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1. Let F(z) be a meromorphic function and let T(r,F) be its Nevanlinna
characteristic function. Let N(r,a) = N(r,F — a); N(r,F) = N(ry °o) have the

usual meaning in the Nevanlinna theory.

Define

*<«>=' - ' ™ « ί f
If S(a) > 0 we say that a is an exceptional value for F(z) in the sense of

Nevanlinna (e. v. N); and if Δ(α) > 0 we call a as an e. v.V (exceptional value

in the sense of Valiron).

2. Let f(z) be an entire function and let

Xn/) = /<r) = M i n i /(*)|.
|«| *r

It is clear that if 0 is an asymptotic value for f(z) then μ(r) -> 0 as
r— > oo. We show that the converse is not true. We prove:

THEOREM I. For an entire function f(z\ the minimum modulus μ(r)

tending to zero does not imply that 0 is an asymptotic value.

LEMMA If 0 is an e.v.N for the entire function f(z) then μ(r)-*Q as

PROOF. In the terminology of Nevanlinna

1
m(r, -I-) = «(r, 0) = -̂ - Γ log*

\ / / 2ττ Λ

Hence m(r, 0) ̂  log+ —

dθ.
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because 0 is an e. v. N, so

μ(r)

and the lemma follows because

T(r,f) -> oo as r-* o

To complete the proof of Theorem 1, let

for r

/,(*)=ΠΦ» [(-!)"*]
W«l

where φn(z) = ( 1 +
\ r

Define /(̂ ) =/(*)/,(*).

Then /(;?;) is an entire function of order 3 / 2 for which δ(0) > 0 see A. A.

Goldberg [1].

Thus 0 is an e.v.N for f(z), so μ(r,f) -> 0 by the lemma. But 0 is not an

asymptotic value for f(z).

3. THEOREM 2. Let F(z) be a meromorphίc function of order p (0 < p < °o);

and let ρ(r) be Lindelof proximate order relative to T(r, F). Let n(r> at) be

the number of zeros of F(z) — at in \ z \ <=r all the aι being different (0 ̂  | αt |

^ oo in case a^ = °o, n(r,aϊ) = n(r, °o) is the number of poles). Then

where ? is an integer > 3.

q x ^

PROOF. Let lim sup Σ pr^ = *
r->oo ί=1 rpl
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and if possible let k < (q — 2)/>, then

Q

Σ n(r, at~) < (k + 6 )r"(r) for r ̂  r0.

9 »r , , f

Hence ^N(r, α4) + O(Iogr) < (k + €) I f™-1 dt ~ rp(r)

ί-i Jn> />

T i -«.

,F)

for a sequence of values of r.
Further from the second theorem of Nevanlinna

(<7-2)T(r,F) < Σ N(r,aι) + O(logr).
ΐ-1

Hence for an infinity of values of r we have

(q - 2) T(r. F) < A±JL τ(r, F) + O (log r), and since 8 is arbitrarily small
P

(q — 2}p ^ k. This gives a contradiction. Hence the result follows.

4. Let f(z) be an entire function and let Pι(a) be the exponent of con-
vergence of the zeros of f(z) — a. If Pι(a) < p we say that α is an e . v . B
for /(*).

If lim inf ?(r> Q Λ > 0
»•— w(r, α)φ(r)

for a positive non-decreasing function Φ(x) such that

< oo,

then a is defined to be an e v E, see S.M.Shah [2]. Let f(z) be an entire
function of order p (0 < p < °°) and let p(r) be proximate order relative to
log M(r,/), that is,

ρ(r) -> p as r-> °°,

r/>'(r) logr->0 as r-^ °o,

log M(r, /) ̂  rp(r) for r ̂  r0

and log M(r,f) — rp(r) for a sequence of values of r. Valiron has proved that
for a class of entire functions of finite non-zero order if
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then —^ ' ' lies between two positive constants for every x =φ= a.*fc*> lie
rp(» )

Hence it is reasonable to define a as an exceptional value in some sense if

/ _\
(1)

We shall call a as an e.v.L(in the sense of Lindelόf) if (1) holds.

THEOREN 3. (i) If a is an e. v. B then a is an e.v.L also but the

converse is not true.

(ii) If a is an e. v. L then a is e .v .V with Δ(α) = 1.
(iii) If a is e.v.E then a is e.v.L also but the converse is not true.

PROOF, (i) Let a be e. v. B then

go n(r α) < ̂ .pp, f

ΓPM - -

Further p(r) > P + c forr>r 0 .
Δι

Hence - Γ'^—* 0 as r-> °°

so a is e. v „ L.

