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1. Introduction. Let Mn be an τz-dimensional Riemannian manifold and

T(Mn) be its tangent bundle. We can introduce to T(Mn) a natural Riemannian

metric from the Riemannian metric of Mn.Ό

Now, let us denote by TΊ(Mft) the set of all unit tangent vectors of Mn.

As we can reduce the structural group of T(Mn) to O(n), T^M") may be regarded

as a sphere bundle. We shall call it the tangent sphere bundle of Mn. As

T^M71) is a submanifold of T(Mn), it has a Riemannian metric naturally induced

from that of T(Mn). In this paper I shall study on the differential geometry of this

(2n — l)-dimensional Riemannian manifold T^M71) regarding it as a submanifold

of T(Mn), because it is rather simple analytically.

2. The Riemannian metric and the connection of Tx(Mn). Let U be a

coordinate neighborhood of Mn with coordinates xι such that U X En is diffeo-

morphic with τr~ι(U), where Ea is the vector space which is the standard fibre

of T(Mn) and TΓ is the natural projection of T(Ma) onto M\ If we denote the

components of tangent vector of Mn at xι £ U with respect to the natural frame

Tς-j by v\ then the ordered set of variables (V,t/) can be regarded as local

coordinates of π~ι(U) which is an open subset of T(Mn).

Suppose the Riemannian metric of Mn is given in U by the quadratic form

(2. 1) ds2 = gjk(x)dxjdxk.

Then the Riemannian metric of T(Mn) is given in π~ι(U) by the quadratic

form

(2. 2) dσ2 = gjk(x)dx>dxk + gjk(x)DvjDvk^

where Dvj means the covariant differential of v\ i.e.

(2. 3) Dvj = dvj + \ J I vιdxm.
(Im)

The components of the fundamental metric tensor of T(Mn) in π~ι(U) can be

1) cf. S. Saεaki, On the differential geometry of tangent bundles of Riemannian manifolds,
Tόhoku Math. J. 10 (1958) pp. 338-354. This paper will be cited as I.

2) Throughout this paper, we use the same notation as in the paper I.
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given by

(2. 4)

(R

jfc = gjk + gβy \ .

j n+k = [λ/, k]vλ,

vk
vavv,

n+fc ~

The geometrical meaning of the metric (2.2) is as follows : Let (x\vι) and

(xl + dx\ vι -4- dvι) be indefinitely nearby points in π~ι(U). In UczMn, we

consider the tangent vector vι + dvι of Mn at the point xι + dxι and translate

it parallelly to the point xι by Levi-Civita's parallelism. If we denote the angle

between the tangent vector thus obtained and the tangent vector vι at xi by dθ

and the length of the vector vι by v, then

(2. 5) dσ2 = ds2 + v2dθ2.

From (2. 4), we can easily see that the length of the horizontal component

( i )
{dx\ — \ \ v3dxk) of the vector (dx\ dvι) is ds2 and the length of the vertical

ljk)
component (0, Dvι) of the vector {dx\ dvι) is v2dθ2. So (2. 5) is nothing but the

local Phythagorean theorem.

Now, let us denote the natural projection T\ (Mn)->Mn by wt. Then wT\U)

is given, as an (2n — l)-dimensional submanifold of τr"ί(U)9 by

(2. 6) gik(x)vV = 1.

Hence, the Riemannian metric of Tλ(Mn) naturally induced from that of T(Mn)

is given geometrically by

(2. 7) dσ2 = ds2 + <i6!2.

The covariant components of the normal vector to Ti(Mn) at (x\ vι) € πr\U)

is easily seen to be given by

(2. 8) ([Xi,μ]vλv% gikv
k).

The contravariant components of the last vector is easily calculated by means of

(2.9)

G>* -

μl
giιif,

= }
9V

and we get (0, vι) as the components of the unit normal vector of T\(Mn) at

the point (xι, vι) e
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Tangent vectors of Tλ(Mn) at the point (x\ vι) z Tλ(Mn) are perpendicular
to the normal vector (0, vι). So the necessary and sufficient condition that a
tangent vector ξ of T(Ma) at a point (x\ vι) of Tx(Mn) be a tangent vector of
Tx(Mn) is that its components (ξ\ ξn+i) satisfy the equation

(2. 10)

The lift of a tangent vector ξι of Mn at a point xι e U to (#*, t/) of

is given by (£*, - fV). SO it is a tangent vector of Tx(Mn) at (x\ vι).

