ON RIESZ SUMMABILITY FACTORS

I.J. Maddox

(Received August 17, 1962)

1. In this note we give, in Theorem A, necessary and sufficient conditions for a sequence of real numbers $\left\{\varepsilon_{n}\right\}$ to be such that $\Sigma a_{n} \varepsilon_{n}$ is absolutely convergent whenever Σa_{n} is summable $(R, \lambda, \kappa), \kappa \geqq 0$. The case $\kappa=0$, i.e. $(R, \lambda, 0)$ equivalent to convergence, was dealt with by Fekete [3]. If we take $\lambda_{n}=n$ in Theorem A , then the known equivalence of (R, n, κ) and (C, κ) summability yields a result due to Bosanquet [1], Theorem 3 (the case $\rho=0, \kappa>0$).

Jurkat [6], Satz 1, has given a matrix method of summability which, with certain restrictions on λ_{n}, is equivalent to (R, λ, κ) summability for all $\kappa \geqq 0$. We shall employ this method of summability to give a necessary condition for $\Sigma\left|a_{n} \varepsilon_{n}\right|<\infty$ whenever Σa_{n} is summable (R, λ, κ).

In what follows we shall refer to a number of summability methods.
(i) Suppose that $\left\{\lambda_{n}\right\}$ is a sequence of non-negative numbers increasing to infinity. Define for $\kappa \geqq 0$,

$$
A^{\kappa}(\omega)=\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu} .
$$

If $\omega^{-\kappa} A^{\kappa}(\omega) \rightarrow s(\omega \rightarrow \infty)$, then we say that Σa_{n} is summable (R, λ, κ) to s.
(ii) If in (i) above ω takes only the values λ_{n+1}, then we say Σa_{n} is summable (\bar{R}, λ, κ) to s. For $0<\kappa \leqq 1$, Jurkat [4], Satz 2, has shown that ($\mathrm{R}, \lambda, \kappa$) and $(\bar{R}, \lambda, \kappa)$ summability are equivalent.
(iii) Let $p \geqq 0$ be an integer and $\kappa=p+\theta, 0<\theta \leqq 1$. Define

$$
\begin{gathered}
C_{n}^{0}=s_{n}=\sum_{m=0}^{n} a_{m}, \quad C^{\kappa}\left[s_{m}\right]=C_{n}^{\kappa}, \quad \text { where } \\
C_{n}^{\kappa}=\frac{1}{(p+1) \Gamma(\theta+1)} \sum_{m=0}^{n} \Delta_{m}\left(\lambda_{n+1}-\lambda_{m}\right)^{\theta} \frac{\lambda_{m+p+1}-\lambda_{m}}{\lambda_{m+1}-\lambda_{m}} C_{m}^{p} .
\end{gathered}
$$

Successive applications of this last formula with $\theta=1$ define C_{n}^{p}; a further application defines C_{n}^{k}.

If $C^{\kappa}\left[s_{m}\right] / C^{k}[1] \rightarrow s(n \rightarrow \infty)$, then we say Σa_{n} is summable C^{k} to s.
(iv) We say Σa_{n} is summable $|B|$ if $\Sigma\left|\Delta t_{n}\right|<\infty$, where

$$
\boldsymbol{t}_{n}=\sum_{m=0}^{n} b_{n, m} a_{m}
$$

(v) Let $A^{\kappa}(\omega)$ be defined as in (i). Then Σa_{n} is summable $|R, \lambda, \kappa|, \kappa \geqq 0$, if

$$
\int_{\lambda_{0}}^{\infty}\left|d\left\{\omega^{-\kappa} A^{\kappa}(\omega)\right\}\right|<\infty .
$$

By $|R, \lambda, 0|$ summability we mean $\Sigma\left|a_{n}\right|<\infty$.
2. For the proof of Theorem A we shall require some preliminary lemmas.

