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The purpose of the paper is to generalize some of recent results of

S. Tachibana and S. Ishihara [9]° concerning with infinitesimal holomorphically

projective transformation in Kahlerian spaces to the case of *O-spaces. In almost

complex spaces, such transformations were defined in the case when the affine

connection under consideration is a ^-connection.2* However an ^O-space is not
endowed with a ^-connection but a symmetric affine connection with respect to

which the almost complex structure φ} satisfies Vr£>/ = 0. We shall study the

infinitesimal holomorphically projective transformation (briefly an //P-transfor-

mation) of such a connection.
In §1, we shall give the notion of an *O-space, an //-space and a /ί-space

and other preliminary facts. After introducing an analytic HP- transformation
in §2, we shall define in §3 the //P-curvature tensor which is an invariant

under such a transformation. In §4, we shall deal with an *O-space of constant

holomorphic sectional curvature and prove some theorems on the //P-curvature

tensor in this space. In §5 and §6, so called decomposition theorem for an

analytic HP-transformation in an Einstein *O-space and conformally flat X-space

will be given. In the last §7 we shall see that an analytic HP-transformation

is necessarily an isometry in a compact *O-space of constant curvature.

Throughout the paper \7j denotes the operator of covariant differentiation

with respect to the Riemannian connection.
The author wishes to express his sincere thanks to Professor S. Tachibana

for his valuable suggestions and advises.

1. Preliminaries. In a 2rc-dimensional real differentiable space of class C°°

with local coordinates {x1}, a field φ* such that

(1.1) <?/W=- S/

is called an almost complex structure and the space with such a structure is

1) The number in bracket refers to the Bibliography at the end of the paper.
2) Tashiro, Y. [5].
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called an almost complex space, and a positive definite Riemannian metric

tensor field such that

(1. 2) ga = φ/φimglm

can be always introduced in an almost complex space.3) The space with a pair

(φ^Qjί) satisfying (1.1) and (1.2) is called an almost Hermitian space.

If the structure tensor field φ/ satisfies

(i. 3) v&ΐ + φ}φ?w* = o,
then the almost Hermitian space is called an *O-space.

If Φa — ffίrφf satisfies

(I- 4) ViΦih + ViΦhj + Vhφβ = 0,

then the almost Hermitian space is called an H-space or an almost Kάhlerian

space. If <pH satisfies

(1- 5) v/PiΛ + \Ί<Pjh = 0,

then the almost Hermitian space is called a K-space or an almost Tachίbana

space. We see that an *Ό-space, an ίί space and a K-space satisfy

(1- 6) Vrφΐ = 0.

It is verified that an H~ space or a ^Γ-space is an *O-space respectively.4) In an

almost Hermitian space, we shall define the following operator

(1.7) os s-L («/«," -WO,
&

(1.8) *P5Γ ̂  -L (8/8,* + ?,> ").

A tensor is called pure (hybrid) in two indices if the tensor vanishes by

transvection of *O(O) on these indices.

Since (l. 2) and (l. 3) can be written in the form

(1. 9) Ofglm = 0,

(i-io) *O

respectively, the metric tensor g$ is hybrid in j and i, and VjW is pure in j

and z in an *O- space.

For the two operators with the same indices, we have

3) Frδlicher, A. [1].
4) Kotδ, S. [2].
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(iu ; *o*o = *o, *o + o = o + *o = £,
where £ denotes an identity operator.

For simplicity we denote *Otff Tlm = *OT^ Of Tlm = OTβ for a tensor
of order 2, for example (1.9) is replaced by Og^ = 0.

Let Kkίi

h be the Riemannian curvature tensor and put

1 12)
H* = φkhKkjihί K*» = - φ Hri, K* =

We see that H^ = — - φlmKlmji by the Bianchi's identity.
Δl

Let £, be the Lie derivative with respect to a vector vi

9 then vl is called con-
Ό

travariant almost analytic or analytic if it satisfies

(1. 13) £<?/ = vVr^/ - φΐVrV* + φfrff = 0.

