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1. Introduction. It is known that if a trigonometric series converges every-
where to a nonnegative sum f{x) then f is integrable and the series is a
Fourier series [5, p.328], whereas when a trigonometric series converges to a
nonnegative sum only in an interval (a, b), its sum is integrable over interior
intervals, but is integrable over (a, &) if and only if the integrated series converges
at the endpoints of the interval [5, p.372, no.14]. However, the sum belongs to
L'-%, for every positive 8, over the whole interval (a, ) [5, p.371, no.13]. I shall
give a simple proof of this last result by showing first that (x — a)* (b — x)*f(x)
is integrable over (a, b) for every positive a.

There is another natural sense in which a nonnegative function f can be
associated with a trigonometric series, namely that the coefficients in the series
are the Fourier coefficients of f in a generalized sense. If we consider the case
when f is integrable except in the neighborhood of one point, which we may
take to be 0, we can obtain necessary and sufficient conditions for the integrability
of x*f(x) for certain nonnegative values of «. These may be considered as
analogues of the known results that connect integrability of x*f(x) with the
convergence of Zc,n %' when a << 0 (see, for example, [1], [2], [4], where further
references are given).

2. Convergent trigonometric series.

THEOREM 1. If a trigonometric series Zc,e'™* converges in some (0,8)
to sum f(x) and f(x) =0 in this neighborhood then x*f(x) € L in a right-hand
neighborhood of 0 for every positive a.

PROOF. Since the series converges in an interval, ¢,—0. We know that f
is integrable on every (a, b), 0 << a < b < 8. (Cf.[5], pp.328 and 371, no.13.) Since
the Fourier series of the function equal to f{x) on (a,0) and to 0 elsewhere is
equiconvergent with 3c,e'™™* over any closed subinterval of (a, &) ([5], p.330), we
can integrate Zc,e™” formally over (x, &), where 0 < o << & <8, and obtain an
integral of f. Since the series 3c,e'"*/(in) is a Fourier series, and indeed the
Fourier series of a function that belongs to every LP(p < o0), by the Hausdorff-

Young theorem, f ) fl)de € L? for every p. Then by Holder’s inequality
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Q! : s f(6)dt = fo A ((: Zo-ldx = fo "zl f " Ay
= {fog dx {_Lsf(t)dtr} v “; x(a—lm’dx}”p,< oo
provided that p' = p/(p — 1) > 1/a.

THEOREM 2. With the hypotheses of Theorem 1, f € L'™" in a right-hand
neighborhood of 0, for every positive 1.

We have

—/:f(t)l—vdt = fosf(t)l-utlt—h dt

< { fo e f(t)t”(‘""’dt{‘" { ﬁ PRT }"< oo

by Holder’s inequality, provided that 0 <A <#.

3. Generalized sine series. We now consider generalized Fourier series of
nonnegative functions. We discuss sine and cosine series separately.

THEOREM 3. If 0 <a <1, x*f(x)e L, and

(1) b, = 727_ f; flx) sinnxdzx,
then

(2) 27,

converges.

This is a well-known elementary fact for « = 0. For @ = 1, see Theorem 6.

We have
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where A is independent of m and M. Hence
L= A[ Ifw)adr,
In I,, we have

=) = Amme

:Mx

M
> n~*Tsinnx
m

We obtain
|1, éAm‘“f |Ax)| dx.

If we take & small and then m large we can therefore make I, + I, arbitrarily
small, and so (2) converges.

Theorem 3 assumes nothing about the sign of f(z). When f(zx)=0, it
has a converse.

THEOREM 4. If 0 <a <1, flx)y=0 on (0,n), xf(x) € L, b, are defined
by (1), and Zn=*7'b, converges, then f{x)x* € L.

We have
1 M n 1t
—2—7rz n*h, = n‘“"f flx) sinnxdx
1 1 0
T M
= f Ax) > n*'sinnxdz.
0 1

Since > n°! sinnx has nonnegative partial sums, partial summation shows

that Sn *'sinnx also has nonnegative partial sums. Hence by Fatou’s lemma

(3) J{)"‘ f(x)z:: n *Isinnxdr = hn};.iflf .% - zil: ne1b,
Now
Z”: n-“cosnt ~ At*! (t—0)
1
and so
i n~*sin nx = fox i n-cosntdt ~ Az (2—0).
1

1

Hence (3) implies that f Ax)x*dzx < oo, We have not used the full force of
0
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the hypothesis that 37 ~%7'b, converges; it would be enough for this series to
have a sequence of bounded partial sums.
Theorem 4 is still true when a = 0 but the proof is slightly different.

