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The purpose of the paper is to generalize some of recent results of
S. Tachibana and S. Ishihara [9]" concerning with infinitesimal holomorphically
projective transformation in Kihlerian spaces to the case of *O-spaces. In almost
complex spaces, such transformations were defined in the case when the affine
connection under consideration is a @-connection.” However an *O-space is not
endowed with a @-connection but a symmetric affine connection with respect to
which the almost complex structure @, satisfies v,@, = 0. We shall study the
infinitesimal holomorphically projective transformation (briefly an HP-transfor-
mation) of such a connection.

In §1, we shall give the notion of an *O-space, an H-space and a K-space
and other preliminary facts. After introducing an analytic HP-transformation
in §2, we shall define in §3 the HP-curvature tensor which is an invariant
under such a transformation. In §4, we shall deal with an *O-space of constant
holomorphic sectional curvature and prove some theorems on the HP-curvature
tensor in this space. In §5 and §6, so called decomposition theorem for an
analytic HP-transformation in an Einstein ¥*O-space and conformally flat K-space
will be given. In the last §7 we shall see that an analytic HP-transformation
is necessarily an isometry in a compact *O-space of constant curvature.

Throughout the paper V; denotes the operator of covariant differentiation
with respect to the Riemannian connection.

The author wishes to express his sincere thanks to Professor S. Tachibana
for his valuable suggestions and advises.

1. Preliminaries. In a 2n-dimensional real differentiable space of class C*
with local coordinates {z'}, a field @, such that

(1.1) P P, =8

is called an almost complex structure and the space with such a structure is

1) The number in bracket refers to the Bibliography at the end of the paper.
2) Tashiro, Y. [5].



HOLOMORPHICALLY PROJECTIVE TRANSFORMATIONS 467

called an almost complex space, and a positive definite Riemannian metric
tensor field such that
(1.2) 95 = P3P Gim
can be always introduced in an almost complex space.” The space with a pair
(@, gx) satisfying (1. 1) and (1.2) is called an almost Hermitian space.
If the structure tensor field @, satisfies
(1. 3) v + ol vien" =0,
then the almost Hermitian space is called an *O-space.
If Py = g”¢jr satisfies
(1.4 ViPin + ViPr; T VaPs = 0.
then the almost Hermitian space is called an H-space or an almost Kdihlerian
space. If @;, satisfies
(1.5) V@i + Vi@ =0,

then the almost Hermitian space is called a K-space or an almost Tachibana
space. We see that an *O-space, an H-space and a K-space satisfy

(1- 6) Vr¢jr = 0.

It is verified that an H-space or a K-space is an *O-space respectively.” In an
almost Hermitian space, we shall define the following operator

1.7 = % (Sjlaim - ¢jl¢im):

m 1 m m
(1.8) *Oon = 7(3;81 + @)'p™).

A tensor is called pure (hybrid) in two indices if the tensor vanishes by
transvection of *O(O) on these indices.
Since (1.2) and (1.3) can be written in the form

(1- 9) O?lnglm = 0:
(1.10) *OW'vien” =0

respectively, the metric tensor gy is hybrid in j and 7, and vy,@," is pure in j
and 7 in an ¥O-space.
For the two operators with the same indices, we have

3) Frolicher, A. [1].
4) Kotd, S. [2}.
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00 = O, 0*0 = *00 = 0,
(1. 11) ’

*O*0 = *0, *O+0=0+ *O =E,
where E denotes an identity operator.
For simplicity we denote *Of T, = *OT;, O T,, = OT,, for a tensor
of order 2, for example (1.9) is replaced by Og; = 0.
Let Km" be the Riemannian curvature tensor and put

(1.12) {K” = ¢"Kisn, Ky = @/K., K=g¢"K,
H, = ¢MKk_jm, K*ji =— ¢erri, K* = ¢jiHﬁ-
We see that H; = — % @'" K5 by the Bianchi’s identity.

Let £ be the Lie derivative with respect to a vector v, then v' is called con-
v

travariant almost analytic or analytic if it satisfies

(1.13) f'«%i =vv.e/ — @/ v + @'v = 0.
The following identities are valid.”
(1' 14) %{.Z l»: VjVi'vh + Krﬂ"vr.

L15)  tvel-viel=elt{l|-e e{]}

(1.16) %Kk}ih’:Vk%/{_?i}_v"f{{Z}'

2. Infinitesimal holomorphically projective transformations. A vector
field v' is called an infinitesimal holomorphically projective transformation or
briefly an HP-transformation if it satisfies

h [ = (dl
2.1 %{ ji } = 8"'p + 8'p; — @)'P. — P/"P;
where p; is a vector and p; = @, p,. We shall call p; the associated wvector of
the HP-transformation.

