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1. Introduction. Let us consider a Riemannian space V?*" with positive
definite metric tensor G4 and admitting a Killing vector field #* such that
the magnitude of the absolute differential d¢"v,u* is equal to the magnitude of
the infinitesimal vector d¢*. Then we get from (d&°v su”)(dE*V ®)Grs= dE® dE'G4
the equation

1. 1) (VBuT)(VAuT) = Gy
where u4 = u5Gs,.

A Killing vector u* satisfies the equation Vzus + vaup = 0, so that, if we

put

1. 2) vau' = F3,
the equation (1. 1) is equivalent to

1. 3) Fi"Fit = — 83.

Thus we obtain an almost Hermitian structure. We shall study in the present
paper some local properties of spaces V** with almost complex structure Fj*
which is derived in such a way from a Killing vector «*. Letters such as Fj*
and f will always denote almost complex or complex structures.

Since we get from (1. 2) vevsu® = veFi' and since a Killing vector u?
satisfies

1. 4) VeVsu! = — Kgip* o,
we get VeFp4 + VaFae + valles = 0,

which shows that our space V?" is an almost Kihlerian space.
V?* being an almost Kihlerian space, we get p°F5' = 0 and hence

1) Indices A,B, . « - would run from 1 to 2z, but, since we prefer a special coordinate
system, we use indices as follows,
A,B’C,...’S,T,. =
a,B’—y’-.-’A’lu’..-z
P,q,","',»ﬁ,y’zz()l *
hyi,j,k,l,mn=1,- 2n—2

0,1,+¢+,22 — 2, oo,
1, ,2n — 2, oo,
. n——2
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vivs u! = 0. We then obtain Ks*«® =0 where K3* = KpsG54 and Kz
is the Ricci tensor.
We also obtain

% Fyt = %VB“A = (%VB - VB%) u' + VB% u!

= (8] 56w -0

from which we find that #* is a contravariant almost analytic vector [2].
Thus we obtain the

THEOREM 1.1. If a Riemannian space V" admits a Killing vector field
u' such that the tensor ysu* determines an almost Hermitian structure in
V**, then the space is an almost Kdihlerian space and the Ricci tensor is not
definite. Moreover, the vector u* is a contravariant almost analytic vector.

2. Killing vector and some special coordinate systems. Let us consider
that a Killing vector u is given in a Riemannian space V?* and assume that
its magnitude |u| is not a constant. We prove in the following that we can
then find a coordinate system (¢) such that the components u* of the given
Killing vector in this coordinate system satisfy

2.1 u' =8, wur = Gy, = .

Let (5*) be any coordinate system in which the given Killing vector has
the components v°v!,- .., v**"2, v and the fundamental tensor has the com-

ponents Hps. Then, if we put ¢ = v"v® Hys, we get

g(;): vt =0

for we have

T.,S
‘UA 8(«0 gnAHTS) — ZI)A(VA‘UT) 'USHTS
= 2yavr)viv” = 0.
Evidently we can choose 27 — 2 functions @',@?%- - ., @*""? of #* such that
1 2n—2
o9 vt =0, g™ vt =0

........ cee, ot

and moreover such that the rank of the matrix
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%' 99 L., 99 O
on° on' on'"? op~
8¢2n-—2 9¢)2n 2 8¢2n—-2 a¢2n—2
“a;O—_ - 8771 ................. 8772"—2 aﬂ-
op™ op™ op~ o™
o e R EREEEEE By oy
is 2n — 1. Then, if @° is a solution of the equation
°9° . _
anA - 1’
we get
op*
det ( o ) +0,

so that we can take (¢*) = (¢*) as a new coordinate system. The components
u* of the given Killing vector in this coordinate system satisfy
A4

ut = 8(:“ v* =8, Wur = v'vr = @~ = £

and we get Gy, = GpuPu' = uTur = £, hence (2. 1) is satisfied.

We can derive from (2. 1) the following equations ([1],p.209;[3],p.31;
[4],p.49) :
(2. 2) aOGBA = 0.

Now consider the equations

GOeo Gix af GMN _f

oF o
(2. 3)

i» Of e Of

5 TG g =0

As the tensor Gy, is positive definite, we have G=*>0. On the other hand,
since we have (2. 2), the functions G** do not involve the variable £°. Consequently

we can find functions f, f7 of &,...&""? & satisfying (2. 3) and

det (—é%) +0.