Hence we see that the tangent space of Tλ(Mn) at (x\ vι) € T^M71) is a direct
sum of the tangent (n — l)-space of the fibre

gjkQz)v3vk = 1 xι fixed

and the horizontal rc-space of T(Mn) at (x\ vι).

In T(Mn) every fibre is orthogonal to the horizontal n-space at every point
of it. So in TΊ(ΆfΛ), every tangent in — l)-space of a fibre is orthogonal to the
horizontal n-spaces through the point. Hence Tx(Mn) may be considered to
have a connection defined by the restriction of horizontal ^-spaces to points
on Tx(Mn) and we may speak of the lift of any tangent vector of Mn and the
lift of any curve of Mn to Tλ(Mn).

Especially, we may speak of the GF-vector field and the geodesic flow in
T^M71), because the former is nothing but the set of the lifts of unit tangent vectors
vι at the point xι £ Mn to the point {x\ vι) of TΊ(M") and the latter is the one
parameter group of transformations generated by the trajectories of the GF-
vector field.

3. Isometries and Killing vector fields in Tλ(Mn). Let / be a diffeomor-
phism of Mn onto itself. We have proved in the former paper I that the exten-
sion f of f to T(Mn) is an isometry of T(Mn) if and only if f is an isometry
of Mn. If we restrict f to T^M"), then we get the following theorem:

THEOREM 1. Suppose f is an isometry of a Riemannian manifold M7\
then the extended mapping f of f induces an isometry of the tangent sphere
bundle Tλ(Mn).

COROLLARY. If a Riemannian manifold Mn admits an r-parameter Lie
group of isometries, then the tangent sphere bundle Tλ(Mn) admits an r-para-
meter group of isometries too.

Now, we shall give some theorems about Killing vector field.

THEOREM 2. In order that the extension (ξ\ -—• vj) in T(Mn) of a

vector field ξι of a Riemannian manifold Mn is always tangent to Tx(M.n) at

every point of T^Λf"), it is necessary and sufficient that ξXx) be a Killing
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vector field of Mn.

PROOF. AS the covariant components of the unit normal vector of Tx{Mn)

at (x\ vι) € T1(M
n) are given by (2. 8), the condition in order that (ξ\ ~-j vj)

is tangent to T^M") at (x\ v^zT^M") is written down as

(3. 1) [\i,μ]v^ψ + gikv
k J - ^ v> = 0,

provided that

(3. 2) gjk(x)vjvk = 1.

The equation (3. 1) can be transformed easily to

(3. 3) ξkJ vV = 0.

The equation (3. 3) holds for every (x\ vι) such that (3. 2) is true. So we can

deduce easily

which is to be proved.
Now, let us consider an ra-dimensional Riemannian manifold Mm and a

regular submanifold Mm~ι of it. We assume that V be a coordinate neighbor-
hood of Mm at a point of Mm~\ xΛ(A,B,C = 1, 2, ,m) are coordinates in
V and

xA = xA (u\ , um~ι) (u\ , um-χ) ζ D

are local parametric equations of Mm~ι in V. We denote the fundamental tensor
of Mm by GAB.

Suppose I be a vector field of Mm such that at every point on Mm~ι the
vector of the field is tangent to Mm~\ We denote by ξΛ the components of the
given vector field. Then, in D, there exist functions ξα(α,b,c = 1, 2, ,m — 1)
such that

(3. 4) ξA = Xίξ\

where we have put

LEMMA 1. Suppose that ξι be a Killing vector field of Mm such that at
every point of a regular submanifold Mm~ι the vector of the field is tangent
to M"1"1. Then ξι restricted to Mm~ι is a Killing vector field of Mm~\

PROOF. It is sufficient to show that ξa is a Killing vector field of Mm~ι.
If we contract GABX* to both sides of (3. 4), we get
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(3. 5) GΛBξ
AXB

b = GABXiXUa = gabξ
a,

where gabs are components of the fundamental metric tensor of Mm~\ Hence

we get

(3. 6) ξb = ξBXf.

Differentiating both sides of the last equation covariantly with respect to the

ChristoffeΓs symbols of Mm~\ we get

Putting the Gauss' equation

(3. 7) X*e = SlbcN*

(NΛ denotes the unit normal of Mm~ι) into the last equation we get

as ξΛ is orthogonal to NΛ by assumotion. Therefore, we see that

ξb,C + £o* = (SB.O + ξc,B) XbX°0 = 0,

because ξΛ is a Killing vector field of Mm. Hence ξa is a Killing vector field
of Mm-\ Q.E.D.