The following identities are valid.5)

(1.14)

(1.15)

2. Infinitesimal holomorphically projective transformations. A vector
field vl is called an infinitesimal holomorphically projective transformation or
briefly an HP-transformation if it satisfies

(9 iΛ -
W •»•/ c

where pt is a vector and pt = ^ίVr We shall call pi the associated vector of
the HP-transformation.

Contracting (2. 1) with respect to i and Λ, we get ft = —
2(n+ λj

and therefore />έ is gradient.
Next we shall introduce the curve satisfying the differential equations

5) Yano, Y. [11].
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Such a curve is called a holomorphically planer curved
Let v* be an infinitesimal transformation and we assume that an infinitesi-

mal point transformation 'xl = xi + 6vl transforms any homomorphically planer
curve into such a curve.

A necessary and sufficient condition V be such a transformation is that

(2. 3) xJLφί = ax* + bφ/xj,

= cxh

Jl

hold for any direction x\ where a]b,c and d are some functions of xl and x.
Now let vl be such a transformation, then taking account of Lemma 1 in

[9, Appendix I] and (2.3) we have

(2. 5) Lφί = 0.

(2. 4) x}xlL \ k \ = cx
υ ( Jl )

Next, from (2. 4) and Lemma 3 in [9, Appendix I] we have

(2. 6)

If we substitute (2. 5) into (l. 15), then we get

(2.7)

Contracting (2.7) with j and A, and using (1. 6) and (2. 6), we have σό = — p>
Hence we obtain (2.1). Therefore vl is analytic and at the same time an HP-
transformation. The converse is evident. Thus we have the following

THEOREM 2. 1. In an *O- space, an infinitesimal transformation preserves
the holomorphically planer curve, if and only if it is an analytic HP- trans-
formation.

For HP- transformations it holds that

Contracting with respect to j and ί, we get

v'VrV71 + Kr

hv = 0.

This is a necessary and sufficient condition in order that a vector v1 be analytic
in compact H-spaces.7)

THEOREM 2. 2. In a compact H-space an HP- trans formation is analytic.

6) Otsuki, T. and TasMro, Y. [4].
7) Tachibana, S. [6].
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3. The HP-curvature tensor. Now, in an *O-space, let vl be an analytic
HP-transformation. If we substitute (2. 1) into (l. 16), we have

(3.1)

Transvectirig (3. 1) with φ* and making use of (1. 6) and £<ρ/ = 0, we have
V

&Mn = - 2φ"VrPt + 2nφi

rvrp} + (2n + lXVj
υ

Taking the alternating and symmetric part, we have

(3. 2) LHH = - (n + l)[(0>/VrA - ^ΓVΛ) - (
υ

and

(n - iX^/VrA + φϊVrPύ + n(v^ir + V^>r = 0.

The last equation turns to

(3. 3) 20 - iXXvjfft) + «(V^ir + Vi^/)Pr = 0.

On the other hand, if we contract (3. 1) with respect to h and k, and take ac-
count of (3.3), then we find

(3. 4) L
V

Operating *O to (3. 4) we have

(3. 5) L(*OKώ = - 2(n
V

because of (1. 10) and *OL = £*O.
V V

It is easily verified that the following identities hold good.

(3. 6) *

where f^ is a tensor.
If we operate *O#Oji to (3. l)and make use of (1. 10), Ofm^όφΓ = 0 and

(3. 6), then we obtain

Substituting (3. 5) into the last equation we have
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n + 1 «

by virtue of £δ/ = 0 and (3.6).
V

If we put.

(3. 7) Pw = *

ψr
n 4- 1

then we have

(3. 8) £P*/ - 0.

Hence P^ is an invariant under the analytic ί/F- transformation *zΛ We shall
call Pkjι

l in (3. 7) the holomorphically protective curvature tensor or briefly
the HP-curvature tensor in an *O-space. Equation (3. 7) can be also written as
follows

(3. 9) Pkii

h ^ *0$*OZKlnn

0/ »
2(n + 1)

It can be verified that the following identities- hold good

Pkir = 0, PW)i

h = 0, OS/Ίm,* = 0, *OΪΪPWr

t = 0,

We shall put

(3. 10) PJt ̂  *0(ίΓJt - K*»\ P^K-K*.