THEOREM 5. If fle)=0 on (0,m), b, are defined by (2), and 3b,/n
converges then f(x) € L.

The reasoning leading to (3) is unchanged when a = 0, and the series on
the left is now equal to (7 — x)/2. Hence

M

(4) [nf(x)(w — x)dx =lim infwY_ n7'b,.
<0 Moo 1

Since zf(x) € L, (4) shows that f(x) € L.

When «a = 1, Theorem 4 is vacuous and Theorem 3 fails; as an example
we may take an odd function equal to x~%log x)~? in a right-hand neighborhood
of 0. We have the following substitute.

THEOREM 6. If zf(zx)log(1/x) € L and b, is defined by (1) then Sn~b,
converges ; if En~*b, converges and f(x)=0 then xf(x) log(l/x) € L.

If zf(x)log(l/x) € L we have

1 n M z
o S n, = n? f Ax) sinnxdx
m m 0

= j:f(x) i; n”*sinnxdx = j; + [ =1 + L.

by
By the same reasoning as in Theorem 3 we see that Y n~2sinnzx is O(x log(1/x))

uniformly in m and M as x —0, and O(1/m) for x > & as m — oo. The
conclusion follows.
Conversely,

M x M
% my n?h, = f Ax) > n?sinnxdx,
1 0 1
and if Sn 20, converges we have

‘/0‘ fx) > n? sinnxdzr = % Ty n b,
1 1

Now )_ n~'cosnx = — log (2sinx/2) and hence > n?sinnx ~ zlog(1/ x) as
1

1
2 — 0. The conclusion follows.

4. Generalized cosine series. For cosine series the situation is somewhat
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different. If we assume f(x) =0 then the existence of the cosine coefficient a,
automatically makes f € L. We shall therefore suppose that a, = 0, and require
Sf{x) =0 only in a neighborhood of 0. We can then work with a wider range
of a than in §3.

THEOREM 7. If 0 <a <2, xf(x) € L, and

(5) a, = % LO Jf(x)cosnxdz, n=12,...,

then

(6) Sn *a,

converges.
We have
1 - X cosnx — COS NI
srs e = [T S dr = — [ DL

2
since f Sflx)dx = 0. Thus
0

Lafrea =~ ([ 4 [) o 5o 212 g,

sMa

In I, we have

-
[1/a N,z
1

M
Zsln:’li/z Z+Z<*$ZZ"]“+ Zn—a-1<Ax

m 1,2 1/2]

In IQ,
M

> n ! sin*nx/2 = Am™*

as in the proof of Theorem 3. The convergence of (6) then follows.

THEOREM 8. If 0<a <2, fe L in every (& m), €>0, flxy=0in a
right-hand neighborhood of 0, a, are defined by (5) with a, = 0, and Zn~*"'a,
converges, then flx)x* € L.

Thus a = 1 is not an exceptional case for cosine series.

We have

M s M
%71' > n*a, = [ Ax) > n~*"'cosnxdzx.
1 o0 1
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Now >_ 7n~* cosnx has its partial sums uniformly bounded below for 8 sufficiently
1

near 1; hence, by partial summation, so does 37 % 'cosnx, 0 <a < 1. Let — K
be a lower bound for the partial sums of the latter series ; since a, = 0, we have

1 M ,, »
E"TZ”—‘H% = [ f(x){z n~*lcosnx + K} dx.
1 0 1

As in Theorem 4, it now follows by Fatou’s lemma that

Ff(x) {i n~* 'cosnx + K} dx
Jo 1

converges, and (again since a, = 0) therefore so does

fuf(x)i n (1 — cos nx) dz.

But

> n* (1 — cosnx) = f > n~® sinnx dx ~ Ax* (x—0)
0 1

1

([5], p. 186), and so the conclusion follows.
In the case a = 0, conditions for the convergence of (6), i.e. of Zn~'a,, are
known (cf. [5]. p.228, no.8; [3], p.96).
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