1

N j Tvr’
2(n+ 1) ViV

Contracting (2. 1) with respect to ¢ and h, we get p; =

and therefore p; is gradient.
Next we shall introduce the curve satisfying the differential equations

dz" h ) dx’ dxt dx" » dx’
2.2 ——+ Pl = =a(t)— + O .
2.2) dt? {JZ } dt dt @ dt A dt

5) Yano, Y. [11].
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Such a curve is called a holomorphically planer curve.®

Let v be an infinitesimal transformation and we assume that an infinitesi-
mal point transformation z* = 2 + &v' transforms any homomorphically planer

curve into such a curve.
A necessary and sufficient condition v* be such a transformation is that

(2.3) D2t = ax' + bp,a!,
(2.4) it {1 =it + dp

hold for any direction z‘, where a,b,c and d are some functions of z* and z'
Now let v* be such a transformation, then taking account of Lemma 1 in
[9, Appendix I] and (2.3) we have

(2. 5) £v,¢ji = 0.

Next, from (2. 4) and Lemma 3 in [9, Appendix I] we have

(2.6) fvz‘l ;I; } = ajh/’t +81hPJ + ¢1h0't + ?’tha'j-
If we substitute (2.5) into (1. 15), then we get

. N h _ h r
@7 £V’ = ot |- o 2 {

Contracting (2.7) with j and A, and using (1.6) and (2.6), we have a; = - P
Hence we obtain (2.1). Therefore v’ is analytic and at the same time an HP-
transformation. The converse is evident. Thus we have the following

THEOREM 2. 1. In an *O-space, an infinitesimal transformation preserves
the holomorphically planer curve, if and only if it is an analytic HP-trans-
Jormation.

For HP-transformations it holds that
VjVivh + Krjthvr = stht + Bith - ¢J’Fih - ¢ihﬁj-
Contracting with respect to j and i, we get
vv." + K 0" = 0.

This is a necessary and sufficient condition in order that a vector v* be analytic

in compact H-spaces.”

THEOREM 2. 2. In a compact H-space an HP-transformation is analytic.

6) Otsuki, T. and Tashiro, Y. [4].
7) Tachibana, S. [6].
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3. The HP-curvature tensor. Now, in an *O-space, let v' be an analytic
HP-transformation. If we substitute (2. 1) into (1. 16). we have

3.1 %Kkﬂh = 8/'ViPi — 8'V.P — 9,"ViP, + @"Vipi — @/ (Vif; — V.PL)
— Pvip" + pvip” + PV — Vi)

Transvecting (3. 1) with @,* and making use of (1.6) and ﬁ%q),-i =0, we have

EHy == 29,V + 209/ v:p; + 2n + 1XV,20)P — (V.27 )Py
Taking the alternating and symmetric part, we have
(3.2) LHy == (n + D@/ V.pi — 2/v:p5) — (Vi — Vip; )P, ]
and

(n — 1@V, + @/v,p;) + 0V + v )p: = 0.

The last equation turns to
(3.3) 2(n — I)O(V;Pi) + n(vpi T vip; )P, = 0.

On the other hand, if we contract (3. 1) with respect to 4 and %, and take ac-
count of (3.3), then we find

(3. 4) fv/Kn =(n+ 1)[(Vj¢ir + Vi‘PerTr) - Z%O(VJPD]-
Operating *O to (3.4) we have
(3.5) £(FOKy) = = 2(n + 1)*O(v,p)

because of (1.10) and *Og%}, = £*0.

It is easily verified that the following identities hold good.

(3- 6) *OIIGTO:?(Smt ‘fzr = % (Sih*oflci + ¢jh¢kl%0§li)-
*Ot0N(pnts) = - (9" Oku — 8Ok,

where £ is a tensor.
If we operate OO to (3.1)and make use of (1.10), Oin v, = 0 and
(3.6), then we obtain
%*O%OZ’L Kins' = SJ"L*O(VkPi) - Skh%O(VjPi) + ¢jh¢kl*O(VlPi)
- ¢kn¢jl*O(VzPi) + 2‘Pih¢kl%O(Vsz)-

Substituting (3. 5) into the last equation we have

£H*OBONK ' = — ——L— £(8"*OK,,— 8, 0K, + 9,"*OK ,, — 9" *OK,,
v 2(72 + 1) v
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+ 2¢i"*0Kk]-)

—_— f/*olmorh(s tKlr — 8! Kmr + @, Klm)

n +
by virtue of £8; = 0 and (3. 6).
If we pu: .
3.7 P = *OvOnrA,L,

Almrt = Klmrt + 77_}_—1 (8thlr - Btthr + ¢rtIZm):

then we have
(3. 8) £,Pk”h = O.