Then we see that P^ = Pw, OF,t = 0.
From (3. 8) we get

(3.11)

and therefore from (3. 5)

(3. 12) £,
ΊJ

From (3. 4) and (3. 2) we find

(3. 13) £(0/Q = (n +
t>

(3. 14) £(0/^0 = (» +
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respectively.

4. Holomorphic sectional curvatures in an *O-space. In the first place

we shall assume that Pkjf = 0 in (3. 9), then we have

+ (n+lΓOK*h-QkhKl—
Z(n T* I)

From which we find

(4.1)
2n

because Pkh = 0. Substituting (4. l) into (3. 9) we have

(4, 2) *OΪJ*O5yζTOrt = —
4

where

n(n + 1)

It can be verified that

by virtue of (4. 2).

Transvecting (4. 3) with φ*φp we find

<P(<T<Pp K\™\}\ι\h ) + kgtηpgw = 0.

Hence for any vector ul the following equation identically holds good.

(<P<Γ<PpKmjlh + kgqpgjh}uqupu}uh = 0,

and from which we get

A - ~

This is the holomorphic sectional curvature with respect to the vector u* which

determined by two orthogonal vectors UΊ and φQ

luQ.

Thus we have the following

THEOREM 4. 1. In an *O-space if the HP-curvature tensor vanishes, then

the holomorphic sectional curvature k is independent on direction.

8) Mizusawa, H. and Koto, S. [3]
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Especially in a K-sp&ce OK^ = 0 or ^OKji = K5i holds good.9) In this case
we have from (4. 1)

- K ~
2n

Tζ

Hence K is an absolute constant and so is k by virtue of k = — r-̂  - - . Thus
n(n -h 1)

we find that a K-space with Pkjih = 0 is of constant holomorphic sectional
curvature.

But we can prove that this fact is also true for an ίf-space, that is,

THEOREM 4 2. In an H-space or a K-space if Pkjih = 0, then the space
is of constant holomorphic curvature.

In the first place we shall give the following lemma.

LEMMA. If an H-space satisfies Pjt = 0 in (3.10), then it is Kahlerian.

PROOF. In an *O-space, from (l. 3) we have

<p?Vr<pih — φϊvjφrh = o.
Operating VΛ to the last equation and using Vr<P3

r = 0, we find

(4. 4) (vVXv»^r + V^rO + 2*0(Kjt - K*}ί ) = 0.

In an H-space, by (l. 4), it turns to

(4. 5) (vV)VrΛ* = - P»

and in a K-space, by (l. 5), (4. 4) becomes

(4.6) (vV)VrΛA = /V

If Pji = 0, then from (4. 5) or (4. 6) we have Vj^ί* = 0 respectively and there-
fore it is Kahlerian.

PROOF OF THEOREM.

Now, if an ίf-space or a K-space has Pkjih = 0, then by the Lemma it is
Kahlerian. On the other hand in a Kahlerian space

0%Klmih = 0, OKv = 0, OH* = 0, H, = KJ4

hold good.10)

Making use of these identities, (3. 9) and (4. 1) turn to

(4.6) Pkjih = Kkjih -I- — — -—r
Δ\n -r \)

9) Tachibana, S. [7].
10) Yano, K. [11]
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and

(4. 7) K knh — k(gkhgji — gjhgki + <pkh<Pa — <pjh<Pki — 2φihφk^)

respectively.
In Kahlerian spaces a necessary and sufficient condition fo Pkjih = 0 in (4.6) is
that (4. 7) holds good11*. Thus Theorem 4.2 was proved.

5. Einstein *Ό-spaces. In this section we shall consider an Einstein *O-
space with K =j= 0, then it holds that

/r -ι\ TΓ -K Λ\o. L) J^ji g}i

from which we have OKjit = 0, and therefore from (3.13) we find

(5.2) (V:

and from (3. 3) we have

(5.3)

Substituting (5.2) ι nd (5.3) into (3.4), we have

(5. 4) LKμ = — 2(n + l)Vjft
V

(5. 2) is equivalent to

(5. 5) (vj?>ir + VtφDpr = 0.