Then
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&0, = &0 +f(§x,' ] EZ7‘727 5&)7

Ej/ :fj(élf ) §2n—2’ &m)s

em/ — gm
is a coordinate transformation such that the components #*" of u and the components
Gp.a, G4 of the fundamental tensor in the new coordinate system (£*) satisfy

uA, = 8%;, a(yGB,A, = 0,
GO’O/ = Em/, GO/N, = Go/m/ = 0, Gyn/ = Gym/ =0.
Thus we obtain the

THEOREM 2.1. If a Riemannian space V*" admits a Killing vector u whose
magnitude |u| is not a constant in the V**, then there exists a coordinate
system (') such that the components u* of u and the components Gpa of the
Sundamental tensor in this coordinate system satisfy the equations

uA == 8(‘)4, aoGBA = 0,
Goo = &w, Gnm = Gi.. = 0.

Such a coordinate system will be called a favourable coordinate system in

the present paper.
There are many favourable coordinate systems. If (¢*) and (¢*) are such
ones, then we have

& =g+ fE - B,
@ 4 g = U £,
£ =

REMARK 1. If (2. 1) is satisfied, we have
(VB(uTuT»(VA‘P) G* = (V}:fm)(VA¢>GBA = GmAVAql

for any scalar field @. Hence we can think that (2. 3) means that grad@ and
grad(u"uy) are orthogonal to each other whenever we put @ = £° + f or @ = f.

REMARK 2. As G* = G** =0 and G,.. = G;.. = 0 are equivalent, we find
that the hypersurfaces £° = const. are intersected orthogonally by the hyper-
surfaces u"ur = const. and that the parametric curves &€ are orthogonal to the
parametric curves £ for every number x = 0,1,. . .,2n — 2 if we take a favourable
coordinate system.

3. A Riemannian space V?" which admits a Killing vector field «* sa-
tisfying the equation (Vu”")(viur) = Gps. At first we prove the

THEOREM 3.1. In a Riemannian space V™" in which ysu' determines
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an almost Kdihlerian structure® the Killing vector u* can not have constant
length.

PROOF. If we assume «"ur = const., we get Fi"ur = 0 from (y.u” )ur =0.
But, as we have det(F3*) = = 1, this leads to contradiction.
The following corollary is a direct consequence of Theorems 2.1 and 3.1.

COROLLARY. In a Riemannian space V" in which ysu* determines an
almost Kihlerian structure we can choose a coordinate system (E°, &, &) such
that the components u* of the Killing vector u satisfy

3B. 1) ut = 8¢
and the components Gpa of the metric tensor satisfy
(3- 2) Goo = £, aoGBA =0, Go,, = Gi,, = 0.

In such a favourable coordinate system we can write (1. 1) in the form
3. 3) [0B, T1[0A, SIG™ = Gpa

or in the form
(3. 4) (08Gor — 20 Gop)(04Gos — D5 Goa)G™ = 4 Gpa.
Taking (2. 2) into account we get from (3. 4)
(aBGOO)(aAGOO)GOO + (aBGOO)(eAGOa — Oa GOA)GM
+ (aBGQS - aﬂ GOB)(aAGoo)GO'3
+ (05Gos — 9Gs)04Gou — 0.Gou)GP* = 4 Gy

and taking Gy, = £€°, Gy = G;. = G* = G* =0 into account we find that these
equations split into the following three sets of equations,

(3. 5) G = 4G00,
3. 6) G==0.Gn = 4Gn.,
3.7 387G + 87(01Gon — 2,6 )G™ + 87(3,.Goe — 904G )G™

+ (9” Gog - 9,3 Go,*)(a;\ Go,x - aaGm )Gﬁa == 4GM7L'
We obtain G== = 4£~ from (3. 5) and substituting this into (3. 6) we have
3. 8) £70.Gn = Gn,

hence the functions fu = (§*)"'Gy, depend only upon the variables &!,. . ., £"~2,
Thus we get

(3. 9) G = fmfA(fl,' ) E‘M_z)

2) It follows immediately that #4 is then a Killing vector.
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and also
1
= 1=
Equations obtained from (3. 7) by putting A = 4 = o~ and also by putting
= oo, u =j are satisfied identically because of (3. 8) and (3.10). But, if we

put A =12, w =7 in (3. 7), we get
(©,Goe — 9:Go;)(@Gon — 20Go))G*
+ (auGoj)(awGoi)Gmm - 4G]l

which we can write also in the following form,

(3.10) G G== = 4g=.

