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In [9], V.Ptak discusses open mapping properties of locally convex spaces
and shows that the class of J3-complete spaces has an essential role. Such
spaces, which we shall call "fully complete" according to [3], seem to share
with some kind of mapping properties of Banach spaces. The purpose of
the present note is to describe in §1 a few results concerning the range theorems
of closed operators in fully complete spaces and in §2 some properties of fully
complete spaces. Henceforth, we shall consider locally convex linear topological
spaces over the real or complex field and the terminology will refer to [2].

1. Range theorems in locally convex spaces. The following is a con-
sequence of the open mapping theorem ([9]: 4. 7).

THEOREM 1. I. Let E be a fully complete space and F a locally con-
vex space. If u is a closed linear operator with domain EQ in E and range
in F and if u is almost open, then u(E0) is a closed linear sub space of F.

PROOF, u is open by virtue of the open mapping theorem, and E/u~l(Q)
is fully complete in the quotient topology. Moreover, since u~l(ϋ) is a subspace
of E0, the quotient topology of E0 by u~l(ϋ) is identical with the topology
induced by E/u'KO). Now, let v be the induced mapping of u, then u = v φQ

where φ0 denotes the restriction on E0 of the canonical mapping of E onto
E/u~l(Q) and v is one-to-one and open. To prove that v is a closed operator,
supposet tha \XΛ \CL € A\ is a net in EQ/u~l(fy which is convergent to i0 in
E/u~l(Q), and that V(XΛ) converges to y0 in F. Then there exists a net
\xa \ct€A\ in E0 and XQ in E such that XΛ € XΛ for all a € A, x0 € ά0 and
\xa\ converges to XQ. Therefore we have z;(iα) = u(xa)-+yQ, and hence XQ € E0

and y0 = U(XQ\ i. e. xa € Eo/u'^O) and y0 = V(XQ).
In the following, we assume that u is one-to-one and \ya\oL€iA} is a net

in u(Eo) such that yΛ-+yo in F. Then \xa \a € A] where xa = u~\ya) is a
Cauchy net in E0, and hence converges to a point x§ in E. Since u is a
closed operator, x0 € E0 and y0 = u(x0). The proof is completed.

REMARK. Every homoraorphic image of a fully complete space is fully
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complete, but this need not be the case for a closed operator which is open.
In fact, if E=(X, S) is an infinite-dimensional Banach space and if F = (X,S')
is a normed linear space such that Z' is strictly finer than S, then the identity
mapping of E onto F is open and has the closed graph in E x F. But F is
not complete.

COROLLARY 1. 1. Let E be a fully complete space, F a locally convex
space, and u a closed linear operator with domain EQ in E and range in F.
If u(E0) is of the second category in F, then u(Eo) = F.

PROOF. The verification is easy from Theorem 1.1 and the arguments in [6].

In the sequel, we shall discuss another applications of Theorem 1. 1 which
relate with results given in [1], [5] and [8]. The following is a generalized
formulation of the Banach-Hausdorff theorem.

THEOREM 1. 2. Let E be a fully complete space, F a quasi-barrelled
space, and u a closed linear operator with dense domain in E and range in
F. Suppose that the adjoint operator lu of u has the inverse which is con-
tinuous relative to β(F\F) and β(E\E). Then u is an open mapping onto F.

PROOF. We denote by E0 the domain of u and define H' as the set of y
in F' for which < u(x\ y'> is a continuous function of x. Then u is
uniquely defined by < x, lu(y) > = < u(x\ y' > for x € £0 and y' € H\
and Xy) is an element of E'. Let U be an arbitrary convex and symmetric
neighborhood of 0 in E. Then for every y € (u(E0 Γ) ί/))°, < u(x), y' > is a
continuous function of x and hence y belongs to ΉL. Therefore we have,

(u(u n £0))° = (u(u n £0))° n Ήf

= 'iΓ'CVH') n (I/ π £0)°).
Since (U Π E0)° = [7°, (U Π E0)° is an equicontinuous subset of E' and hence
β(E', JE)-bounded. But then, in view of the hypothesis of tuί (u(U (Ί £o))° is
β(F', >F)-bounded in F' and therefore equicontinuous because of the assumption
that F is quasi-barrelled. Consequently, there is a neighborhood V of 0 in F
such that

(U(U Π Eg))00 ID V,

hence u(U Π £β)'Π u(EQ) ID V Π u(EQ\

Namely, u is an almost open mapping from EQ onto u(EQ\ Hence u is open
and U(EQ) is closed in F. Thus we have u(EQ} = Cw'KO))0 =F, which completes
the proof.

