topological groups shows that U(n)/T = SU(»)/SU(n) N T
(topologically isomorphic) by the canonical correspondence. Therefore we may
identify G, with SU(#)/SU(n) N T. Let f bz the canonical map from SU(%)
to G, then {SU(n), f} is a simply connected convering group of G, by [2: p.59].
Hence, by [2: p. 54, Proposition 7], the Poincaré group of G, is isomorphic to
SU(n) N T, which is a cyclic group of order n. Therefore one easily see that
the above cited relation does not hold for n» = 2.

REMARK. Using the homotopy groups of SU(x#) we can show another ex-
amples of bundles which are not equivalent to the product bundles. However,
in this case, the discussions are somewhat complicated so we give here only the
brief sketch of these examples.

By the bundle structure theorem used above, SU(n + 1) becomes a principal
fibre bundle over SU(z + 1)/SU(n) with group SU(n). On the other hand we
see that G, is topologically isomorphic to the factor group SU(n)/SU(n) N T.
Hence the above bundle induces a G,-bundle over the compact space SU(z + 1)
/SU(%). We can prove that this bundle is not equivalent to the product bundle for
n = 2. In fact, suppose this bundle is equivalent to the product bundle, then
we can show that the original bundle SU(z + 1) is SU(n)-equivalent to the
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SU(n) N T-bundle and since SU()NT is a discrete group, the bundle {SU(n+1),
2, SUn + 1)/SU(n). SU(n), SU(n) N T} is equivalent to the product bundle by
[14: Corollary of the classification theorem]. We have

SU(n + 1) = SU(n + 1)/SU(n) x SU(n).
Therefore we get
T SU + 1)) = 7, (SU(n + 1)/SUR)) + 7.,(SU)).

Now. by the theorem of Bott, we have 7;,(SU(n + 1)) = 0 and by the
theorem of Borel-Hirzebruch 7,,(SU(%)) is a cyclic group of order n!, which
implies a contradiction (cf. [1], [16]).

This completes the proof.

COROLLARY. Let A, and A, be n-dimensionally homogeneous C*-algebras,
then the isomorphic relation between their centers does not necessarily imply
the isomorphic relation between A, and A,

Pa
The proof is trivial once we consider the C*-tensor product C(Q(4))&) M,

for the structure space Q(A) of a C*-algebra A which is not itomorphic to the
C*-tensor product of a commutative C*-algebra and M,

At last, we shall study the relation between the unitary group Us of A
and the group of *-automorphisms G4 of A leaving the center elementwise fixed.
Since Uln)/T = SU(n)/SUx) N T by the canonical correspondence, we may
identify G with SU(n)/SU(n) N T. Since SU(n) N T has a local cross-section
in SU@)(cf. [14: §7.4]) there exists a neighborhood V of the unit of
G( = SU@#)/SU(n) N T) and a continuous mapping f of V into SU(m) such
that f(g) induces the (inner) *-automorphism g for each g € V. It follows T
has a local cross-section f in V(») whose values belong to SU(n). From [14:
Corollary of Theorem 7.4]. U(n) is considered to be a principal bundle over
G(= U(n)/T) with group T. The structure of this bundle is the following:

Let V and f be a neighborhood of the unit of G and a local cross-section
over V mentioned above, then the family {o*V|e € SUn)} becomes an open
covering of G which is the system of coordinate neighborhoods of G. We
define the local cross-section f, on oV =V, by f.(¢9)=0cf(a"'g) for g€ V..
For each (¢9,A) € V, x T, define the function ¢.(g,A) = A f(g). We get the co-
ordinate transformation ¢..(¢9) = (fo(9))"*f(g) for ¢ € V, N V. which belongs
to SU(n) N T. Hence U(n) is a fibre bundle over G with fibre T and group
SU@) N T. As it was shown in the proof of Theorem 10, the Poincaré group
of G is a cyclic group of order =z It follows that the Poincaré group of
G X T is isomorphic to the product group of order z and the additive group
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of all integers, the Poincaré group of 7. On the other hand, it is known that
the Poincaré group of U(n) is isomorphic to the additive group of all integers.
Therefore the above bundle is not equivalent to a product bundle.

Now let G(P) be the group of all *-automorphisms of A(P), then we have
G(P) = G. We consider on G(P) the simple convergence topology on A(P),
then the preceding isomorphism relation becomes topological. Put Bf = P\QJA) G(P)

G916 .
For every b € B there exists a unique point P € Q(A) such as b€ G(P). We
define pe(b) = P. Let U. be a coordinate neighborhood of the structure bundle
of A. We define the coordinate function Y. of U. X G onto ps'(U.) by

Vu(P, g)[a] = % Niglpla)ui(P)

for each a € A(P) where AN (g9[pa)]) means the (i, j)-component of the matrix
glpLa)] and p. = ¢z’ Take an arbitrary element P € U, N Ug, then we have,
for each a € A

oP) = 3 af (P (P) = 3 b (Pufi(P)

= ¢uP, (ais(P))) = ¢a(P, (afs(P)))
and
(@f)(P)) = gea P)(afs(P))].