(3.11) % (©,Gor — 9:G0)(@:Gon — 0,Go)G*"

= G}'i - (&m)—IGo;’Goi-
Thus we have the

THEOREM 3.2. Let V*" be a Riemannian space with an almost Kihlerian
structure determined by Ggps and Fp* = ysu*. Then if we take in V** a fav-
ourable coordinate system (¢*), that is, a coordinate system in which (3. 1)
and (3. 2) hold, we get (3. 8), (3. 10) and (3.11).

THEOREM 3.3. If a Riemannian space V*" with the fundamental tensor
Gpa admits a coordinate system (E*) such that

00Gpa =0, Gy = £, Gow = Giw = 0, Guww = (45”)_1,

and moreover such that (3. 8) and (3.11) hold, then a wvector u with the
components u' = 8 is a Killing vector which satisfies (1. 1) and this V*"
becomes an almost Kihlerian space by virtue of the tensor yzu’.

THEOREM 3.4. A necessary and sufficient condition that, in a Riemannian
space V" which admits a Killing vector field u, Vzu* can determine an
almost Hermitian structure is that the following two conditions (1) and (1)
be fulfilled. (1) |u| is not constant in V*" and consequently we can take a
favourable coordinate system. (I1) The metric tensor Gy of V** satisfies (3.8),
(3.10) and (3.11) in this coordinate system.

4. A family of almost Kahlerian spaces Van-s induced by the Killing
vector field «* of V*". Let us define g,n by

Gu GoG
@D 994= Gy T Gk’

As det (9,0) ==0, we can define g** by g¢..g** = &,. Then we get
4. 2) g = G, G*
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and
00 __ 1 gﬂaGOSGﬂa
=G T T Gy
AaG
4.3 G = — I
.3 Gu)
G = Googla + Qﬂégo_h.
00
Using these equations and (3. 9) we can write (3.11) in the form
1
(4 4) Z (a;fk - akfj)(aifh, - 8hfi)gkh‘ = Y-

Since we have ¢... = 0 because of Gop = Gio. =0, we get ¢"g,, =8 ¢; do
not involve the variable £°.

Now consider for each value of £ a Riemannian space of dimension 27 — 2
in which any point is denoted by the coordinates &',. . .,£2"~? and the fundamental
tensor by ¢, As we have (4. 4), this Riemannian space admits an almost
Hermitian structure determined by

4. 5) fu=5 @fi = 3f).

We denote this almost Hermitian space by V*“‘Z(E”).

In V?" let T denote a trajectory of the group of motions induced by the
Killing vector u*. If a trajectory T passes a point P, it will be denoted by T(P).
Let the coordinates of a point P be & and the coordinates of a point P’ be
£* + dg*. Then we can define the infinitesimal distance between the two tra-
jectories T(P) and T(P’) by the length of the infinitesimal vector

b

dgt — us d&° ut

uur

hence by
B g _ UBU4A 4.8 go4 b
(4. 6) (Guedghdg' — 23t dgn dgt )

The distance thus defined depends only upon the trajectories themselves and
does not depend upon the position of the points P,P’ in the trajectories. This is
one of the direct consequences of the definition of group of motions.

Consequently we can derive a Riemannian space of dimension 27 — 1 by
regarding each trajectory as a point. This space is denoted by V. Substituting
us = Gpau® = Gyq into (4. 6) we find that the fundamental tensor of Vj is
given by
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GOU. GO?L
GOO

if each point of V5 is denoted by the coordinates £!,. . .E&" 2>,

Since & is constant along each trajectory on account of & = u"ury, Vg
admits a family of hypersurfaces &= = const. According to (4. 1) and (4. 7) the
fundamental tensor of each hypersurface £ = ¢ is given by cg;; where g, is the

4. 7) G —

fundamental tensor of {/2"‘2(c).
As the functions f; = (¢°)7'G,; do not involve &=, the skew symmetric tensor
(4. 5) does not depend upon £~. But, as g¢;, depends in general upon &=,

4. 8) P =g
and
4. 9) B = Fug™ = 5 (V. = V)

s * . . . . .
involve &, In (4. 9) v, denotes covariant differentiation with respect to the

h ¥*
Christoffel symbols{ } formed from g;;.

ji
V=% is such an almost Hermitian space.
But, since we have
* * *
Vil + Vifie +Vifi; =0
from (4. 5), V**=? is an almost Kihlerian space.

We have deduced in such a way a family of almost Kéhlerian spaces
Vin=2(¢=) from a Riemannian space V?* which admits a Killing vector z*
satisfying the equation (1. 1).