Hence P,m"'“is an invariant under the analytic HP-transformation v’ We shall
call P.," in (3.7) the holomorphically projective curvature tensor or briefly
the HP-curvature tensor in an *O-space. Equation (3.7) can be also written as
follows

(3- 9) P, k.jt = *Olm* ﬂKlmrt

+ 2 + 1) (gn"OKyy — g *OKy, + ¢jh*01‘<7ci_¢kh*015ﬂ+ 2¢ilz*OKm)-

It can be verified that the following identities hold good
Pk}rr= 0: P(’Cf)ih:: O: O let - O *O Plcjr —'0

Pyl =— 7 *O(Ky — K*y), g'Pryl =— —;— (K — K%).

We shall put
(3.10) P, = *O(K, — K*,), P= K — K*.

Then we see that Pj,; = PU’ OPji = 0.
From (3.8) we get

(3.11) a%,P =0

and. therefore from (3.5)

(312 £(OK*,) = — 2n + 10,90
From (3.4) and (3.2) we find

(3- 13) %/(OKM) = (n + 1XV.@ + Vi@, )Pr,
(B.19) £(0OH,) = (n + 1Xvsp — vip; )Py,
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respectively.

4. Holomorphic sectional curvatures in an *O-space. In the first place
we shall assume that Py;" = 0 in (3.9), then we have

= " P = 2(nl—+1) [(# — 1)*OKy + (n+ 1) *OK* i — ginK ],
From which we find
4.1 *OK,, = & Grn
2n

because P, = 0. Substituting (4. 1) into (3.9) we have
4. 2) *OU*OhKimn = % (gjt.qkh = Girri — PjiPrn — PinPri — 20 Pr;)

where
k = _*_A_._
nln + 1) -
It can be verified that
4.3) *OG * O Kimre + O %Ot Kimrs — @1 @n” 08} *O%K s
=— k(gmghj + Punps; + ¢1cj¢ih)8)
by virtue of (4.2).
Transvecting (4. 3) with @@, we find
P4 P Kimpumy + kgewgm = 0.
Hence for any vector #’ the following equation identically holds good.
(¢am¢pLijlh + kgqujh)uqupujuh =0,
and from which we get
k —_ - ijlh¢qmuquj¢plupuh
a,j o I
Gostt W Gpnh U

This is the holomorphic sectional curvature with respect to the vector %' which
determined by two orthogonal vectors «' and @, "
Thus we have the following

THEOREM 4. 1. In an *O-space if the HP-curvature tensor vanishes, then
the holomorphic sectional curvature k is independent on direction.

8) Mizusawa, H.and Koto, S. [3]
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Especially in a K-space OK;; =0 or *OKj, = K;; holds good.” In this case
we have from (4. 1)

K, = _ZI%— Gkhe
Hence K is an absolute constant and so is 2 by virtue of & = X . Thus
n(n+1)

we find that a K-space with P,;, = 0 is of constant holomorphic sectional
curvature.

But we can prove that this fact is also true for an H-space, that is,

THEOREM 4. 2. In an H-space or a K-space if Piu, = 0, then the space
is of constant holomorphic curvature.

In the first place we shall give the following lemma.
LEMMA. If an H-space satisfies Py, = 0 in (3.10), then it s Kaihlerian.
PROOF. In an *O-space, from (1. 3) we have
2@ — PV = 0.
Operating V, to the last equation and using V,@, = 0, we find
4.4) (Vo Yvi@sr + Vi) + 2¥O(Ky — K*y) = 0.
In an H-space, by (1. 4), it turns to
(4.5) (Ve IV:pin = — Py
and in a K-space, by (1.5), (4. 4) becomes
(4.6) (Ve )WV:@n = Py
If P, =0, then from (4.5) or (4.6) we have V,@," = 0 respectively and there-
fore it is Kéhlerian.
PROOF OF THEOREM.,

Now, if an H-space or a K-space has P, = 0, then by the Lemma it is
Kihlerian. On the other hand in a Kihlerian space

O;cTKlmth = 0, OK_“ = O, OHﬁ = 0, .PIﬂ = Eﬂ
hold good.™®
Making use of these identities, (3.9) and (4. 1) turn to

1

4.6) Puyn=Kyn + ———
( ) kjih kjih 2(71 + 1)

(gjnKm —gk;.Kﬁ + @ Hy— P+ 2¢¢thj)

9) Tachibana, S. [7].
10) Yano, K. [11]
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and
4.7 Kijin = k(gkhgﬂ = Ginui T PenPs — PirPri — 20u.Pr;)

respectively.
In Kahlerian spaces a necessary and sufficient condition fo Py =0 in (4.6) is
that (4.7) holds good™. Thus Theorem 4.2 was proved.