Hence we get

VAP, g)[a(P)] = TT Nifglai (P)us(P)
= Z Miga(Pgl(a (P by (P)

= Z, Nk gealP)ggaa (P)(a (P))]ufi(P)

= Yu(P, gsalP)ggsa(P))a(P)],
that is,

Vs PXg) = V5¥e,2(9) = gou(P)gii (P) = geul P)-g.

We introduce the topology on Bf by the family of the mapping {V¥.}. Then
the above arguments show that Bf is a fibre bundle over Q(A). The fibre of
this bundle is G and the group is also G, but acting on the fibre as inner
automorphisms.

Set B” = Pkﬂ_(j“ U(P) where U(P) denotes the unitary group of A(P). Since
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U(n) is an invariant subspace of M, under G, B” becomes a fibre bundle over
O(A) with fibre U(n) and group G as a subbundle of B. For each u € U(P),
we define a #-automorphism g, € G(P) of A(P) by g.[a]l= uau™* for a< A(P).
Set the mapping v : B” — B by »(x) = ¢,. Denote by 7 the natural mapping :
U(n) > G. Then we have, for a € A(P),

v(u)al = uau™?

= 2 Mf @) pul @) pele) i (P)
05

= Yu(P, npu(w))la]

where pr(u) = P € U,. Hence, by [14: Theorem 9.6], we get the following
result:

BV is a fibre bundle over B° relative to the projection v. The fibre of
the bundle is one-dimensional torus group T and the group is SU(n) N T
acting on the fibre by left multiplications.

The restriction of the structure group from 7" to SU(n) N T follows from
the following observations.

Set

Wao = Yol(Ux X Vo) and Vu(Yu(P. 9), N) = dP, N fo(g))

for each (P,g,\) € U. x V, x T, where V, and f;(g) mean the notations
used in the first paragraph of our discussions. As it was shown in the proof
of the above cited theorem, {Was} and {v.,} are the coordinate neighborhoods
and the coordinate functions. The coordinate transformations are

YVar,ao(b) = fi(gaul P)g 95 (P)) gl P) (9]
for b =Vu(P,g) € War N W,

which are easily seen to belong to SU() N T.

From Theorem 5, one can see that there exists a one-to-one corres-
pondence batween Uy and the family of all cross-section in BY. That is, for
each element <€ U, the mapping: P—> u(P) € B” defines a cross-section over
Q(A) and conversely, for each cross-section f over Q(A), there exists an element
u € U, such as #(P) = f(P). '

Consider a =*-automorphism 6 leaving Z elementwise fixed We have
6(P) N Z=PN Z for each primitive ideal P of A and as A is central this
implies #(P) = P i.e. P is invariant by 6. Hence # induces a =%-automorphism
6(P) on A(P) and one sees without difficulty that the mapping P—>6(P) defines a
cross-section of B¢ over Q(A). Conversely, suppose f(P) is a cross-section of B¢.
A straight-forward calculation shows that f(P)[a(P)] defines a cross-section of



APPLICATIONS OF FIBRE BUNDLES 521

B for each a € A. Hence there exists an element @ € A such as a(P) = f(P)
[a(P)] by Theorem 5. Define the mapping ¢ by #(a) = a, then one verifies easily
that ¢ is a *-automorphism of A leaving Z elementwise fixed and 8(P) = f(P).
Put Q° = {6(P): P € Q(A)}{ < B®. For each element u € Uy, we define
the inner automorphism 6,(a) = uau™'. Then the mapping -6,(P)—>u(P) is a
cross-section of the relative (SU(n) N T, SU(n) N T)-bundle B” over the base
space (B, Q%). Conversely, let 6 be a *-automorphim of A leaving Z element-
wise fixed. If there exists a cross-section f in the relative bundle BY over ’,
then f defines a cross-section f~ of the bundle BY over Q(A4) by f'(P)=f(6(P)).
Hence we can find an element u € U4 such as w(P)= f(P). We have 6,(P) =
6(P) for all P € Q(A). Thus 6 is an inner automorphism of A. We have

THEOREM 11. B” is a fibre bundle over B relative to the map v. The
fibre of this bundle is T and the group is SU(n) N T acting on the fibre by
left multiplications. A *-automorphism 6 of A leaving the center elementwise
fized is inner if and only if there exists a cross-section in the relative

SU@) N T, SU(n) N T)-bundle BY over the base (Bf, Q).