Let us consider conversely a family of (27 — 2)-dimensional spaces labelled
by a parameter £, so that each space is denoted by Z\*I(E"") and the family by
{M(&~); & € D,} where D, is a domain of positive numbers. Every M(¢~) and

the family are differentiable of class, for example, C* and in each I\*4(§"°) a fun-
damental tensor is introduced by the differentiable functions g;,(&',- . .,&"7% &),

the coordinates of a point being denoted by &,...&" % We assume that Z\*ﬂ?")
becomes an almost Kihlerian space by virtue of g¢;; and the almost complex
structure f;' formed from a vector f; by (4. 8) and (4. 9). We assume furthermore
that the components f; do not depend upon & for some choice of the coordinate
system (&', -.,£"7?) and consider the space M = {Z*M(E’") X B X £ & € D,,
£ € D,}® where the points are indicated by the coordinates &°&',. .. £ %, §&=.

*
3) We understand in the right hand side of this equation a union of the point sets M(¢=)
X & x &= over & € D,, ¢ € D;. In this connection it must be especially emphasized that
we are studying only local properties,
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*
D, is a domain of real numbers. Though each M(¢*) is a Riemannian space,
we introduce the space M only as a differentiable manifold until we introduce

a metric anew.
Now we introduce the fundamental tensor Gg4 into M by

Go = £, Gpo = Gioo = 0, Gooo = (4E°)7,
Go = Efv, G = E(g5 + if0)-

Then the space becomes a Riemannian space V?*" which admits evidently a
Killing vector u«* = & and this Killing vector satisfies (1. 1). We find immediately

that 1\2({-“’) can be identified with ‘72"‘2({3‘”).

Thus we can construct an almsot Kihlerian space V?*" with Fi* = yyu’

(4.10)

*
starting from a family of some almost Kihlerian spaces V?""%(¢"). We can even
construct an almost K#hlerian space V" from only one almost Kéhlerian space

V**=2. We need only to consider that g;; do not involve &=. There is an intrinsic
difference between the two cases, for the variables & ¢,. . .,£2"~% and the variable
& are completely separated in (2. 4).

Consequently we have the following theorems.

_THEOREM 4.1. Let V*" be a Riemannian space which becomes an almost
Kihlerian space by virtue of a tensor field Vyu*. Then we get a family of
almost Kdhlerian spaces Ve T [f we take in V™™ a favourable coordinate

system (£*), then the members of the family are labelled by £~ and ‘72"‘2({-"")
has the fundamental tensor
_ Gu _ GoGa
9= G T G
and the almost complex structure (4. 9). If we consider a hypersurface

& = const. in V** and regard in it each trajectory of the group of motions
induced by the Killing vector u* as a point, we get a Riemannian space of

dimension 2n — 2. This space is homothetic to the Riemannian space V" (™),
the ratio of the metric tensor being £ :1.
THEOREM 4.2. Let us consider a family of Riemannian spaces M(E) of
dimension 2n — 2, where £ is a parameter indicating the space and E',. . . E"?
*
are coordinates of a point. The fundamental tensor of M(E) is denoted by

*
;&' « E"?5 E7) and we assume that M(E°) admits an almost complex
Structure

fi=fug  Fu=5 @S —2f)
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derived from a covariant vector field f,, where f; do not involve the variable £=.
Then, if Gy satisfies (4.10), a Riemannian space of dimension 2n obtained by

introducing the fundamental tensor Gg. into the space {1\7(5“) X & X & ; E € D,
& e D,} admits a Killing vector u* = 8] and it becomes an almost Kihlerian

space by virtue of the tensor Vzu®, Z\*l(é*) playing the role of Y}:"’"‘Q(&“’). We may
consider a special case such that g;, do not involve E>.

We remark that we have in favourable coordinates
(4.11) F;'=f;i F.l=0, F;* =0.

This is proved as follows.

Ff=ww=bw=GWNM=%G%ﬁm—@Qﬂ
1
= ? ym(a;‘fn - 9nfj),

l}=GWwQﬂ=GWme+GWwQM
()
1

i —
2&@ G hGOh —_— 0,

[
2G+

Il

z
Fy' = G*”[0 0,p] = 0.
ool il oom0on

(1. 3) and (4.11) also bring about the formula f;* fi' = F;* Fi' = F3® Fg' = —8§,".

5. A Riemannian space V?* which admits a Killing vector u* satisfying
(Vsu" ) (Vaur) = Gz, and such that the hypersurfaces «”«, = const. are totally
umbilical. A necessary and sufficient condition that the hypersurfaces @(x!,. - .,x™)
= const. in a Riemannian space V™ be totally umbilical is that @ satisfy equations
of the form

Vv = agy + (V,p)B, + (Vip)B;, 4,5 =1,--.,m.

