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After Walker [1]V has introduced a new covariant differentiation in almost
complex spaces under which the almost complex structure F;* is covariant con-
stant and applied such differentiation to the Nijenhuis tensor N,;* to obtain a new
differential invariant constructed only from the tensor F;*, Yano [2] showed that
there exist an infinitely many Walker differentiations (the one obtained by Walker
in the case of almost complex space is also contained) in almost product as well
as almost complex spaces which leave their structure tensor F;" covariant constant.

In this note we intend to give formal extensions of some results by Walker
and Yano to a more general differentiable manifold with an 7-m-structure [3].
Such spaces contain as special cases almost complex spaces, almost product
spaces and also almost contact manifolds studied by Boothby-Wang, Gray,
Sasaki and others.

As preparation we treat in §1 the hybrid and purity of tensors of diff-
erentiable manifold with 7-7-structure. In §2 we prove that the torsion tensor of
an 7-m-structure is hybrid. In §3 we determine all Walker differentiations which
leave the fundamental tensor F;* of the r-w-structure covariant constant. In §4
the one corresponding to that of Walker is considered and a differential invariant
constructed only from F;" is obtained. In §5 specialization to almost contact
manifold is given.

1. If in a differentiable manifold V, there exist (2 = r < n) differentiable
distributions 7T,- - -, 7, which assign r complemented subspaces of dimension
=1 in the complexified tangent space 1,71, =T, +...4+ T,: direct sum) at
each point x € V,, then V, is said to have an r-m-structure [3].

It is known that for a manifold V, to have an r-m-structure, it is necessary
and sufficient that the manifold has a non-degenerate tensor field F;" satisfying

(1. 1) Fji = 7\‘781'1,

where A is a non-zero fixed complex constant, and we have put
s 1 0

1. 2) Fji=F,'Fy. . .F», F=F;' and F;'=3§,.

The tensor F;' satisfying (1. 1) is called the fundamental tensor associated with

1) Number in bracket refers to the reference at the end of the paper.
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the r-m-structure. It is evident that

1 arss e
e F}, (a,s: positive integers, r > ar — s = 0).

(1. 3) Fi =

Now let p,* be the projection tensor to the distribution T(a =1,..

then we have

a

r—1
(1. 4) pi=iy L
e r o (AWwe) T’

where w.(a = 1,...,r) are the -th power roots of unity.
Define

(1. 5) Dl =2 2.,
a=1 a @
then by use of (1. 4) and the following identities

Z, rl_'O

r

2

a=1

wa

we have the following expression:

ib__1_<$b i b>
1. 6) b = (848} NZFF

Furthermore, we define
(L7) =88 — Dl = —{(r — 1)8i8% — —Z F lFb}

Then for the two tensors in (1. 6) and (1. 7), we have

[ D55 + Daj = 88,
(1. 8) <I> ax = aj, ‘1)”' ke = 253,
¢‘n c'e'/’c’— ” f{fc’=0-
1

For, by use of

@

Phipah = .
0 if a==48,

a B

{pai ifa=2g

we have for example

333

°,T),

stk = (Z 't )(ﬁZ 2p0) = S S (i pNpp = Z pp) =08,

alBIa

Using this relation and (1. 7) other relations in (1. 8) can be easily seen.
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Now, if a tensor 7"’ l] | satisfies the relation

(1. 9) YT, %p " =0 (e, T =T),
or
(1.10) OHT. %y =0 (e, T =1T),

then we say that the tensor 7" "’ l] " is hybrid or pure with respect to the
indices Z and j.