Making use of (5. 5), (5. 3) and Vjft = VίPj> we have

which shows fa is a Killing vector.
If we operate & to (5. 1) and take account of (5,4) and £^ = 5

then it holds that

where ^ = . If we put ρt = vt — pt the pt is a Killing vector.
2n(n + 1) ^

Next, if we put ςrt = pί? then ^ is also a Killing vector by virtue of (5. 6).
k

Thus we obtain the following

11) Tashiro, Y. [5].
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THEOREM 5. Γ2). In an Einstein *O-space with K Φ 0, an analytic HP-
transformation vl is uniquely decomposed into the form

(5. 7) t/ - Pl + φrV

where pl and ql are both Killing vectors and φϊqr is gradient.

From (5. 7), we have vt = pi — q^ = pi + ft. Hence it holds that

* e

because ρl is a Killing vector. If we substitute (2. 1) into the last equation, we
find

(5. 8)
P ( Jl

Thus it follows that

THEOREM 5. 2. In an Einstein *O-space with K 4= 0, the associated vector
of an analytic HP -trans formation is an HP-transformation.

From (5. 8) we have

Taking the symmetric part of the last equation with respect to i and h, we
have

(5. 9) Krjihp
r = -—~(gjhpi

Zl

The equation (5. 9) can be written in the following form

Krβhpr = — (gngjh-grhgji + ψnφ^ - <prh<pa + 2φrjφίh)pr.
&

Hence applying Lemma in [9, Appendix II] we have

THEOREM 5. 3. // an Einstein *O-space with K 4s 0, admits an analytic

non-affine HP- transformation, then the restricted homogeneous holonomy group
contains the full unitary group U(n).

Transvecting (5. 8) with g31, we find

v

rvrph + κry = o.
Hence we have the following

12) For a ^-space, see Tachibana, S. [10], and for a Kahlerian space, see Tachibana,
S.and Ishihara, S. [11].
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THEOREM 5. 4. In a compact Einstein H-space with K > 013) the associated

vector of an analytic HP-transformation is also an analytic HP-transforma-
tion.

In the next place we shall consider a -K"-space which is not necessarily an

Einstein one. Then OHόi = 0 holds good. Consequently from (3. 14) we get

(Vj<Pir - Vi9/>r = 0,

and by (l. 5) it becomes

(5,10) 2//VrΛt = 0.

On the other hand, from (1. 5) and (3. 3) we get O(Vj/°*) =0.
Now, the definition (l. 13) of an analytic vector vl can be written as

vrVr<Pv - 20>/O(Vrt>i) = 0.

If we put vl = p\ then we find that pl is analytic. Hence we have

LEMMA. In a K-space the associated vector pi of an analytic HP-trans-

formation is also analytic.

Taking account of Theorem 5. 2 and the above lemma, we have the foll-

owing

THEOREM 5. 5M).7« an Einstein K-space with X4"0, the associated vector

of analytic HP-transformation is also an analytic HP-transformation.

By an automorphism v\ we shall mean an analytic vector vl which is an
infinitesimal isometry, i.e. a Killing vector.

THEOREM 5. 6. In a K-space, if Pi is the associated vector of an analytic

HP-transfor motion, then pi is an automorphism.

PROOF. We notice that (5. 6) is valid in a K-space which is not necessarily

Einstein one, in fact, in order to obtain (5. 6) we did not use (5. 1) but only

OKji = 0. Therefore ρt is an infinitesimal isometry.

Next,we shall prove that pi is analytic, that is, £?>/ = 0, which is equivalent
p~

to

prVr<Pa ~ 2^/O(V;A) = 0.

Transvecting the last equation with φh

j and using (l. 3) and (5. 3), we get

P\r<Phi + 2prVh<Pir = 0.

13) In a compact Einstein H-spo.ce with K < 0, there does not exist a non-trivial
analytic vector. Tachibana, S. [6],

14) For compact case, see Tachibana, S. [8],
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It turns to 3ρr^rφhi = 0 by virtue of (1.5), and therefore from (5.10) we find

that ft is analytic.

THEOREM 5. 7. In an Einstein H-space with K=t=0, if ρt is the associated

vector of an analytic HP-transformation, then ft is an automorphism.

