ON FULLY COMPLETE SPACES

NOZOMU MOCHIZUKI

(Received Aug. 5, 1961)

In [9], V.Pták discusses open mapping properties of locally convex spaces and shows that the class of *B*-complete spaces has an essential rôle. Such spaces, which we shall call "*fully complete*" according to [3], seem to share with some kind of mapping properties of Banach spaces. The purpose of the present note is to describe in \$1 a few results concerning the range theorems of closed operators in fully complete spaces and in \$2 some properties of fully complete spaces. Henceforth, we shall consider locally convex linear topological spaces over the real or complex field and the terminology will refer to [2].

1. Range theorems in locally convex spaces. The following is a consequence of the open mapping theorem ([9]:4.7).

THEOREM 1.1. Let E be a fully complete space and F a locally convex space. If u is a closed linear operator with domain E_0 in E and range in F and if u is almost open, then $u(E_0)$ is a closed linear subspace of F.

PROOF. u is open by virtue of the open mapping theorem, and $E/u^{-1}(0)$ is fully complete in the quotient topology. Moreover, since $u^{-1}(0)$ is a subspace of E_0 , the quotient topology of E_0 by $u^{-1}(0)$ is identical with the topology induced by $E/u^{-1}(0)$. Now, let v be the induced mapping of u, then $u = v \cdot \varphi_0$ where φ_0 denotes the restriction on E_0 of the canonical mapping of E onto $E/u^{-1}(0)$ and v is one-to-one and open. To prove that v is a closed operator, supposet tha $\{\dot{x}_{\alpha} \mid \alpha \in A\}$ is a net in $E_0/u^{-1}(0)$ which is convergent to \dot{x}_0 in $E/u^{-1}(0)$, and that $v(\dot{x}_{\alpha})$ converges to y_0 in F. Then there exists a net $\{x_{\alpha} \mid \alpha \in A\}$ in E_0 and x_0 in E such that $x_{\alpha} \in \dot{x}_{\alpha}$ for all $\alpha \in A, x_0 \in \dot{x}_0$ and $\{x_{\alpha}\}$ converges to x_0 . Therefore we have $v(\dot{x}_{\alpha}) = u(x_{\alpha}) \rightarrow y_0$, and hence $x_0 \in E_0$ and $y_0 = u(x_0)$, i. e. $x_{\alpha} \in E_0/u^{-1}(0)$ and $y_0 = v(\dot{x}_0)$.

In the following, we assume that u is one-to-one and $\{y_{\alpha} | \alpha \in A\}$ is a net in $u(E_0)$ such that $y_{\alpha} \to y_0$ in F. Then $\{x_{\alpha} | \alpha \in A\}$ where $x_{\alpha} = u^{-1}(y_{\alpha})$ is a Cauchy net in E_0 , and hence converges to a point x_0 in E. Since u is a closed operator, $x_0 \in E_0$ and $y_0 = u(x_0)$. The proof is completed.

REMARK. Every homomorphic image of a fully complete space is fully

N. MOCHIZUKI

complete, but this need not be the case for a closed operator which is open. In fact, if $E = (X, \mathfrak{T})$ is an infinite-dimensional Banach space and if $F = (X, \mathfrak{T}')$ is a normed linear space such that \mathfrak{T}' is strictly finer than \mathfrak{T} , then the identity mapping of E onto F is open and has the closed graph in $E \times F$. But F is not complete.

COROLLARY 1.1. Let E be a fully complete space, F a locally convex space, and u a closed linear operator with domain E_0 in E and range in F. If $u(E_0)$ is of the second category in F, then $u(E_0) = F$.

PROOF. The verification is easy from Theorem 1.1 and the arguments in [6].

In the sequel, we shall discuss another applications of Theorem 1.1 which relate with results given in [1], [5] and [8]. The following is a generalized formulation of the Banach-Hausdorff theorem.

THEOREM 1.2. Let E be a fully complete space, F a quasi-barrelled space, and u a closed linear operator with dense domain in E and range in F. Suppose that the adjoint operator ^tu of u has the inverse which is continuous relative to $\beta(F',F)$ and $\beta(E',E)$. Then u is an open mapping onto F.