Hence, if the hypersurfaces «”ur = const. in V" are totally umbilical, we

have
VBVA(uTuT) = aGgs + (VB(uTuT))QDA + (VA(uTuT))CDB-

Since u"ur = &=, the left hand side becomes

C oo
0p04E” — {BA} OcE™ = — {B A} = — G™=[BA, =]

= — 28°(05G 4w + 04Gpe — 0.Gp4)
and the right hand side becomes
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aGBA + 8;‘1),4 + B:CI)B.

Hence a necessary and sufficient condition that %"z, = const. be totally umbilical
is that the following equations

o
(5. 1) awaz - EE
which are obtained by putting B =y, A = x, be satisfied. But, as we have
(3. 8) already, we get @ = 2, and (5. 1) becomes
6. 2) 0.Gy, = (£°)7'Gys.

Thus we obtain the following theorem.

ny,

THEOREM 5.1. A necessary and sufficient condition that in an almost
Kihlerian space V" with Fy* = Vsu* the hypersurfaces u"ur = const. be totally
umbilical is that (£°)"'G; do not involve the wvariable & in a favourable
coordinate system.

We have proved also the next theorem.

THEOREM b5.2. Let us assume that a Riemannian space V" admits a
Killing vector feld w such that || is not constant in V*". Then a necessary
and sufficient condition that the hy persurfaces u"ur = const. be totally

umbilical is that the equation 9.G,, = aG,, be satisfied for some function a
in a favourable coordinate system.

Let us calculate some components of the curvature tensor by the formula

Koesa = % (©p08Goa + 0¢04Gps — 0p04Ges — D¢ 0pGpa)

+ G™{[DB,T|[CA,S] — [DA,T])[CB,S1}.
Then, using (3. 2), (3. 3), (3. 5), we get
Kyzo = G™{[0A,T][0B,S] — [00,T1[BA,S1}
= Gpa — G™"[00, ][ BA, =]
= Gpa + E(05G e + 0.4Gpo — 0Gpa),
hence
(5- 3) Ko =0, Kpgeo =0, Koz = G:llcc — E°0.Gy,.

Consequently a necessary and sufficient condition that the hypersurfaces &
= const. be totally umbilical can be written as Kyx = 0. We can also obtain
the same result directly if we use (1. 4), get VsVi(e"ur) = 2Gps — 2Krpasu” u’
= 2Gp4 — 2Kipao and substitute the latter into v, v,(«"ur) = aGy,.

Hence we get the

COROLLARY OF THEOREM 5.1. A necessary and sufficient condition
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that in an almost Kihlerian space V*" with Fy* = Veu* the hypersurfaces
u"ur = const. be totally umbilical is that, among the components of the cur-
vature tensor, Kops vanish in favourable coordinates.

6. A Kahlerian space V** with the complex structure F3* = vzu'. We
calculate components Kyyss when (£°)7! G,, do not contain the variable &
We have already

(6 1) KOBAO = O
and we can prove

(6 2) KOBAQ = 0
as follows.

If a Riemannian space of dimension 2z admits a Killing vector «* satisfying
1. 1), we get

1
9 VeVaValu ur) = Ve (Gpa — Krpast" %) = — Ve (Krpasu™ u® )-

If (6. 1) holds in addition, we get Ve Vsy.(u"ur) = 0 because of Krpt"u® = 0.
Hence we obtain K 3:5vs(u ur) = 0. Since Vs(u"ur) = 83, this equation can
be written as follows,

(6. 3) Kérl;‘i“ = K(,'BA,, == 0,

which contains (6. 2).
Thus, in order to get expressions of Ky, we only need to calculate K;;,.