Combining Theorem 2 and the last Lemma in which Mm and Mm~x are

replaced by Ί\Mn) and T^M71) we can easily see that the following theorem

is true.

THEOREM 3. The extension of any Killing vector field of a Riemannian

manifold Mn in T(Mn) induces a Killing vector field of Tλ(Mn).

This theorem is a particular case of Theorem 1 when f is an infinitesimal

isometry of Mn.

THEOREM 4. In order that the extension ( y y v\ξt) in T(Mn) of a covar-

iant vector field ξt of M is orthogonal to the geodesic floxv of T(Mn) at every

point of T(Mn) is that ξiS are covariant components of a Killing vector

field.

PROOF. The condition of orthogonality of the extended vector field ( -~—7 vj,

ξi) and the geodesic flow is easily seen to be

f i , A j = 0.

As vvs are arbitrary we get

ξu j + &, i = 0. Q. E. D.

4. The geodesic flow of Mn in the tangent sphere bundle.
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THEOREM 5. Every lift of any geodesic of a Riemannian manifold Mn

in the tangent sphere bundle TΊ(Mn) is a geodesic of TΊ(Mn). Especially, every

trajectory of the geodesic flow in Tλ(Mn) is a geodesic of Tλ{Mn),

PROOF. Every lift of any geodesic of Mn in Tx(Mn) is also a lift of the

geodesic of Mn in T(Mn). As we have proved it in I, the latter is a geodesic

of T(Mn). Hence, it is also a geodesic of T^M71) as a submanifold with induced

metric from T(Mn).

Now, we shall prove the exact generalization of the Poincare's theorem on

the incompressibility of the geodesic flow. We begin with a lemma.

LEMMA 2. Let Mm be a Riemannian manifold and M m - 1 be a submani-

fold of it. Suppose ξι be a vector field of Mm such that the vector of the field

is tangent to Mm"1 at every point on M771"1. Then, in order that the vector field

be an incompressible vector field of Mm~ι, it is necessary and sufficient that

the equation

(4. 1) ξ\Λ - UcNBN« = 0

holds good.

PROOF. Using the same notation as in §3 we have (3. 4), from which we

get

(4. 2) ξa = gab GABPXS.

Differentiating both sides of the last equation covariantly, we get

The right hand side of the last equation can be transformed, by virtue of the

Gauss' equation, to

Hence, we get

= (GBC - NBNC%B,O

= ξΛ,A - ξB,cNBN<;. Q. E. D.

THEOREM 6. The geodesic flow of the tangent sphere bundle Tι{Mn) of

a Riemannian manifold Mn is incompressible.

PROOF. We have proved in the former paper I that the GF-vector field

(4.3) f = v', r + i = - I'lvΌ*
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in T(Mn) is incompressible. These components define GF-vector field in T\(.Mn)

if (x\ τ/) e TΊ(M"). Hence, by Lemma 2, it is sufficient to show that

(4. 4) ξB,cN£Nv = 0,

where NΛ(0, vl) are components of the unit normal vector at (x\ vι) e Tι{Mn).

Now,

Ϊ HA V

n+j

where | . 7 [ 's are components of ChristoffeΓs symbols of T(Mn). As
(n+j n '

f»4-J = 0, = 0,

[n+j n + k)

we see that (4. 4) is true. Hence, our assertion is true. Q. E. D.

5. Geodesies on the tangeut sphere bundle. We shall give here the

differential equation of geodesies of Tλ{Mn).

Using the same notaiton as in §3, let ua(σ) be a differentiate curve of Mm~\

Then we get

dx^ _ yA dua

dσ dσ

D ίdxA\ Λ dua dub ^TΛ . ΛrJ D (dua

dσ \ dσ / a dσ dσ a dσ \ dσ ) '

Hence, the differential equation of geodesies in Mm~ι is given by

dσ V dσ ) a dσ dσ

Replacing Mm and Mm~ι by T{Mn) and Tx(Mn) and noticing that the left

hand side of the last equation is given by

V
dσ* + \jk\ dσ dσ K}ίμ dσ V dσ ~ " ' dσ

we see that the differential equation of geodesies of Tx{Mn) is of the following

form:

/ κ OΛ d2xι ( i \ dxs dxk

 D ( dx1

 λ Dv» D'v1

( 5 2 ) ^ + \ \ R ^dσ^ = R^^σV dσ' US = p V '

because the components of the unit normal of Tx{Mn) is (0,vl).