That the converse is not true can be seen from the function

/ω = π

rHere M(r, /) — —£-, »(r, 0) ~ —.
logr (logr)2

Set rfr) = 1 - loglogr.
logr

Then it can easily be seen that ρ(r) is a proximate order relative to log M(r,/).
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Here p = ft(0) = 1,

so 0 is not e. v. B.
But

«(r,0) _ ~— ' — » 0 as r -

and — p

?

(r) ' lies between two positive constants for all x 4s 0 and thus 0 is

e . v . L.

(ii) Let a be e . v . L then

n(r, a) < £rp(r) for r>r0,

(2r)p(2r) -- ̂  2prp(r)

- 2P log Λf(r, jf) for a sequence of values of r

— 2pT(2r,/).

Hence lim inf = 0.

So Λ is e v V with Δ(tf) = 1.

We omit the proof of the first part of (iii). That the converse is not true can
again be seen from the same example

H logM(r,/) _ logr = log r
r

(logr)2
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/
"* y/τ

?f\ < °°
u Xφ(x)

so log Λ: = o (Φ(x)) when x — > °°.

Hence lim '°f ***<> = 0.
~- «(r, 0)0(r)

Hence a fortiori

-o.

So 0 is not e . v . E though it is e . v . L.

5. Nevanlinna [3] has proved that if F(z) is a meromorphic function of

order p < 1/2 for which

then l i m s u p | . = ι (3)
T(r, F)

for every ^^^(O^l^l^ 0 0 ).
Of course (3) is not true for every meromorphic function of order < 1/2 for

every x. For instance if f(z) is an entire function of order < 1/2 ihenF(z)=
f(z)/(z--a)wϊll be a meromorphic function of order < 1/2 for which

We give a method to construct a class of meromorphic functions of any

given order for which (3) holds for every x (0^ \x\ ^S°°). We prove:

THEOREM 4. Given any p (0 < p < °o), there exists a meromorphic function

of order p for which (3) holds for every x (0 ̂  \x\ ̂  °°).

00

Let /(*) = y^ tfn2
λn be an entire function of order p for which

n=0
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^ 1Σ~ΐ—HϊΓ" ^ °°9

n = Q Λ»n+l λ/n

and let as usual

then μ(r,f) -* oo as r ->°o through a sequence r = rw; see A. J. Macintyre and
P. Erdόs [4].

Set F(z) = -±~ + z, (4)
/(*)

then T(r, F) = T(r,/) + O(log r).
Let a be any number such that 0^ \a\ < °o. Then for |s| — rn we have
uniformly as n —> °°

F(z) - a = z - a + o (l).

Hence

F-a

for r = rn and n > «0

„ ,. N(r,F-a) ΛHence l i m u p = 1.

Also m(r,F} = logr + 0(1) — o(T(r, F)) as r-> °° through the sequence
r = rw. Hence

This proves (3) for every finite or infinite x.

REMARK. If the meromorphic function is of order < 1/2, the construction is still
easier, since in (4) any entire function f(z) of order < 1/2 will serve the pur-
pose, because by a well known theorem of Wiman for such an entire function
lim sup μ(r,/) — °°. We also remark that by choosing a suitable entire function



d. K. siNGrt

f(z) for which the sequence rn is sufficiently dense we could haVe eVen achieved

for every x (0 ̂  | x \ ±S oo).

Finally we prove:

THEOREM 5. For every meromorphic function F(z) of order p (0 ^

provided that a is not e. v. V for F(z).

We omit the proof.

I take this opportunity to thank Professor W. K. Hayman for his valuable

suggestions.

REFERENCES

[ 1 ] A. A. GOLDBERG, An example of an entire function of finite order with a non-
asymptotic defective value (Russian), Uzgorod Gos. Univ. Naucn. Zap. 18(1957)
191-194. (see also Math.Review 20,No. 1(1959), Review no. 111).

[2] S. M. SHAH, Exceptional values of entire and meromorphic functions, Duke Math.J.,
19(1952),585-594.

[3] R.NEVANLINNA, Le thέoreme de Picard-Borel et la theorie des functions meromorphes,
Paris, 1929, p. 55.

[4] A. J. MACINTYRE and P.ERDOS, Integral functions with gap power series, Proc. Edin.
Math. Soc., Series 2,10, Part 11 (1954), 62-70.

KARNATAK UNIVERSITY
DHARWAR (INDIA)