Using equations such as (3. 2), (3. 8), (3.10) and (5. 2), the right hand side
of

Kojin = % (0,94Goi — 9;9,Gan) +G™{[0,T1[jh,S] — [OR,T1[52,S1}
becomes
1
? 8j(ahG0i - aiGOh) + (Ew)_l(GoiGjh - GOthi)

+ 5 GUl@Gu ~ 2Go)@,Gor + 3:Gor)
- (ahGOk - akGoh)(ajGOi + aiGOj)]
1
+ ’Z le[(aiGoz - aLGOi)(ajGnk + anij - aijn)

- (ahGol - alGOh)(ajGik + 81ij - aiji)]~
On the other hand, from (3. 9), (4. 2) and (4. 3) we have
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(6- 4) G* = (":‘“)_lglk, G,n = E“(yn +fjfi), Goi = Emfl

where £, ¢;,, 9'* do not contain &. Hence, denoting the Christoffel symbols of
tke first kind formed from g;; by [jz, h]* we get

(6. 5) 0,Gui + Gy — Gy = E{2[jh k1 + £i(B,f0 + Ouf5)
+ [u@ifs = O f) + f1@nfi — ufi)}-

We substitute these equations into the formula obtained above, take (4. 4) into
account, and get

Ko = %gwaj(ahf‘i — 9ufn) + fw(fi!]jn - fhyﬁ)

+ 5 EEG™ + fgI@ S — B S)@S + )
— @nfe — 2fr)@:f i + 2:f)]
RPN e CAE AT A
+ E“(fn!]n +fjgm —figjh —f;ym).
Since we have G + f,g"* = 0 from (4. 3), we easily get
(6~ 6) Kojm = - &“V*jfm-
Hence we obtain the

THEOREM 6.1. If in an almost Kihlerian space V" with Fj' = ysu’
the hypersurfaces u"ur = const. are totally umbilical, the curvature tensor
satisfy (6. 1), (6. 2) and (6. 6) in favourable coordinates.

A necessary condition that the hypersurfaces #"#r = const. be totally
umbilical in such V** is that (5. 2) hold. But we can replace this by Kizs = 0
by virtue of (5 .3). Hence we obtain the

COROLLARY. A necessary and sufficient condition that in an almost
Kihlerian space V** with F3* = ysu the hypersurfaces u" ur = const. be totally
umbilical is that among the components Kycps of the curvature tensor, K,;;,
satisfy (6. 6) and other components of the form Kyps all vanish in favourable
coordinates.

If e, Sin =0, then V?*~% is a Kihlerian space. Hence we get the

THEOREM 6.2. A necessary and sufficient condition that an almost
Kihlerian space V*" with Fy' = yeu' be a Kdihlerian space is that the spaces
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V-2 be Kahlerian spaces beside that the hypersurfaces u"ur = const. be totally
umbilical.

PROOF. That the space V?" be Kahlerian is equivalent to that the tensor
Vevzu® vanish, that is, Ks¢3*4® = 0, or Kyss = 0. Hence, if V2" is Kihlerian,
we get (5. 2) from (5. 3) and the hypersurfaces u”ur = const. are totally

umbilical. V**=? are Kihlerian by virtue of (6. 6). The converse is easily
proved by using (6. 1), (6. 2) and (6. 6).

7. Holomorphic sectional curvature in the direction orthogonal to
v*(«"ur) and u*. At first we prove the

LEMMA 7.1. Let V*" be an almost Kihlerian space such that F3* =vypu*.
Then, if a direction v* is orthogonal to u* and v*(u"ur), v®°F3* is also or-
thogonal to u*, v*(«"ur).

Proof is easily obtained from v®Fy'u, = v®(ysu)us = % v? s (W ur)
=0, vV’ Fp'yviuur) = 20°F3*Fi"ur = — 2v"us = 0.

In a Kihlerian space V** with F3* = yzu® we have obtained Ksopau®
= K4 = 0 in favourable coordinates. Consequently we also obtain (6. 3) from
VeVsVa(u'ur) =0 and Krpss"u® = 0. Thus we get the

THEOREM 7.1. Let V* be a Kihlerian space with Fi* = Vsu*. Then,
if we take a favourable coordinate system, the components Kpeps of the cur-
vature tensor vanish except those of the form K,j,.

Let us study the holomorphic sectional curvature K(v) with respect to a
direction v* which is orthogonal to both #* and v*(«"%,). According to Theorem
7.1 we get at first
_ KyuFi*Fi'v" o5 0’0"

GD(,"Z)D ’00 GBA'UB‘U 4

On the other hand we have (4.11), hence we get
Ky faf i v™0' 0’0"
GDC‘Z)D‘UUGBA‘UB‘UA
Since the vector v* is orthogonal to vectors z* and V*(u"ur), we have
v, =0, v° = 0. From v, = Gy, v° + G, v' = 0 we get

(7. 1) v’ = — (E) Gt = — fiot

K(v) =

K(v) = —

aad
Grav®v* = Goov™0° + 2Go 00" + Gpv™0'

= {G'm.l - (Em)-l GomGol}vm'vl
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= gm0t
Consequently we have
3 Kkjjﬂfhkfiivm'vlvivh
(Ew)zgkj‘vk‘v]gih,vivh

7. 2) K@) =

and the

THEOREM 7.2. Let V™ be a Kihlerian space with Fp* = Vzu*. Then,
for any vector v* orthogonal to vectors u* and V*(u'wur), the holomorphic
sectional curvature K(v) satisfies (7. 2) in a favourable coordinate system.