Lemma 1. Let $\kappa=p+\theta(p \geqq 0$ integral, $0<\theta \leqq 1)$, and suppose that $\Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right)$ increases. For non-integral κ let $\left|\Delta \lambda_{n}\right|$ be monotonic and $n\left|\Delta \lambda_{n}\right|^{\theta}$ increase. Then the following are equivalent

$$
\frac{A^{\kappa}(\omega)}{\omega^{\kappa}}=o(1) \text { and } \frac{C^{\kappa}\left[s_{m}\right]}{C^{\kappa}[1]}=o(1)
$$

This was proved by Jurkat [6], Satz 1.
Lemma 2. If $A^{\kappa}(\omega)=o\left(\omega^{\kappa}\right), \kappa>0$, then

$$
s_{n}=\sum_{m=0}^{n} a_{m}=o\left(\Lambda_{n}^{\kappa}\right), \text { where } \Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right) .
$$

Lemma 2 is the limitation theorem for Riesz means (see for example Hardy and Riesz [4], Theorem 22).

Lemma 3. Let $\left\{u_{n}\right\}$ converge, $\Sigma\left|\alpha_{n}\right|<\infty$ and

$$
\alpha_{n}=\sum_{m=0}^{n} s_{n, m} u_{m} \quad(n=0,1, \cdots) .
$$

Then $\sum_{n=0}^{\infty}\left|s_{n, n}\right|<\infty$.
This follows from a result due to Chow [2], Lemma 6.
Lemma 4. Let A and B be normal matrices. If $\Sigma a_{n} \varepsilon_{n}$ is summable $|B|$, whenever Σa_{n} is summable A, then

$$
\Sigma\left|b_{n, n} a_{n, n}^{-1} \varepsilon_{n}\right|<\infty .
$$

PROOF. Let $u_{n}=\sum_{m=0}^{n} a_{n, m} a_{m}, t_{n}=\sum_{m=0}^{n} b_{n, m} a_{m} \varepsilon_{m}$, and $\alpha_{n}=t_{n}-t_{n-1}$. Then $\left\{u_{n}\right\}$
is convergent, and

$$
\begin{aligned}
\alpha_{n} & =b_{n, n} a_{n} \varepsilon_{n}+\sum_{m=0}^{n-1}\left(b_{n, m}-b_{n-1, m}\right) a_{m} \varepsilon_{m} \\
& \equiv \sum_{m=0}^{n} s_{n, m} u_{m}
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{n, n}=b_{n, n} a_{n, n}^{\prime} \varepsilon_{n} \\
& s_{n, m}=b_{n, n} a_{n, m}^{\prime} \varepsilon_{n}+\sum_{r=m}^{n-1} \varepsilon_{r}\left(b_{n, r}-b_{n-1, r}\right) a_{r, m}^{\prime}
\end{aligned}
$$

for $0 \leqq m \leqq n-1$. Here $\left(a_{r, m}^{\prime}\right)$ is the reciprocal matrix obtained by solving for a_{n} in terms of u_{n}. Since $a_{n, n}^{\prime}=a_{n, n}^{-1}$, we have on applying Lemma 3,

$$
\sum_{n=0}^{\infty}\left|b_{n, n} a_{n, n}^{-1} \varepsilon_{n}\right|=\sum_{n=0}^{\infty}\left|s_{n, n}\right|<\infty
$$

This proves the lemma.
3. We now prove the main result.