In fact (5.6) is valid in an Einstein H-space. Next, by making use of
(5. 10) and (1. 4), £?>/ = 0 turns to

hr) = 0.

But it is valid in an Einstein *O-space because of (3. 13), and hβnce ft is
analytic.

In the compact case this theorem is trivially contained in the well known
theorem that in an compact //-space a Killing vector is analytic.l5)

6. Conformally flat K-spaces. In this section we shall consider an HP-
transformations in conformally flat K-spaces. In the first place, the following
fact was proved.

LEMMA15). In a K-space, P = K — K* is an absolute constant.

Now the curvature tensor takes the following form

(6. 1) 2(n - l)Kkjih = gkhKfi - gkiKjh

__

Transvecting (6.1) with φl<j?h and using OKkj = 0, we get

(6. 2) 2(n - l)K*tt = 2Ktl - -- gtί.
Δn — 1

Transvecting (6. 2) with gu, we have

(2n - 1)(X - X*) = 2(n - Ϊ)K.

Hence from the above lemma, in a conformally flat K space, K is also an

absolute constant.
On the other hand, in section 5 we have seen that in a -K-space ft is

analytic and ft is a Killing vector and

(6. 3) &K*jt = £K}i = - 2(n 4- l)V,ft
V V

hold good.

Operating £ to (6. 2) we have

15) Tachibana, S. [10].
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Taking account of (6. 3) and ίtα^ = Vjvι + Vi^j? we obtain
. V

Vj(vi - ~- ft) + Vi\Vi ~ -~- ft) = 0,

I£-

where k = — - - — - — - — (n > 2).
2(n + ί)(n - 2}(2n- 1)

If we put pi— Vi — —— Pi and qt = — pί? then /^ and qι are both Killing
& k

vectors. Thus we have

THEOREM 6. 1. In a 2n (n > 2) dimensional conformally flat K-space
with K=)rQ,an analytic HP-transformation vl is uniquely decomposed into
t^e form

^ = if + ΨrQ

where pl and qi are both Killing vectors and φϊqr is gradient.

We shall prove the uniqueness of this decomposition.

If we have

v1 = pi + φ*qr, vl = y + ψr 'qr,

then />-'/> = ̂ i(Y-βO.

If we put ζ* = pl — '/>*,' then έl is a Killing vector and at the same time

gradient, and therefore it holds that

= o.
By the Ricci's identity, we have

V,Vi** - ViV/f* = '^rT = 0

from which we get X"irf
r = 0, K*lrΓ = 0. Substituting (6. 2) into the last

equation, we obtain

K

 j = 0.
2(« - 1) (2w - 1)

Thus we have ζl = pl — 'pl = 0, and ql — 'ql — 0. In the same way as in section

5 we have the following

THEOREM 6. 2. In a 2n(n > 2) dimensional conformally flat K-space with
K =1= 0, the associated vector of an analytic HP-transformation is also an



ttOLOMORPHlCALLY PROJECTIVE TRANSFORMATIONS 479

analytic HP-transformation.

THEOREM 6. 3. If a 2n(n > 2) dimensional conformally flat K- space
with K=^0 admits an analytic non-affine HP-transformation, then the
restricted homogeneous holonόmy group contains the full unitary group L7(#),

7. *O-spaces of constant curvature. Let us consider an *O-space of
of constant curvature with K =j* 0 , then the curvature tensor takes the
form

— ffkiff jh\
0 /02n(2n — 1)

from which we have Kjt = - g^ and H}i = — - - -~ φ^.
2n 2n(2n — 1)

Now, let vl be an analytic HP- transformation and ft its associated vector, then
Theorem 5.2 is valid. If we transvect (5. 9) with φjt, then we get

Hrhp
r = k(n + ΐ)ph .

2n

From the last two equations we have -̂  - - — ft[ = 0 and ph = 0. Therefore
n(2n — 1)

we have the following

THEOREM 7. 116). In an *O-space of constant curvature, an analytic HP-
transformation is necessarily affine.

COROLLARY. In a compact *O-space of constant curvature, an analytic
HP-transformation is necessarily an isometry.
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