We shall say that a barrelled space is fully barrelled if and only if every
closed linear subspace is also barrelled ([!]). The following relates with Lemma
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2. 8 in [1] and enables us to deduce directly a result discussed in [5] and [8].

THEOREM I. 3. Let E be a fully complete space with the dual E' fully

barrelled relative to β(E,Έ\Fa fully barrelled space with F' fully complete

relative to β(F', F), and u a closed linear operator with dense domain in E

and range in F. Suppose that the range of lu is β(E'', Enclosed. Then, the

range of u is closed.

PROOF. Let EQ be the domain of u, and u(EQ) = G. We define a linear

mapping uτ from E0 into G by u-^x^ — ̂ x). Then uτ is a,closed operator and

u may be written as the composition j uτ where j denotes the" injection mapping

of G into F. Let H' be the domain of lu, then for z € H' and x € jE0, we
have < u(x\ #' > = < u^x\ *j(z) > . Since < u(x\ z' > is a continuous
function of x, lj(z) € D^u^, and we have

<u,(x\ 'jOO > = < x, WOO >.

Thus, '*« = VV on H' and 'j(H') c D('iO.
On the other hand, if 3;' is an element of D(ίw1) and z' an extension on F of

3/, then j/ = VGO and from < u(x\ z' > = < MZ(Λ:), 3;' > we have z € H'.
Therefore, * j (H ' ) = D^u^\ Consequently, we have R(?u) — R(?u^.

Moreover, it is clear that *uτ is one-to-one and both tu1 and *u are closed

operators relative to the strong topologies. Since F' is fully complete and
tu(H') is barrelled, tu is open relative to β(F\F) and β(E',E). Therefore tuτ

is also an open mapping and Theorem 1. 2 implies that u^Eo) = G. The proof

is completed.

COROLLARY 1. 2. Let E and F be Banach spaces, and u a closed linear

operator with dense domain in E and range in F. If the range of lu is

strongly closed, then the range of u is closed.

COROLLARY 1. 3. Let E be a Banach space, F a reflexive (F)-space, and

u a closed linear operator with dense domain in E and range in F. Suppose

that *u has the strongly closed range, then u has also the closed range.

PROOF. It is sufficient to note that a reflexive (F)-space is fully barrelled

and has the fully complete strong dual ([7], [9]).

2. Products of fully complete spaces. A subset M' of E' is ew*-closed

if and only if U° Π M' is σ(£',£)-closed in U° for every convex and sym-

metric neighborhood U of 0 in E. Also, the necessary and sufficient condition

for E to be fully complete is that every continuous and almost open linear

mapping u of E onto F is open for every locally convex space F. We shall

show in the sequel that for a product of two fully complete spaces the similar
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result holds under somewhat strengthened conditions^ The following lemmas
are due to (4. 4) and (3. 8) in [9].

LEMMA 2. 1. If u is a continuous and almost open linear mapping of E
into F, then *u(F') is ew*- closed in E'.

LEMMA 2.2. If a continuous and almost open linear mapping of E onto
F is weakly open} Le. open relative to σ(E9E} and σ(.F,F'), then it is open
relative to the original topologies.

n
Now, let E = TT Et denote a product space of locally convex spaces then

ί = l

n n

E' = II Eίy where < x, x > = Σ <xίίx\> for x = (x()€:E and x — (x\) € E '.
ί=1 ί=l

For a continuous linear mapping u of E into F and for x = (x^^E, we have
n

u(χ) = Σ uί(χi) where each W j is defined by H^XI) = w(θ,.. , 0, xiy 0,. .?0) so
i=l

that continuous and linear from £$ into F. We put u^E^) = Ft and

Ht = ^Fj9 i= l,2,...,n.
^=*=ί

LEMMA 2. 3. Under the above hypotheses we have

If in addition Et(i = 1, 2,...,w) are fully complete and u is almost open, then

ΠWHi°) is σ(E\ Enclosed in E'.

