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A (2n + 1)-dimensional differentiable manifold M***! of class C* is said to
have a (¢, &, n)-structure [1]® (or an almost contact structure)if there exist a
tensor field ¢j, a contravariant vector field £ and a covariant vector field #; of
class C® over M?"*! such that the following conditions are satisfied:

«Eim =1,

rank|¢}| = 2n,
0.1) £ =0,
¢3"Ii =0,

dipt = — 8 + Eny.
It is shown [2] that one can define by a natural way a 3-w-structure whose
fundamental tensor is written as

0.2) Fi=—5 (=8 + 3, + io, (1 — o) ¢} = - (~8+3n,—/3))

and three kinds of 2-w-structure whose fundamental tensors are respectively
written as

(1= 20 -5,
Fy = g, — ig},

(0. 3) F
iji = 'fi%' + Z‘l’;

for any (¢, & n)-structure. Here a 3-w-structure (2-w-structure) is by definition a
structure defined by giving three (two) differentiable distributions which assign
three (two) complementary subspaces of dimension=1 in the complexified tangent
space T¢ at each point x of the differentiable manifold M?"*!. The fundamental
tensor of a 3-m-structure (2-w-structure) is the one which has the three (two)
subspaces stated above as the proper subspaces corresponding to the proper
values, which are cubic (or quadratic) roots of unity, of the linear transformation
induced by it at the tangent space of each point of M?"+!,

The torsion tensor (an analogue of Nijenhuis tensor) of the 3-w-structure
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0.2) is
L1 , ) .
.4 fe= 5 {=Ne — 38 ~ m) + SE Ny — Nim)

- ey — mne) — Nb (e — btm))},

and those of 2-w-structures (0 3) are respectively

f;k = — & (= Ny + Ny, +%ise = Mess)s
; 1 ., 1 .
0.5) b= =y Bem g 1
, 1 1 ..,
3th = — —4‘ P]Ic + —4* ZQJ'c-

In these formulas we have put
P.;’C = Nflk - t’;k - éi(%’m - 771c7j) = M’C - El(l\ljnk - Nk”j),

(0.6) { , 1 ) )
Qi = — Nin + Nin; + ENyy,

where 7;,, = %%, and the tensors Nj, Nj, N,., N; are defined as follows [3]:

Nie = ¢i$hq — ¢0.5) — S Pip — b1 0) — il 6 + nifly
IJVM = ¢‘Z(7ia,j - "h‘w) - (;bg("?wk - ﬂk,p),
lN = E(Pia — $u) — HiE
N; = E(njsp — 1pss)-
In this short note, we intend to study the characterization of the vanishing

of Nj. geometrically in M>"*' which is an open question in [4]. Moreover, some
related problems are also considered.

(0.7)

1. It is known [5] that the vanishing of torsion tensor i in (0.4) is a
necessary and sufficient condition for the 3-m-structure defined by (0.2) to be
integrable and the vanishing of respective tensor in (0.5) is the condition of
respective 2-w-structure in (0. 3) to be integrable. By definition, a 3-m-structure
defined by three distributions 7, T, Ty dim 7T, = v, v, + vy, +v; =2n + 1
is said to be integrable if at each point of M?*"*! there exist a neighborhood
and 27 + 1 complex valued functions 2' of the local coordinates in the neighbor-
hood such that T is expressed by dz** = = dg"tt =0, T, by dz' =
=dz" = d"" = =dz""™"" =0 and T; by dz' = =dz" = dz"=--
= dz"" = 0. The integrability of 2-w-structure is similarly defined.

As the 3-m-structure defined by (0. 2) is the refinement of each of the 2-7-
structures in (0. 3), it is evident from the definition of integrability of 7-structure
that the vanishing of #j in (0.4) implies the vanishing of all of torsion tensors
of (0.5) and tensors Pj; and Q) in (0.6). But this can also be shown by direct
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calculation from (0. 4) by making use of some of the following identities obtained
in [3]:
¢LN}'1¢ + Mh¢‘2 + &N — M")Ic =0,