PROOF. We denote by E_0 the domain of u and define H' as the set of y'in F' for which $\langle u(x), y' \rangle$ is a continuous function of x. Then ${}^t u$ is uniquely defined by $\langle x, {}^t u(y') \rangle = \langle u(x), y' \rangle$ for $x \in E_0$ and $y' \in H'$, and ${}^t u(y')$ is an element of E'. Let U be an arbitrary convex and symmetric neighborhood of 0 in E. Then for every $y' \in (u(E_0 \cap U))^\circ$, $\langle u(x), y' \rangle$ is a continuous function of x and hence y' belongs to H'. Therefore we have,

$$(u(U \cap E_0))^{\circ} = (u(U \cap E_0))^{\circ} \cap H'$$
$$= {}^{t}u^{-1}({}^{t}u(H') \cap (U \cap E_0)^{\circ}).$$

Since $(U \cap E_0)^\circ = U^\circ$, $(U \cap E_0)^\circ$ is an equicontinuous subset of E' and hence $\beta(E', E)$ -bounded. But then, in view of the hypothesis of ${}^t u$, $(u(U \cap E_0))^\circ$ is $\beta(F', F)$ -bounded in F' and therefore equicontinuous because of the assumption that F is quasi-barrelled. Consequently, there is a neighborhood V of 0 in F such that

$$(u(U \cap E_0))^{\circ\circ} \supset V,$$

$$u(U \cap E_0) \cap u(E_0) \supset V \cap u(E_0).$$

hence

Namely, u is an almost open mapping from E_0 onto $u(E_0)$. Hence u is open and $u(E_0)$ is closed in F. Thus we have $u(E_0) = ({}^t u^{-1}(0))^{\circ} = F$, which completes the proof.

We shall say that a barrelled space is fully barrelled if and only if every closed linear subspace is also barrelled ([1]). The following relates with Lemma

486

THEOREM 1.3. Let E be a fully complete space with the dual E' fully barrelled relative to $\beta(E, E)$, F a fully barrelled space with F' fully complete relative to $\beta(F', F)$, and u a closed linear operator with dense domain in E and range in F. Suppose that the range of 'u is $\beta(E', E)$ -closed. Then, the range of u is closed.

PROOF. Let E_0 be the domain of u, and $u(\overline{E_0}) = G$. We define a linear mapping u_1 from E_0 into G by $u_1(x) = u(x)$. Then u_1 is a closed operator and u may be written as the composition $j \cdot u_1$ where j denotes the injection mapping of G into F. Let H' be the domain of ${}^t u$, then for $z' \in H'$ and $x \in E_0$, we have $\langle u(x), z' \rangle = \langle u_1(x), {}^t j(z') \rangle$. Since $\langle u(x), z' \rangle$ is a continuous function of $x, {}^t j(z') \in D({}^t u_1)$, and we have

$$< u_1(x), \ {}^tj(z') > = < x, \ {}^tu_1 \cdot {}^tj(z') >.$$

Thus, ${}^{t}u = {}^{t}u_1 \cdot {}^{t}j$ on H' and ${}^{t}j(H') \subset D({}^{t}u_1)$.

On the other hand, if y' is an element of $D({}^{t}u_{1})$ and z' an extension on F of y', then $y' = {}^{t}j(z')$ and from $\langle u(x), z' \rangle = \langle u_{1}(x), y' \rangle$ we have $z' \in H'$. Therefore, ${}^{t}j(H') = D({}^{t}u_{1})$. Consequently, we have $R({}^{t}u) = R({}^{t}u_{1})$.

Moreover, it is clear that ${}^{t}u_{1}$ is one-to-one and both ${}^{t}u_{1}$ and ${}^{t}u$ are closed operators relative to the strong topologies. Since F' is fully complete and ${}^{t}u(H')$ is barrelled, ${}^{t}u$ is open relative to $\beta(F', F)$ and $\beta(E', E)$. Therefore ${}^{t}u_{1}$ is also an open mapping and Theorem 1.2 implies that $u_{1}(E_{0}) = G$. The proof is completed.

COROLLARY 1.2. Let E and F be Banach spaces, and u a closed linear operator with dense domain in E and range in F. If the range of ${}^{t}u$ is strongly closed, then the range of u is closed.

COROLLARY 1.3. Let E be a Banach space, F a reflexive (F)-space, and u a closed linear operator with dense domain in E and range in F. Suppose that ^tu has the strongly closed range, then u has also the closed range.

PROOF. It is sufficient to note that a reflexive (F)-space is fully barrelled and has the fully complete strong dual ([7], [9]).

2. Products of fully complete spaces. A subset M' of E' is ew^* -closed if and only if $U^{\circ} \cap M'$ is $\sigma(E', E)$ -closed in U° for every convex and symmetric neighborhood U of 0 in E. Also, the necessary and sufficient condition for E to be fully complete is that every continuous and almost open linear mapping u of E onto F is open for every locally convex space F. We shall show in the sequel that for a product of two fully complete spaces the similar

N. MOCHIZUKI

result holds under somewhat strengthened conditions. The following lemmas are due to (4.4) and (3.8) in [9].