5. Einstein *O-spaces. In this section we shall consider an Einstein *O-
space with K == 0, then it holds that

(5. 1) K, = 'L g
2n

from which we have OK;, = 0, and therefore from (3.13) we find

(5.2) (Vi +vip) Py =0

and from (3. 3) we have

(5.3) O(v,p,) = 0.
Substituting (5. 2) :nd (5. 3) into (3. 4), we have
5.4) £Ky=—2n + Dy,

(5. 2) is equivalent to
(5.5) (vi@ + vip, e, = 0.
Making use of (5.5),(5.3) and v,o = vip;, we have

(5.6) viP: + vif; = (V@ + vip e, + (@vie + @S vier) = 0,

which shows £; is a Killing vector.
If we operate £ to (5.1) and take account of (5.4) and %,gﬁ=v,-'vi+vi'vj,

then it holds that

Vj('”t - %‘Pi) + Vi(vj - ‘Z‘P}) =0,

K

P=——X
where 2n(n + 1)

If we put p = v; — %P; the p, is a Killing vector.

Next, if we put ¢, = % ;;, then ¢; is also a Killing vector by virtue of (5.6).

Thus we obtain the following

11) Tashiro, Y. [5].
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THEOREM 5. 1. In an Einstein *O-space with K== 0, an analytic HP-
transformation v' is uniquely decomposed into the form
(5.7) v =p + @'q

where p' and q' are both Killing vectors and @.'q, is gradient.

From (5.7), we have v, = p,— @, = p + —%—pi. Hence it holds that

AR AF TRt (F 10
because p, is a Killing vector. If we substitute (2. 1) into the last equation, we
find
(5.8) L1 1L = v + Kula= KO/p+ 8, — B9l )
Thus it follows that

THEOREM 5. 2. In an Einstein *O-space with K == 0, the associated vector
of an analytic HP-transformation is an HP-transformation.

From (5.8) we have
ViviPn + KyjinP” = k(5P + ginPs — PsnPi — Punbs)-

Taking the symmetric part of the last equation with respect to ¢ and A, we
have

(5.9) Ko up = % (ginPi — g3Pn — PnPi + P3P — 2@uP;)-
The equation (5.9) can be written in the following form

K" = % (grigin—Ggmgn + PriPin — PrPu + 20r,Pu)P.
Hence applying Lemma in [9, Appendix II] we have

THEOREM 5. 3. If an Einstein *O-space with K == 0, admits an analytic

non-affine HP-transformation, then the restricted homogeneous holonomy group
contains the full unitary group U(n).

Transvecting (5. 8) with ¢”, we find
vv.e' + K =0

Hence we have the following

12) For a K-space, see Tachibana, S.[10},and for a Kihlerian space, see Tachibana,
S.and Ishihara, S. [11].
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THEOREM 5. 4. In a compact Einstein H-space with K > 0" the associated
vector of an analytic HP-transformation is also an analytic HP-transforma-
tion.

In the next place we shall consider a K-space which is not necessarily an
Einstein one. Then OH,;; = 0 holds good. Consequently from (3. 14) we get

(v — vip,)p: = 0,

and by (1.5) it becomes

(5. 10) 2PTVT¢j{ = O.

On the other hand, from (1.5) and (3. 3) we get O(y,p;) =0.

Now, the definition (1.13) of an analytic vector v* can be written as
VVpu — 20,0(v,v;) = 0.

If we put v* = p’, then we find that p' is analytic. Hence we have

LEMMA. In a K-space the associated vector p, of an analytic HP-trans-
Sformation is also analytic.

Taking account of Theorem 5.2 and the above lemma, we have the foll-
owing

THEOREM 5. 5. In an Emnstein K-space with K==0, the associated vector
of analytic HP-transformation is also an analytic HP-transformation.

. ;i . i B .
By an automorphism v', we shall mean an analytic vector v* which is an
infinitesimal isometry, i.e. a Killing vector.

THEOREM 5. 6. In a K-space, if p; is the associated vector of an analytic
HP-transformation, then p, is an automorphism.

PROOF. We notice that (5.6) is valid in a K-space which is not necessarily
Einstein one, in fact, in order to obtain (5.6) we did not use (5.1) but only
OKj; = 0. Therefore p, is an infinitesimal isometry.