1 E" 4+ ¢uNG — E'N; =0,
NG — Ny — Nymye = 0,
W G + Nigh — EN, =0,
i =0,
ﬂhNJh - Mn&h =0,
N} + Nugi =0,
N,&" =0,
N}n(bﬁ - Mt‘i’? - M"?k - le"?j =0,
1 2 N;&" — Nug = 0,
Nindi — Nueds + Nymye — Nim; =0,
l Mh‘fh + Nh¢"; =0,
ij = Nhk‘i”}ék,
[ N; = ﬂnM‘i’j’,
1. 3) N; = Nu&"n,,
[ ]Vflc = - mN,’h#ﬁ + M’?i")m
Nj = ¢uNjpé* + EN;,E°

Now, we prepare some formulas to be used later. Contract & with Zj; in
(0. 4), then we have the following by virtue of (0.7),, (1.1); and (0.1);:

B8 = = (= NI + 26N, — Nig)).
Substitute Nj&* from (1. 1),, we have

1 = - ($N] — Nigh + EN)).
Finally, substitute from (1. 1), we have

J HE = NG or
(1. 4) 1
| B = - N, — N

From (1. 4), we have
1. 4), N;¢) = EN; — 2. 8".
On the other hand we have the following from (1. 1),:
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Nigon, = 0.
Adding these two equations, we have
Ny($) + &n;) = E'N; — 2tjE".
Multiplying (¢4 — &’5,) on both sides, we have
(1. 5) v = — ENLL + 26540
Since from (0. 7) we can get
50y — Npsa) = PNy — (ms0 — Ness) — Ness

by making use of which (0. 4) can also be written as
1
(1. 6) th = 4 {—Nj — 4E"(njx — mi»y) + SE(Njme — Niemy)
— &Ny + E'PiN, — No(dime — dimy)}.

Contracting »; and then making use of (1. 3),, we have

mith = ‘i’ { — 4@k — m1,5) + 4ANym — Nimy)
— (mNj + Nimy — N1,
from which and (1. 1); we have
1.7 Mt = = (e = Meg) + Nome — Nemy) = mit.
Substitute this formula to (0. 7),, we have
1. 8) N, = Nudiin; — Nudimie — npt;':fﬁ + nptmd.
If we substitute (1. 7) and (1. 4); to (0. 4) we have
1.9 P = Milc - fi(l\fﬂ?k - N,m,-)
= E'Pidinity, + Zmtik” — 2nitek” + En,th — 4Ati.
Finally, substitute (1. 5) and (1. 8) to (0. 6),, we have
(1. 10) Qe = — 26, Pl + 2tE Pl — Emptlisic + Emytind.
From (1. 7), (1. 9) and (1. 10) we see that the vanishing of # in (0. 4)
implies the vanishing of fi"“’ Pj. and Q.
Conversely, suppose that if}c (or #;tj)and Pj vanish simultaneously, then
from (1. 7) and (1. 9) we have
nptie = 0
and
Mt ipE” — it £’ — 2th = 0.

Multiply & to this equation and contract with respect to k2, we have
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£ = 0.

From the latter two equations we get i = 0. Thus we have

THEOREM 1.1. The vanishing of t in (0. 4)is equivalent to the simulta-
neous vanishing of the following two tensors :
{(M"?k = Nem)) = @ik — mii) = 0,
Mlc — (N — Nimy) = 0.
Therefore these two relations are the necessary and sufficient condition for the
3-m-structure defined by (0. 2) to be integrable.

(1. 11)

Now if # = 0 implies Nj. = 0 we have from above theorem Ny, — N.z;
= 0, from which we have in turn N; = 0. Thus we have 7;,; — ,; = 0. Con-
versely, this implies N; = 0 and therefore ¢} = 0 implies Nj. = 0. By the same
way it is evident that the necessary and sufficient condition for Nj, = 0 to imply
th = 0 is ;. — mk,; = 0. Thus we have

THEOREM 1.2. In order that the vanishing of Nj is equivalent to the
vanishing of th, it is necessary and sufficient that n; is a gradient.

It is known [3] that Nj; =0 implies Nj=0, N;,;, =0 and N, =0. So
N}, = 0 also implies Pj, =0 and Q% = 0 by virtue of (0. 6). But as is easily
seen from (0. 6), for Pj, =0 and Q). = 0 to imply N} = 0 it is necessary and
sufficient that N; = 0. Thus we have

THEOREM 1.3. In order that the vanishing of Pj and Qj is equivalent
to the vanishing of N} it is necessary and sufficient that N; = 0.