THEOREM A. Suppose that the conditions of Lemma 1 are satisfied. Then $\Sigma a_{n} \varepsilon_{n}$ is absolutely convergent whenever Σa_{n} is summable $(R, \lambda, \kappa), \kappa \geqq 0$, if and only if

$$
\Sigma \Lambda_{n}^{\kappa}\left|\varepsilon_{n}\right|<\infty, \text { where } \Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right)
$$

Proof. Necessity. By Lemma 1 we may employ C^{κ} summability in place of (R, λ, κ) summability. For positive integers p, we have

$$
C_{n}^{p}=\frac{1}{P} \sum_{m=0}^{n}\left(\lambda_{m+p}-\lambda_{m}\right) C_{m}^{p-1}
$$

Hence

$$
C_{n}^{1}=\sum_{m=0}^{n}\left(\lambda_{m+1}-\lambda_{m}\right) s_{m}=\sum_{m=0}^{n}\left(\lambda_{n+1}-\lambda_{m}\right) a_{m}
$$

It is readily shown by induction on r, that for integers $r \geqq 1$,

$$
C_{n}^{r}=\sum_{m=0}^{n} c_{m, m}^{r} a_{m}
$$

where

$$
\begin{equation*}
c_{n, n}^{r}=\left(\lambda_{n+r}-\lambda_{n}\right)\left(\lambda_{n+r-1}-\lambda_{n}\right) \cdots\left(\lambda_{n+1}-\lambda_{n}\right) / r! \tag{1}
\end{equation*}
$$

Thus it follows from (1) that

$$
C_{n}^{k}=\sum_{m=0}^{n} d_{n, m} a_{m}
$$

where

$$
d_{n, m}=\frac{1}{(p+1) \Gamma(\theta+1)} \sum_{q=m}^{n} \Delta_{q}\left(\lambda_{n+1}-\lambda_{q}\right)^{\theta} \frac{\left(\lambda_{q+p+1}-\lambda_{q}\right)}{\left(\lambda_{q+1}-\lambda_{q}\right)} c_{q, m}^{p} .
$$

Hence we have $d_{n, n}=\left(\lambda_{n+1}-\lambda_{n}\right)^{\kappa} / \Gamma(\kappa+1)$ if $0<\kappa \leqq 1$, and $d_{n, n}=\left(\lambda_{n+1}-\lambda_{n}\right)^{\theta}\left(\lambda_{n+p+1}-\lambda_{n}\right)\left(\lambda_{n+p}-\lambda_{n}\right) \cdots\left(\lambda_{n+2}-\lambda_{n}\right) /(p+1)!\Gamma(\theta+1)$ if $\kappa>1$.

Let us now consider the C^{k} transform of Σa_{n} :

$$
C_{n}^{k} / C^{\mathrm{k}}[1]=\sum_{m=0}^{n} a_{n, m} a_{m}, \text { where } a_{n, n}=d_{n, n} / C^{\mathrm{k}}[1] .
$$

Since $\Sigma\left|a_{n} \varepsilon_{n}\right|<\infty$, whenever Σa_{n} is summable C^{k}, we have by Lemma 4 that

$$
\begin{equation*}
\Sigma\left|a_{n, n}^{-1} \varepsilon_{n}\right|<\infty . \tag{2}
\end{equation*}
$$

Now it was shown by Jurkat in the proof of Lemma 1 that

$$
\begin{equation*}
0<a \leqq \frac{C^{k}[1]}{\lambda_{n+1}^{k}} \leqq A, \quad a, A \text { constants. } \tag{3}
\end{equation*}
$$

Also since Λ_{n} increases we have $\left|\Delta \lambda_{n}\right|=O(1)\left|\Delta \lambda_{n-1}\right|$. Hence for $r=2,3, \cdots, p+1$,

$$
\begin{equation*}
\frac{\lambda_{n+r}-\lambda_{n}}{\lambda_{n+1}-\lambda_{n}}=1+\frac{\left|\Delta \lambda_{n+1}\right|}{\left|\Delta \lambda_{n}\right|}+\cdots+\frac{\left|\Delta \lambda_{n+r-1}\right|}{\left|\Delta \lambda_{n}\right|}=O(1) \tag{4}
\end{equation*}
$$