2. A basis (e;) in the complexified tangent space 7,° at each point x € V,
is called an adapted basis if e,, € T, (¢ = 1,. . .,r), where the indices take the
following ranges:

1 é a, bl’clﬁ' M é ny,
n + 1= ay, by, 50 - - =1y + 1y,
n +..o+ Nr—y +1 éanbncn' b é?’ll +..+ ny,
1§a,b76,' LI i}j;k3' M 'ény
in which
n, =dim T, and n 4.t n =n
Moreover, we assume that a., ba, Ca--+(1 =a =r) take all integers [(n — 7.)
in number] between 1 and n except for n, integers between n, +. ..+ 7,1+ 1
and 7, +. o+ 741+ Na.

With respect to an adapted basis, the projection tensors have the following

components :

(CABY phe =8 D=5 = p5, = 0.
(24 a a a
By making use of which, we have
2. 2) Pgle = Bazdlia, Py = 4 e =0, Py = 0.
Hence we have
(2. 3) ?Z‘f‘ri’Tb“ = 8gabaeTy "« = T /%, ’;”fﬁTb“ =0.

Thus it follows from (2. 3) that the necessary and sufficient condition for
the tensor T} to be hybrid with respect to i and j is

(2:-4) Tof =0, (@=1,.7)

with respect to any adapted basis.
Now consider in each neighborhood U of V, a local cross section of class
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C> of the principal fibre space E.(V,) which consists of all adapted bases relative
to all points of V,. Then at each point of the neighborhood U an adapted basis
(e;) is assigned. Let (4') be the dual cobasis of (e;), then we have

(2. 5) déi = ’;_ ]_kiaj /\ 6’6, Where Cjki + iji = 0.
Then by definition the torsion tensor ¢,,* of an r-m-structure is the one with

the following components with respect to the adapted basis (e;):

(2. 6) L™ = G, t;' =0 for other indices.

Hence

2.7 Lyd® = tpg® = 0.

Therefore, t;,.* is hybrid both with respect to i,j and to i, k. Q.E.D.
In a previous paper [3] of the present author it is shown that

2. 8) t™ = _2(7‘_;21_)2@@,5,”,",

where S;,™ is the torsion tensor of a 7-connection I';;™ and the operation ® and
@’ are defined as follows:

-

r—

1 1 s ras 7 om
(2- 9) cijlcm = jkm - 7'_~—1 G kk‘SIijthh,m = r_lq:m’ccsjk,h,
§=1
/ m m 1 1 = i =3 m,
(210) @8 =St - o TS R = I B S
s=1

From these relations we have the following by virtue of (1. 8);:

(2.11) (]Dtjkm = 0.

Since ® and ®" commute, it follows that #;,™ is hybrid both with respect to
m, j and m, k.

3. Hereafter we assume that the torsion tensor of the 7-m-structure ¢;,' does
not vanish.

Let U and V be two local coordinate neighborhoods of V, such that
UN V¢ and let (x) and (x*) be respectively the local coordinates in U and
V.

Suppose T';;," and T'gys" be respectively the components of a geometric object
having the following transformation law which is associative and reversible :

3.1 Th! = XeX5Xi X ey — XapX5X0Xitys%,

where t;,* is the torsion tensor of the considered 7-m-structure of V, and
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oxt . ozt ox*
Srw X = Frag,s and Xi =75

3. 2) Xi=

are formed from the coordinate transformation xf = x(x%).
Then the following are tensors provided that ©v', w; and ¢;* are tensors:

o
Vi = 9_xf”’ ty™, (f:scalar),

ovt o
i
Vit = Py ty™ + Dy'v?,

ow;
_ i i
Viw;= D™ ™ — T’ wy,

3. 3)

Vkl‘;b; = ¢] e+ leclid)jm - ijlm¢mi’ etc.

This sort of covariant differentiation is a formal extension of the one first
introduced by Walker and following Yano we shall call the left hand side terms
of these formulas as Walker derivatives. The same calculation rules as those of
ordinary covariant differentiation hold also in the present case.

We shall now determine all Walker differentiations which satisfy®

OF;

2z mtlcl + I‘kaiij - FjlclmFmi =0

(3. 4) Vle P=
where F;' is the fundamental tensor of the considered 7-m-structure.