LEMMA 2.1. If u is a continuous and almost open linear mapping of E into F, then ${}^{t}u(F')$ is ew^{*}-closed in E'.

LEMMA 2.2. If a continuous and almost open linear mapping of E onto F is weakly open, i.e. open relative to $\sigma(E, E')$ and $\sigma(F, F')$, then it is open relative to the original topologies.

Now, let $E = \prod_{i=1}^{n} E_i$ denote a product space of locally convex spaces then $E' = \prod_{i=1}^{n} E_i'$, where $\langle x, x' \rangle = \sum_{i=1}^{n} \langle x_i, x'_i \rangle$ for $x = (x_i) \in E$ and $x' = (x'_i) \in E'$. For a continuous linear mapping u of E into F and for $x = (x_i) \in E$, we have $u(x) = \sum_{i=1}^{n} u_i(x_i)$ where each u_i is defined by $u_i(x_i) = u(0, \dots, 0, x_i, 0, \dots, 0)$ so that continuous and linear from E_i into F. We put $u_i(E_i) = F_i$ and $H_i = \sum_{j \neq i} F_j$, $i = 1, 2, \dots, n$.

LEMMA 2.3. Under the above hypotheses we have

$${}^{t}u\left(\sum_{i=1}^{n}H_{i}^{\circ}\right)=\prod_{i=1}^{n}{}^{t}u_{i}(H_{i}^{\circ}).$$

If in addition E_i (i = 1, 2, ..., n) are fully complete and u is almost open, then $\prod_{i=1}^{n} {}^{i}u_i(H_i^{\circ}) \text{ is } \sigma(E', E)\text{-closed in } E'.$

PROOF. If $y'_{i} \in H_{i}^{0}$ (i = 1, ..., n) and $x = (x_{i}) \in E$, then we have

$$< x, ({}^{i}u_{i}(y'_{i})) > = \sum_{=1}^{n} < u_{i}(x_{i}), y'_{i} >$$

 $= < u(x), \sum_{i=1}^{n} y'_{i} >,$

which shows the first assertion.

To prove the second assertion, let U_i be an arbitrary convex and symmetric neighborhood of 0 in E_i and let $\{x'_{i\alpha} | \alpha \in A\}$ be a net in ${}^{t}u_i(H_i^{\circ}) \cap U_i^{\circ}$ which converges to x'_i relative to the $\sigma(E'_i, E_i)$ -topology in E'_i . Then the net $\{(\delta_{ij}x'_{i\alpha}) \mid \alpha \in A\}$, where δ_{ij} is the Kronecker delta, lies in ${}^{t}u(F') \cap (E_1 \times \ldots \times E_{i-1} \times U_i \times E_{i+1} \times \ldots \times E_n)^{\circ}$ and converges to $(\delta_{ij}x'_i)$ relative to the $\sigma(E', E)$ -topology. Since by Lemma 2.1 ${}^{t}u(F')$ is ew^* -closed, $(\delta_{ij}x'_i)$ belongs

488

to ${}^{t}u(F')$. Therefore there exists a $y'_{0} \in F'$ such that $(\delta_{ij}x'_{i}) = {}^{t}u(y'_{0})$ and we have for every $x = (x_{i}) \in E$,

$$< x_i, x'_i > = < u(x), y'_0 >$$

= $< u_i(x_i), y'_0 > + < \sum_{j \neq i} u_j(x_j), y'_0 >.$

It follows that $x'_i = {}^t u_i(y'_0)$ and $y'_0 \in H_i^{\circ}$, whence $x'_i \in {}^t u_i(H_i^{\circ})$ and ${}^t u_i(H_i^{\circ})$ is ew^* -closed. The assumption that E_i is fully complete implies that ${}^t u_i(H_i^{\circ})$ is $\sigma(E'_i, E_i)$ -closed. Thus, $\prod_{i=1}^n {}^t u_i(H_i^{\circ})$ is $\sigma(E', E)$ -closed.

REMARK. If u is a homomorphism, then, since ${}^{t}u(F')$ is $\sigma(E', E)$ -closed, we can see from the above proof that the result of Lemma 2.3 remains valid without the hypothesis that E_i (i = 1, 2, ..., n) are fully complete.

THEOREM 2.1. (1) Suppose that $E = E_1 \times E_2$ is a product of fully complete spaces and u is a linear, continuous and almost open mapping of E onto F. If F_i (i = 1,2) are closed and $F_1 \cap F_2 = (0)$, then u is a homomorphism.

(2) Suppose that $E = E_1 \times E_2$ is a product of B_r -complete spaces and u is a one-to-one linear mapping of E onto F which is continuous and almost open. If F_i (i = 1, 2) are closed, then u is an isomorphism.