Next? we shall state some elementary theorems on closed geodesies of Mn



ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES 153

and Tλ(Mn).
Let g be a closed geodesic of Mn and Po be a point of </. We translate

the tangent vector space E"o at Po parallelly along g, then we get an orthogonal
transformation T of E% onto itself which sends every vector at Ep0 to its image
by Levi-Civita's parallelism along g. We call T the orthogonal transformation
associated with g.

THEOREM 7. Let g be a directed closed geodesic of a Rίemannian mani-
fold Mn and Po be a point on g. If the orthogonal transformation T associated
to g fixes a vector other than the tangent vector of g, then T^M71) has a
continuous family of closed geodesies with the same length as g.

PROOF. We denote by v0 a unit vector which is invariant under T. Then,
the vector field vs(0^st=^L, L is the length of g) parallel to v0 along g defines
a geodesic of Tλ(Mn) with the same length as g. If we denote the unit tangent
vector on g at the point s by us, then uscosa + vssina is a parallel field of
vectors along g. So it defines also a geodesic of Tx{Mn) with the same length
as g for every value a. Q. E. D.

COROLLARY. Let g be a closed geodesic of a two dimensional orientable
Riemannian manifold M'2. Then every lift of g is a geodesic of Tλ(M2) with
the same length as g.

THEOREM 8. Let g be a closed geodesic of a Riemannian manifold Mn

and g* be the closed geodesic of TΛ{Mn) determined by unit tangent vectors of
g. If g is of minimum type, then g* is also of minimum type.

PROOF. Suppose C* be an arbitrary closed curve near g* and denote its
projection wiC* by c. Then, denoting the length of curves g, g* etc. by Jg, Jg*
etc., we get by virtue of (2. 2)

Jo* §: JC,

Jg* = Jg,

as g* is horizontal. By assumption g is a closed geodesic of minimum type, so

Jc ^ Jg.

Hence, we see that

Jc* ̂  Jg*. Q. E. D.

5. The contact structure of the tangent sphere bundle. We define in
Tλ{Mn) a differential 1-form ω by

(5. 1) ω =

Then we can easily see that
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(5. 2) dω = gtjDvj Λ dxi

and

(5. 3) ω Mdωy-' + O.

Hence, the tangent sphere bundle Tx(Mn) of Mn is a (2n — l)-dimensional

Riemannian manifold with contact structure.

THEOREM 9. The associated vector field of the contact structure ω of the

tangent sphere bundle TΛ(Mn) of a Riemannian manifold Mn is the GF-vector

field in Tx(Mn).

PROOF. Let U be a coordinate neighboorhood of Mn with coordinates x\

such that U X EnΊs diffeomorphic with π~\U), where π is the natural projection

T(Mn) ->Mn. Then {x\ vι) can be taken as local coordinates of iτ~\U) and

hence (x\ va) {a, b, c = 1, , n — 1) can be taken as local coordinates of

Tλ(Mn\

Now, solving

gtjvΦv1 = 0

with respect to dvn, we get

(5. 4) dvn=-^r(\j

t\ vhv, dxk + dvavλ
\hk)

Putting the last equation into (5. 2), we get after an easy calculation the follow-

ing equation:

dω = Sjkdxjf\dxk + 2Sn+a jdva[\dx\

where we have put

(5. 5) Sj/C = — - I -j . \vh (vn gik - gnk vt) - \ \vh (vngij - gnjVi) ,

Sn + aj = 2V ^ V n daj ~" ^nj ^o)

Hence, if we put

c _ _ e
^jn + a ^n + aj)

then we can write

(5. 6) dω = Sλμdxκ Λ dx\ (λ, μ = 1, 2, , 2w-l)

The associated vector field of the contact structure is given as a set of
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solutions of the equations

(5. 7) SKμ X* = 0,

that is

SjkX
k 4- Sjn+cX

n+c = 0, Sn+bkX
k = 0.

As the rank of the matrix ||5iμ|| is 2n — 2, the last equations have only a set

of independent solutions. We can easily verify that

(5. 8) X1 = v\ Xn+a = - j
(hk

As we can see from (5. 4), this vector field in Tx(Mn) has 2^-th components
X2n which is given by

Putting (5. 8) into the right hand side of the last equation, we get

n

hk

Hence, the associated direction to the contact structure of Tx(Mn) has components

(V, - ] [ vhvk) in T(Mn). Therefore it is nothing but the Gi^-vector field of
{hk)
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