PROOF. If y\^ H? (i = 1 ,..., n) and x = (Λ:,) € E, then we have
w

< *, (w^'i)) > = Σ
=ι

which shoλvs the first assertion.
To prove the second assertion, let Ut be an arbitrary convex and sym-

metric neighborhood of 0 in Ei and let \x ' icί ot€ A] be a net in WHi0) Π Ut°
which converges to x\ relative to the σ(Eί ', E^-topology in Eί . Then the net
{(δijx'ia) I OL € A], where Stj is the Kronecker delta, lies in
'w(F') Π (Eτ X ... x JEι_! x Ut X Eί+1 X ... X £w)° and converges to (S )̂ relative to
the σ(E ',£)- topology. Since by Lemma 2.1 ^(F') is eze^-closed, ($ijXί) belongs
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to XF'). Therefore there exists a y'Q € F' such that (Sux't) = *tt(y'Q) and we
have for every x = (x€) € E,

= < WiUO, 3/0 > + < ΣwjUΛ /α >•

It follows that x i = tui(y\} and y'0 € Hf, whence x\ € tui(Hi°} and
is ereAclosed. The assumption that Et is fully complete implies that

n
tui(Hi°) is σ(Ei, Fί)-closed. Thus, JJ tui(Hi°} is σ(E'', Enclosed.

REMARK. If u is a homomorphism, then, since tu(F'} is σ(£', £)-closed,
we can see from the above proof that the result of Lemma 2. 3 remains valid
without the hypothesis that Et (i = 1,2,...,n) are fully complete.

THEOREM 2.1. (1) Suppose that E = El X E2 is a product of fully com-
plete spaces and u is a linear^ continuous and almost open mapping of E
onto F. If Ft (i = 1,2) are closed and Fτ Π F2 = (0), then u is a homomor-
phism.

(2) Suppose that E = Eτ x E2 is a product of Bτ-compLete spaces and u
is a one-to-one linear mapping of E onto F which is continuous and almost
open. If Fi(i = 1,2) are closed, then u is an isomorphism.

PROOF. (1) From Lemma 2. 3 we have
VF,° + F2°) = WF2°) x WFχC), where F,0 + F2° is σ(F/

JF)-closed because
tu1(F2°)X'tU2(FΊ

0) is σCE^ΐ^-closed and lu is one-to-one and continuous relative
to <r(F',F) and σ(E', JE). But then, Fz° + F2° = (Fτ Π F2)° = F'. Therefore
tu(F') = tu-L(F2°} X tuz(Fτ°\ and the σ(E',E)-closedness of tu(F'} and Lemma
2. 2 imply that u is open.

(2) In case u is one-to-one, F is the algebraic direct sum of Fi (i = 1,2).
Since tu(F') is tftί ^-closed, ίWι(F2°) is shown to be eze ^-closed in the same way
as in Lemma 2. 3. Moreover, if, for an xτ € E19 < xl9

 gWι(F2°) > = 0, then
u&ύ € F2°° = F2 and therefore w1OI)€F1 f] F2 = (0), whence xτ = 0. Thus,
tul(F2°} is σ^^jEj-dense in £/ and hence tul(F2°} = F/ because of ^-com-
pleteness of Eτ.

Similarly ίw2(F1°) = E2, and we have

COROALLRY 2.1. If a Br-complete barrelled space is an algebraic direct
sum of two closed linear subspaces then it is at the same time the topological
direct sum.
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PROOF. Let F=F1@F2 be an algebraic direct sum where F is -Br~complete

and barrelled and Fi(i =1,2) are closed in F. We indicate by φ the canonical

mapping of E = Fτ x F2, the product of Fi9 onto F. Ft (i = 1, 2) are £r-com-

plete and φ is almost open, so that φ is an isomorphism by virtue of Theorem

2.1 (2), which completes the proof.

COROLLARY 2. 2. Let E be a Br-complete and barrelled space. If there is

for every closed linear subspace a complementary closed linear subspace, then

E is fully complete.

PROOF. It is easily seen that for a βr-complete space to be fully complete

it is necessary and sufficient that every quotient space is Sr-complete. Let E0 be
a closed linear subspace of E and Eτ a corresponding closed linear subspace

which is complementary to EQ. Then E/E0 is isomorphic with E1 which is

J5r-complete.
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