As the Lie derivative of 7; is
L&y = Enir + mkls = Eik — mios) = N;

by virtue of (1. 1),. From the meaning of Lie derivative and the Theorem 1.3
we have

THROREM 14. In a differentiable manifold having (, &, n)-structure, for
the vanishing of N}, it is necessary and sufficient that the following two
conditions hold :

(i) the distribution defined by 7; is invariant wunder the transformation

generated by &,
(ii) the 2-mw-structure defined by (0. 3), (or (0. 3);) is integrable.

Here the former 2-m-structure is defined by two distributions, one of which is
(n + 1)-dimensional and consists of subspaces (of tangent spaces at each point)
spanned by & and proper vectors corresponding to proper value 7 of ¢, and the
other is n-dimensional and consists of subspaces spanned by proper vectors
corresponding to proper value — 7.
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2. If in the manifold having a (¢,&, n)-structure there exists a positive
definite Riemannian metric ¢ satisfying
{gijgi = M5
GisPibi = Ynx — i,
then the manifold is said to have a (¢, £, #, g)-structure [1]. For any differentiable
manifold M?""! with contact structure 7, that is, a manifold over which a 1-
form 7 is defined and satisfying

2. 2) A\ @) =n Ndng N\ N\ dn=E0,

one can find a (¢, &, 5, g)-structure such that 5, is the one given as the coefficients
of » and

@1

1 X
dn=¢ = ‘2—¢”dxi/\dx’, ¢bi; = Oim; — O

From (2. 2) it follows that #; is not a gradient.

It is shown in [4] that if we consider a (¢,&,, ¢)-structure associated to
the given contact structure #, then N, is identically zero. Thus we have from
Theorem 1.1, Theorem 1.3 and Theorem 1.4 the following two corollaries :

COROLLARY 2.1. For a (¢,&, 9, g)-structure associated to a contact struct-
ure n, the 3-m-structure defined by (0. 2) and the 2-m-structure defined by (0. 3),
are both not integrable.

COROLLARY 22. For a differentiable manifold with (¢,&, 9, g)-structure
associated with a contact structure 7, the vanishing of Ny is characterized
geometrically by the condition that the 2-m-structure defined by (0. 3), (or (0. 3);)
is integrable.

3. Now we study on the existence of symmetric (¢, &, )-connection, which
is by definition a symmetric connection leaving the tensor fields ¢, &, #; cov-
ariant constant [3]. Denote the covariant derivative with respect to a symmetric
connection by;, then the relations (0. 7) hold good if we replace, in these
relation by;, and %;,, — 74,5 = 9j;, — 75 Thus if a differentiable manifold with
(¢, &, n)-structure has a symmetric (¢, &, n)-connection, it follows that N, Nj,
N, and N; all vanish, and #; is a gradient, so #, also vanishes by virtue of
(0. 4). On the other hand, it is known [2] that if N; =0, there is a (¢, &, 5)-
connection whose torsion is equal to t%. Thus we have

THEOREM 3.1. Let M**! be a manifold with (¢, E, n)-structure. Then in
order that there exists a symmetric (¢, &, n)-connection it is necessary and
sufficient that »; is a gradient and ti; = 0.

If we take account of Theorem 1.2, it is easily seen that Theorem 3.1 is
equivalent to a Corollary in [3].

The following theorem is also closely related to the Theorem 3.1, as
tk = 0 means the integrability of the 3-m-structure which consists of a 1-dim-
ensional distribution defined by & and two n-dimensional distributions, one of
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which is defined by all subspaces spanned by the proper vectors at each point

corresponding to proper value 7 of ¢}, and the other by those corresponding to
proper value — 7 [2] [5].

THEOREM 3.2. Let M*"*! be a differentiable manifold with (¢, E, n)-struc-
ture. If M**' admits a symmetric (¢, &, n)-connection, then (i) n is a gradient,
(ii) the induced almost complex structure on each integral submanifold of the
distribution 7 is invariant under the transformations generated by & and (iii)
each of these almost complex structure is integrable.

The closedness of 7 and vanishing of Nj, and ¢} follow from the proof of
Theorem 3.1, so we only require the proof of (ii). From the definition of Lie
derivative, we have

£Em; = nu” + Emp,
L(E)p; = Pkt + Elii — EiL ).

Therefore, from the assumption of the existence of symmetric (¢, &, )-connection
we have

£&m; =0, £®¢5 =0,

which means respectively that the integral submanifolds of the distribution 7
are transformed by themselves and the structure ¢ is invariant under the
transformations generated by é&.