PROOF. (1) From Lemma 2.3 we have

 ${}^{t}u(F_{1}^{\circ}+F_{2}^{\circ})={}^{t}u_{1}(F_{2}^{\circ})\times{}^{t}u_{2}(F_{1}^{\circ})$, where $F_{1}^{\circ}+F_{2}^{\circ}$ is $\sigma(F',F)$ -closed because ${}^{t}u_{1}(F_{2}^{\circ})\times{}^{t}u_{2}(F_{1}^{\circ})$ is $\sigma(E',E)$ -closed and ${}^{t}u$ is one-to-one and continuous relative to $\sigma(F',F)$ and $\sigma(E',E)$. But then, $F_{1}^{\circ}+F_{2}^{\circ}=(F_{1}\cap F_{2})^{\circ}=F'$. Therefore ${}^{t}u(F')={}^{t}u_{1}(F_{2}^{\circ})\times{}^{t}u_{2}(F_{1}^{\circ})$, and the $\sigma(E',E)$ -closedness of ${}^{t}u(F')$ and Lemma 2.2 imply that u is open.

(2) In case u is one-to-one, F is the algebraic direct sum of F_i (i = 1,2). Since ${}^{t}u(F')$ is ew^* -closed, ${}^{t}u_1(F_2^{\circ})$ is shown to be ew^* -closed in the same way as in Lemma 2.3. Moreover, if, for an $x_1 \in E_1$, $\langle x_1, {}^{t}u_1(F_2^{\circ}) \rangle = 0$, then $u_1(x_1) \in F_2^{\circ \circ} = F_2$ and therefore $u_1(x_1) \in F_1 \cap F_2 = (0)$, whence $x_1 = 0$. Thus, ${}^{t}u_1(F_2^{\circ})$ is $\sigma(E_1', E_1)$ -dense in E_1' and hence ${}^{t}u_1(F_2^{\circ}) = E_1'$ because of B_r -completeness of E_1 .

Similarly ${}^{t}u_{2}(F_{1}^{\circ}) = E_{2}^{\prime}$, and we have

$${}^{t}u(F') = {}^{t}u_{1}(F_{2}^{\circ}) \times {}^{t}u_{2}(F_{1}^{\circ}) = E'.$$

COROALLRY 2.1. If a B_r -complete barrelled space is an algebraic direct sum of two closed linear subspaces then it is at the same time the topological direct sum.

N. MOCHIZUKI

PROOF. Let $F = F_1 \oplus F_2$ be an algebraic direct sum where F is B_r -complete and barrelled and F_i (i = 1, 2) are closed in F. We indicate by φ the canonical mapping of $E = F_1 \times F_2$, the product of F_i , onto F. F_i (i = 1, 2) are B_r -complete and φ is almost open, so that φ is an isomorphism by virtue of Theorem 2.1 (2), which completes the proof.

COROLLARY 2.2. Let E be a B_r -complete and barrelled space. If there is for every closed linear subspace a complementary closed linear subspace, then E is fully complete.

PROOF. It is easily seen that for a B_r -complete space to be fully complete it is necessary and sufficient that every quotient space is B_r -complete. Let E_0 be a closed linear subspace of E and E_1 a corresponding closed linear subspace which is complementary to E_0 . Then E/E_0 is isomorphic with E_1 which is B_r -complete.

REFERENCES

- F.E. BROWDER, Functional analysis and partial differential equations I, Math. Ann., 138(1959), 55-79.
- [2] N.BOURBAKI, Espaces vectoriels topologiques, III-V.Paris, (1955).
- [3] H.S.COLLINS, Completeness and compactness in linear topological spaces, Trans. Amer. Math. Soc., 79(1955), 256-280.
- [4] J. DIEUDONNÉ et L. SCHWARTZ, La dualité dans les espaces (F) et (LF), Ann. Inst., Fourier Grenobles, 1(1950),61-101.
- [5] J. T. JOICHI, On closed operators with closed range, Proc. Amer. Math. Soc., 11(1960), 80-83.
- [6] J.L. KELLEY, Hypercomplete linear topological spaces, Michigan Math. Journ., 5(1958), 236-246.
- [7] W. ROBERTSON AND A.P. ROBERTSON, On the closed graph theorem, Proc. Glasgow Math. Assoc., 3(1956-1958), 9-12.
- [8] G.C.ROTA, Extension theory of differential operators, Comm. Pure Appl. Math., 11(1958), 23-65.
- [9] V.PTAK, Completeness and the open mapping theorem, Bull. Soc. Math. France, 86(1958), 41-74.

TÔHOKU UNIVERSITY.