Let us study a necessary and sufficient condition that K(v) do not depend
upon the direction v* as long as v* is orthogonal to #* and V*(«"#r). The
way of deduction is similar to the one of Yano [4],p.239.

At first we have

KkjthqhkFi ivm'vl‘vjvh = - k’gmjvmnglhvl'vh,
where % is independent of v/, for we have v® =0 and 2° is determined by

(7. 1), while v* are arbitrary.
Since V2" is a Kéihlerian space, we have

K¢ Fs* = Kpos*F3®, KpossFi® = KpeasF35,
Kprpa = KD(,'TSF 3"F. As»
from which we get, using (4.11),

(7. 3) Ki;i'Fi" = Ki5i"Fi', KejuFi' = KijnlFit
and
(7- 4) Kkjih = Kkjszi "

We also haVe the identity Kkjih - Kihkj-
From (7. 3) we find that F,;, = K;;;,F:*Fi' is symmetric in m and j and
also in / and h. Since we have moreover F,;,;, = Finn;, we get

KijinFw Fi* + Kii;Falb Fit + Ko FaFFjt
= — K(gnigin + Gmns + gnngin)-
On the other hand we have Fj'g,; = f;'g,; = f;:. Hence we get
Kijin — Kimi;Fi"Fit — Ky F'5™F3 ¢
= — K(fusfin + Ges Gin + Fenfis)-

Subtracting from this equation an equation obtained by interchanging 7 and A,
we get

2Kkjm + Kkjszi mFit— Kkhsz}mF?l + Kkiszijisl
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= - k,(szjﬁh + f)cz'fjn _fkhfji + Grifin — gkhgji)-
The left hand side being equal to 4K,;;, on account of (7. 4), we obtain

(7 5) Kkj“,, == %(gkhgﬁ - gjhgki) + (fk'hf]i —f:ihfki) - 2fk.ifih]

as a necessary condition that K(v) do not depend upon v’. This is evidently a
sufficient condition as long as we consider the concition at each point of V.
Now, we shall consider £ in (7. 5) as a function of the point and prove

the

THEOREM 7.3. Let us consider a Kihlerian space V" with Fp* = Vyu!
and take a favourable coordinate system. A necessary and sufficient condition
that the holomorphic sectional curvature with respect to a variable direction
which is orthogonal to both u* and V*(«"ur) be constant at each point is
that the curvature tensor Kpepa satisfy the following equations in which k
is a constant.

(7- 6) Kkjih. = %ké‘”(gmgn - g;-nyki)+ (flch.fji '—fihfki) - kajfih]-

For this purpose we only need to show that we can deduce (7. 6) from (7. 5).
We write Bianchi’s identity in the form

7.7 98 Kopepa + 9pKeppa + 96 Kgppa

Lo} o) Ko~
EB DCSA DB CESA CB} EDSA

{S}K {S}K {SIK —0
EA DC'BS DA CEBS CAJ EDBS — .

Noticing that the components Kpszs vanish except K,;;, and putting E = oo,
D=FkC=j B=1i, A=h, we get

l

cog

l
aeﬂchjih - { }Kkan - { }Kkju =0.
ocoh

Since we have

ooz

{ ! } = G0 £,0] + G"*[oo 1,k]

1

!
28 %

1
= EE (G*Gy + G*Gy) =

we get OuKyjin = (€°)7'K,jin, which proves that 2 = (£°)~'£" does not involve &=.
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We now prove that £ does not involve &
By straightforward calculation using (6. 4) and (6. 5) we obtain

m m
alKkjth - {lz} Kk:jmh, - {l h}Kkjim

= alKkjih - (Gom[li,o] + Gnm[li,n])Kkjmn
- (Gom[lh,()] + Gnm[lh,n])Kk”m
ml *
Kkjim