Thus by (2), (3) and (4) we have

$$
\begin{aligned}
\Sigma \boldsymbol{\Lambda}_{n}^{\kappa}\left|\varepsilon_{n}\right| & =\Sigma \Lambda_{n}^{\kappa} \frac{C^{\kappa}[1]}{d_{n, n}} \cdot \frac{d_{n, n}}{C^{\kappa}[1]}\left|\varepsilon_{n}\right| \\
& =\Sigma\left|a_{n, n}^{-1} \varepsilon_{n}\right| \frac{\lambda_{n+1}^{\kappa}}{C^{\kappa}[1]} \frac{d_{n, n}}{\left(\lambda_{n+1}-\lambda_{n}\right)^{\kappa}} \\
& \leqq a^{-1} \Sigma\left|a_{n, n}^{-1} \varepsilon_{n}\right|\left(\lambda_{n+1}-\lambda_{n}\right)^{\theta} O(1)\left(\lambda_{n+1}-\lambda_{n}\right)^{p-\kappa} \\
& =O(1) \Sigma\left|a_{n, n}^{-1} \varepsilon_{n}\right|<\infty .
\end{aligned}
$$

This proves the necessity. We note that the above proof can be used to establish a rather stronger result. For let us take, in Lemma $4, b_{n, m}=\left(1-\lambda_{m} / \lambda_{n+1}\right)^{\mu}$, $\mu>0$. Then if $\Sigma a_{n} \varepsilon_{n}$ is summable $|R, \lambda, \mu|$ it is summable $|B|$. Hence by Lemma 4,

$$
\begin{equation*}
\Sigma \Lambda_{n}^{-\mu}\left|a_{n, n}^{-1} \varepsilon_{n}\right|<\infty \tag{5}
\end{equation*}
$$

By (2), (3),(4) and (5) we then have

$$
\begin{equation*}
\Sigma \Lambda_{n}^{\kappa-\mu}\left|\varepsilon_{n}\right|<\infty . \tag{6}
\end{equation*}
$$

Thus (6) is necessary for $\Sigma a_{n} \varepsilon_{n}$ to be summable $|R, \lambda, \mu|, \mu \geqq 0$, whenever Σa_{n} is summable C^{κ}.

We note that when $0<\kappa \leqq 1$, no restriction on λ_{n} is required, since C^{κ} is equivalent to (\bar{R}, λ, κ), which is equivalent to (R, λ, κ) by an earlier remark (Section 1,(ii)).

Sufficiency. Suppose that $\Sigma \Lambda_{n}^{\kappa}\left|\varepsilon_{n}\right|<\infty$. Since Σa_{n} is summable (R, λ, κ) and Λ_{n} increases, we have by Lemma 2,

$$
a_{n}=o\left(\Lambda_{n}^{\kappa}+\Lambda_{n-1}^{\kappa}\right)=o\left(\Lambda_{n}^{\kappa}\right) .
$$

Hence

$$
\Sigma\left|a_{n} \varepsilon_{n}\right|=O(1) \quad \Sigma \Lambda_{n}^{\kappa}\left|\varepsilon_{n}\right|<\infty .
$$

This proves the theorem.

References

[1] L. S. Bosanquet, Note on convergence and summability factors, Journ. 1 London Math. Soc., 20 (1945), 39-48.
[2] H. C. Chow, Note on convergence and summability factors, Journ. 1 London Math. Soc., 29 (1945), 459-476.
[3] M. Fekete, Summabilitasi factor-sorozatok, Math. és Termés. ÉErt., 35(1917), 309-324.
[4] G. H. Hardy and M. Riesz, The General Theory of Dirichlet's series, Cambridge Tract No. 18, 1915.
[5] W. Jurkat, Über Rieszsche Mittel mit unstetigem Parameter, Math. Zeit., 55(1951), 8-12.
[6] W. JURKAt, Über Rieszsche Mittel und verwandte Klassen von Matrixtransformationen, Math. Zeit., 57 (1953), 353-394.
Department of Mathematics,
The University Leeds 2, England