COROLLARY. If Q(A) is arcwise-connected, arcwise locally connected and
simply connected, then every *-automorphism of A leaving the center ele-
mentwise fixed is inner.

PROOF. As it is clear that Q° is homeomorphic with Q(A4) for each
*-automorphism 6, Q° satisfies the same conditions as Q(A4) does. Hence. by
[14: §13. 9], the relative bundle B” over ©° is equivalent to the product bundle.
Therefore this bundle always has a cross-section.

REMARK, Assume Q =G and A4 = C(Q)@ M,, then by Theorem 9,

B=G x M,, hence B"~ G X U(n). Moreover we get B°~G X G. A is con-
sidered to bz the ring of all M,-valued continuous functions on G.
Dafine the *-automorphism 6 of A by

6(a)g) = glalg)] for each a € A and g € G.

We have Q° = {(g, 9)lg € G}. We shall show that this automorphism is not
inner. In fact, suppose there exists a cross-section f in B” over ’, then we
have

f(g, 9) = (g,0(g)) € B". Since f(g.9) induces the automorphism 6(g), o(g)
induces the automorphism ¢ for every ¢ € G. Hence a(g) is a cross-section of
the bundle U(n) over G. But the first part of our discussions in this section
shows that U(n) is not a trivial bundle over G, which is a contradiction (cf.
[14 : §8.31]). Thus there exists an outer *-automorphism in A.

3. Concluding remarks Though we assumed the unit in a C*-algebra
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throughout this paper, the assumption is not essential in our discussions of §2
except Theorem 11. Some minor modifications and usual transitions for lack of
the unit such as taking the word “vanishing at infinity” for “all” make us
enable to prove the analogous results for an z#-homogeneous C*-algebra without
unit, so we omit the details.

ADDED IN PROOF. After writing this paper, Glimm’s new paper has
appeared “Type I C*-algebras, Ann. Math., 73(1961), 572-612” in which he treats
the analogous problem to our Theorem 1 without the assumption of the unit.

He informed us kind[y that Fell’s unpublished paper, “The structure of algebras
of operator fields”, treated the same problems as our $2 and his results overlap
with ours in many points, though we do not know which parts of this paper

overlap with his. All results of this paper were derived independently of
those of the above paper.

REFERENCES

[1] R.BOTT, The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A,,
43(1957), 933-935.

[2]1 C.CHEVALLEY, Theory of Lie groups I, Princéton 1946.

[31 J. DIXMIER, Sur les C*-algébres, Bull. Soc. Math. France, 88(1960),95-112.

[4] J.M.G.FELL, The dual spaces of C*-algebras, Trans. Amer. Math. Soc., 94(1960),
365-405.

[561 J.GLIMM,On a certain class of operator algebras, Trans. Amer. Math. Soc.,
95(1960), 318-340.

[61 J.GLIMM: A Stone-Weierstrass theorem for C*-algebras, Ann. Math., 72(1960), 216-244.

[7]1 R.GODEMENT, Les fonctions de type positif et la théorie des groupes, Trans. Amer.
Math. Soc., 63(1948), 1-84.

[8] A.GROTHENDIECK, Produits tensorieles topologiques et espaces nucléaires, Mem. of
Amer. Math. Soc., 1955.

[9] R.KADISON, Irreducible operator algebras, Proc. Nat. Acad. Sci. U. S. A.,43(1957),
273-276.

[10] I.KAPLANSKY, Normed algebras, Duke Math. Journ., 16(1949), 339-418.

[11] I.KAPLANSKY, The ‘structure of certain operator algebras, Trans. Amer. Math. Soc.,
70(1951), 219-255.

[12] C.E.RICKART, The uniqueness of norm problem in Banach algebras, Ann.Math,
51(1950), 615-628.

[13] S.SAKAI, On some problems of C*-algebras, Tohoku Math. Journ., 11(1959),453-455.

[14] N.STEENROD, The topology of fibre bundles, Princeton 1951.

[15] M.TAKESAKI, A note on the cross-norm of the direct product of operator algebra,
Kbddai Math. Sem.Rep., 10(1958),137-140.

[16] H.TODA, A topological proof of theorems of Bott and Hirzebruch for homotopy groups
of unitary groups, Mem.Coll. Sci. Univ. Kyoto, 32(1959),103-119.

[17] T.TURUMARU, On the direct product of operator algebra, Tohoku Math. Journ., 4(1953),
243-251.

[18] H.YOSHIZAWA, Some remarks on unitary representations of the free groups, Osaka
Math. Journ., 3(1951),55-63.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY,

AND DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.