= O = WFK’”’”‘” - {zm
— | Fr GBS+ BS) + g S + D)
+ Fi@ufa = 0uf) + F@ufo = 2uf} | Kism
— |- 5 @+ B + g (SRS + D)
+ fi@ufs = 0uf) + filBrfu = Puf)} | Kiim

m)* m)*
= alKkjih - {l i} Kkjmh - {l h} Kkjim

— TEflouf = Buf) + £@ufs — 2uf )} Kusm

- g; {fh(alfn - anfl) +fl(ahfn - anfh)}Kkjim
= 9K yjin — {Z}*Kkmn - {ln;}* Kijin

- (fifim +fzfim)K1cjmn - (fnfim +fzfﬁm)Kkjim-

Hence we obtain the following equation when we put E=/[, D=k C=y,
B=i, A=hin (7. 7),

\;szjm + V*kKjlih + eszkm
- Kkjmh(fi mft +fi mfz) + Kkjmi(fi mfh +fhmfz)
= Kymn(fifi + fi"f) + Ky fi"fn + fi"f5)
— Kiyemd(f5™fi + [i™5) + Kumi £37fn + fi7f3) = 0.

*
In this equation V,K;;;, denotes a covariant derivative obtained formally by

treating Kj;;, as a tensor of Y- (See (8. 1)).
But we have from (7. 3)
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Kkjmnfim - Kkjmifrim =0

and
Kkjmhfim + Kumnf'km + szmnf}m
= (Kkjml + Kjlmk + szmj)frim
= - 3K[kjl]mf Wt =0,
hence we get
(7- 8) %lKkjih + ekKjlih + ejKlkih = 0.

This equation is formally the same with Bianchi’s identity in Pz, Hence,
substituting (7. 6) into this equation, we find that k&° does not contain the
variables £,. .., £"~2 Thus we obtain % = const. and Theorem 7.3 is proved.

We have also proved the following theorem.

THEOREM 7.4. We consider a Kihlerian space V" with Fy* = Vsu' and
take a favourable coordinate system. Then the functions (£°)'Kyj;, do not
involve the variable & and Ky, satisfy (7. 8) if v, denotes formal covariant
differentiation with respect to the Christoffel symbols formed from g;.

8. A relation between the curvature of Van-2 and the curvature of V"
We can prove by straightforward calculation the following theorem.

THEOREM 8.1. Let V** be an almost Kihlerian space such that Fz*
= veu'. If (£°)7'G;, do not depend on £ in favourable coordinates, then we

* *
have the following relation between the curvature tensor K;, of V**7* and
the curvature tensor Kpgps of V",

@ 1 (&™) Kijin — k}cm
= — gundsi + Gindis — Senfs — Finkei) + 2fwifn
+ fVefi = FeVifu + 5 fe = fiVfes
From this theorem and Theorem 7.3 we get the

THEOREM 8.2. Let V* be a Kdihlerian space with Fp* = vyu'. A nec-
essary and sufficient condition that the holomorphic sectional curvature K(v)
with respect to a direction v*' orthogonal to u* and V*(u" ur), when considered

*.
at each point, be independent of v* is that each Kdihlerian space V*"7* be a
space of constant holomorphic sectional curvature.

PrROOF OF THEOREM 8.1. We start from

1
Kkjih = 3 [akaiGjh + ajathi - akathi - a}ainh]
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+ G=={[ki, co][jh, o] — [kh, ][ ji, =]}
+ G {[k,0][7h,0] — [£h,0](Z,01}
+ G {[k,01[7h,l] — [kh,0][j2,01}
+ G*{[k,[][jh,0] — [kh,1][1:,01}
+ G™{[ki,m][jhl] — [kh,m][i,l1}
and as in §6 take into account that g,, and f; do not contain £&~. Using relations
such as (6. 4), (6. 5) again, we get after calculation
(&) Kijin — Iz’mn
= 2fiifin + [i9cSfin — FxOifun + frOifus — fionfus + funfis — Fres S
+ GuiGin — Gends + fefigin + [ifagu — Fefngn — fifigen
+ g’"l[(fkmfi + fszk)(fﬂfn + fhtfj)
= (FenSn + frnf)(Ficfi + fuf7)

+ [_ {z:z-f%f” B {jlz'}*f“}f” " [_ {kli}*f‘” - {kit}*f“]fj
e el -

Fu)fi
* 1
Kkjih = é‘ [akaigjh + ajangu - alcahgji - ajaigkh]
+ g™ {[ki;m]¥[jh1)* — [kh,m]*(ji,1]*}

where

*
are the components of the curvature tensor of V?*~2, Since we have moreover

N 1)* 1 )* ‘
gmifkmfjt = Gr; and kain = Oy fin — {ki} fln - {kh} fib we obtain (8. 1).

(8. 1) also proves Theorem 7.4 directly.
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