Next,we shall prove that p; is analytic, that is, f:¢,-‘= 0, which is equivalent

P

to
PV @1 — 2¢,;0(v;6,) = 0.
Transvecting the last equation with @,’ and using (1.3) and (5.3), we get
PV Pu + 20 Vagpir = 0.

13) In a compact Einstein H-space with K <0, there does not exist a non-trivial
analytic vector. Tachibana, S. [6].
14) For compact case, see Tachibana, S.[8].
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It turns to 3p'v,@n = 0 by virtue of (1.5), and therefore from (5.10) we find
that P; is analytic.

THEOREM 5. 7. In an Einstein H-space with K==0, if p; is the associated
vector of an analytic HP-transformation, then p, is an automorphism.

In fact (5.6) is valid in an Einstein H-space. Next, by making use of
(5.10) and (1.4), £@,' = 0 turns to
)

Pr(Vh¢ir + Vi@nr) = 0.

But it is valid in an Einstein *O-space because of (3.13), and hence p; is
analytic.

In the compact case this theorem is trivially contained in the well known
theorem that in an compact H-space a Killing vector is analytic.'”

6. Conformally flat K-spaces. In this section we shall consider an HP-
transformations in conformally flat K-spaces. In the first place, the following
fact was proved.

LEMMA™, In a K-space, P = K — K* is an absolute constant.

Now the curvature tensor takes the following form

(6. 1) 2n — l)Kkjih = ¢uKj — IuKn + gjth-'b - thKlk
- om— 1 (gﬂgm - gmgjn)-
Transvecting (6.1) with @/@*" and using OK;; = 0, we get
(6- 2) 2(71 - I)K*u = 2K, — L G-
2n—1

Transvecting (6. 2) with g%, we have
(2n — 1XK — K*) = 2(n - 1)K.

Hence from the above lemma, in a conformally flat K-space, K is also an
absolute constant.

On the other hand, in section 5 we have seen that in a K-space p, is
analytic and p; is a Killing vector and
(6. 3) %K*ji = %«Kji = 2(" + 1)VJ'P£
hold good.
Operating ;%, to (6.2) we have

15) Tachibana, S.[10].
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K
n—1

2(71 - 2)%,1{11 = %gﬂ-

Taking account of (6. 3)and £g¢,; = v,u; + Viv;, we obtain

1 1
Vi <‘Ui e Pi) + Vi(vj T Pj) =0,

_ K
where k= S Do - D@ =D (n>2).

If we put p, = v; — %pi and ¢; = %E, then p, and ¢; are both Killing
vectors, Thus we have

THEOREM 6. 1. In a 2n (n > 2) dimensional conformally flat K-space
with K== 0, an analytic HP-transformation v' is uniquely decomposed into
the form

v =14+ o'q
where P and q' are both Killing vectors and @/q, is gradient.
We shall prove the uniqueness of this decomposition.
If we have
v =4+ ot v ="+ o' g,
then P ="t =9/'(d — 4.
If we put & = p' —'p', then & is a Killing vector and at the same time
gradient, and therefore it holds that

v =0.
By the Ricci’s identity, we have
v — v = Ky"¥ =0
from which we get K,& =0, K*,&" = 0. Substituting (6.2) into the last

equation, we obtain

K _
2n— 1) (2n — 1) L=0

Thus we have & = ' —'p' =0, and ¢' —'¢ = 0. In the same way as in section
5 we have the following

THEOREM 6. 2. In a 2n(n > 2) dimensional conformally flat K-space with
K == 0, the associated vector of an analytic HP-transformation is also an
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analytic HP-transformation.

THEOREM 6.3. If a 2n(n > 2) dimensional conformally flat K-space
with K== 0 admits an analytic non-affine HP-transformation, then the
restricted homogeneous holonomy group contains the full unitary group U(’?)j

7. *O-spaces of constant curvature. Let us consider an *O-space of
of constant curvature with K==0, then the curvature tensor takes the
form

K
Kkjih, = m (gﬂgkn—gmym),
from which we have K, = A;% gy and Hy = T(ZnK——l)— Pji.

Now, let v’ be an aunalytic HP-transformation and p; its associated vector, then
Theorem 5.2 is valid. If we transvect (5.9) with @”, then we get

H,p" = k(n + 1)pn =— K Ph.
2n

(n — 1K

n(2n — 1) Pn =0 and p, = 0. Therefore

From the last two equations we have

we have the following

THEOREM 7. 1'%, In an *O-space of constant curvature, an analytic HP-
transformation is necessarily affine.

COROLLARY. In a compact *O-space of constant curvature, an analytic
HP-transformation is necessarily an isometrsy.
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