4. Finally we return to consider a differetiable manifold with (¢,&,7, ¢)-
structure. Denote the covariant derivative with respect to Christoffel’s symbol
constructed from g¢;; by V. It is well known that the tensor

bi; = Gun §
is skew symmetric and the condition for the closedness of the exterior 2-form

is as follows:

4. 1) Vibi; + Vi + Vi = 0.
i .
Suppose the Riemann connection{ 'k} is a (¢, & n)-connection, then ¢ =0
J

and both 7 = n,dx’ and ¢ are closed. The converse holds too. For from the assum-
ption that 5 is closed and ¢ = 0 we have Nj, =0. From Theorem 3.1 and
Theorem 3.2 it also follows that £(£)¢: =0, £(€)y; = 0. On the other hand it
follows from the closedness of ¢ that £(£)¢;. = 0. Applying Lie derivation with
respect to £ to both sides of the relation ¢j = g"¢,; we have

[£(&)g"1¢n; = O.
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On the other hand we have
[£E)g" Imn; = [£(E)Em; = 0.
As ¢,; + nm; is non-singular, from the latter two relations we have
L&y =0,
which means that & is a Killing vector field, that is,
Vi + Vi = 0.
This and the closedness of # imply that
Vin; = 0,
from which we have also the following
V& = vig™y.) = 0.

In the next place we shall prove that V,¢;; = 0. From N, = ¢in Njy =0
and V5, = 0 it follows that

$(Vapis — Vidin) — $5(Vadix — Vidun) = 0.
Substitute from (4. 1) we have

PVibns) — $3(Vidni) = Vi(Prn;) — 2¢3Vipni = 0.
But

VA Pibns) = Vi(gundidt) = Vilgix — mmi) = 0,
we have

(Vidni)ds = 0.

On the other hand from ¢,£" = 0 and V& = 0 we have

(Vitpu)e"n; = 0.

As ¢ + &), is non-singular, from these two relations we have
Vigne =0,

from which it follows
Vg = 0.

Therefore we have

THEOREM 4.1. In order that the Riemannian connection of a (¢, & 1, g)-
structure to be a (P, &, n)-connection it is necessary and sufficient that the follow-
ing three conditions hold :

(i) 7 is closed, (ii) ¢ is closed, @ii) &} =
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The following theorem is closely related to the above one:

THEOREM 4.2. Let M*'' be a differentiable manifold with (¢,& 1, g)-
structure. If the Riemannian connection is a (¢, &, n)-connection, then (i) n is
closed, (ii) the induced almost Hermitian structure on each integral submani-
fold of the distribution 7 is invariant under the transformations generated by
& and (iii) each of these almost Hermitian structure is Kdhlerian.

PROOF. From the Theorem 4.1 we have ¢t =0, so th =0 holds too.
1

Therefore the 2-m-structture consisting the 1-dimensional distribution defined by
&' and the 2n-dimensional one by #; is integrable, that is, for each point there is a
neighborhood U, passing each point of which there is a unique 1-dimensional
integral submanifold and a unique 27-dimensional integral submanifold belonging
to respective distribution. Moreover, in this neighborhood there is a local coor-
dinate system (x') ( =1,-,2n + 1) such that each 1-dimensional integral sub-
manifold is expressed as £* = const. (a, b,c = 1,--+, 2n) and each 2n-dimensional
one as x* = const. (A = 2n + 1). In such local coordinate system, the projection
tensor &%; to the direction of the 1-dimensional distribution has components
En; = 0 except for &%, = 1 because &, = 1. Therefore, we have the following
components of tensor (vector) fields in this coordinates system :

Ei = 8A’7 n; = 8Ah
¢g 0 gab 0
(¢5) = > (9:) =
0 0 0 0

Then ¢(z°,2*) and g,,(z°, x*) are the almost complex structure and the almost
Hermitian metric on integral submanifolds in consideration.
From the assumptions

viE =0, Vin; = 0,
we can easily get
7 A
o (2o
Ak jk
and from the assumptions
Vi =0, Vigis = 0,

we know that ¢} and ¢,; do not depend upon x*. This shows that both ¢ and
¢ are invariant under the transformations generated by &'. And secondly we see

that
C e_(e} -
+{ec}¢b lbc ¢e 0’

ox’
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which shows that the induced almost Hermitian structure is Kihlerian.
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