Let V,. denote the covariant derivative with respect to a fixed affine con-
nection I';!, then (3. 4) may be written as

(3. 5) (VaF ™ + T F™ — Ty Frt = 0
where we put
(3. 6) Tt = Tyt — Tt
From (1. 1) and (3. 5) we have
1 r-1 1 r-1
3.7 Ti" ——YF/" it F" = 5Ya t™(VuFyY) F ™
Since from V.. F;' = 0 it follows that
3. 8) VuF/ =0  (s=1,...7— 1),
so we have the following:
(3. 9) T = o Py Toud B = < t(VaBOF, (s = 1oy — 1),

XT

2) This method is quite the same as that of determination of all w-connections of an
r-w-structure which was reported (unpublished) by the present author in a seminar conducted
by Prof. S.Sasaki at Tohoku University, Sendai, Japan in the spring of 1960,
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Adding these relations, we have by virtue of (1. 7)

(3.10) uijkl - tkl P7n] ’
where
n — l 1 - r r—'"

Il

1

Thus (3.10) is a necessary condition to be satisfied by T',,* so that the Walker
differentiation with coefficients T';,,* to satisfy (3. 4).

First of all, we shall solve the system of equations (3.10) for unknown
tensor 1'j."

It is evident that

(3.12) ""(tk/" ) = tkz'”@"" .
However we show that
(3.13) <11>Z'£ = 0.
For, each term of P, is written as
r—1
(3.14) (V,F")Fh = Z F (V,Fn""") 7, Bows
and we have
(3.15) CD[F"'(V,Fn el B
( r—s—1 =1, 5
1F (V F h'+’)Fh:+1h + %‘Z i (V;Fh,h.+l) Fh.+; }-
t=1
However,
1= Lpis—t -
(3.16) Z th‘(V;F h._H) Fh.—H
1 st t—s-1
= Z Fh’(V ) Fh.+. + Z FEMv,FW ) Fu
t=1 t=8+1
s— 1 r-1 . t—s—1
- ZFi (V]F’l ‘-H) Fh,+|h. + Z F (V thrﬂ) Fh.-H >
u=0 v=8+1
so we have
s r—s—1 1 -1 r-s—1 1 r
(3.17) DMV, Fu) Fr )= 72 MV FL) B = v, F =

Thus we have (3.13) and consequently from (3.12) and (1.8),
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(318) (_zl)gg(tklm mba) = tklmP'mjh’

0
that is T, = £,"Pn;” is a special solution of (3.10).
Let T.," be any solution of (3.10) and put

(3-19) leczh = jlclh - tlclumjh,
then from (3.10) and (3.18) we have
(3.20) ?ij,” =0 or CPW,-“” = W

Conversely for any tensor W,.", t,"Pn;" + CIIJW,M" is a solution of (3.10).
Thus the most general solution of (3.10) are expressed as
(3.21) Til' = te"Pni” + (P;g Wi,
where W " is an arbitrary tensor.

In the next place, we shall show that the solutions (3.21) of (3.10) all
satisfy (3. 7) which is equivalent to (3. 4). Since

1 o r—1 n r—1
(3.22) tPPy = Pt = 1By — L Fy Pt T,

it needs only to show that

1 r—1 1 r-1
(3.23) P, — ?Fimppmi Fr = b (V.F;') Fy*
and
1 =1
(3.24) Vij((?kazz) F" = ?ijtn-
For the proof of (3.23), if we take account of
3 r—8 r—1 $—1 r-S
(3.25) (VEMEB, = (0FE™Ey + F™(V,Fn!")F),
then by virtue of
r—1 r—1
(3.26) (V,E™Fut = — F™(V,F."),
P, can be written as follows :
1 r-1 1 71 s r-3-1 1
(3.27) Pjin = YT (VjFih') Fh,h + 7_" Z Fiml(Vijlhl) Fhth'
$=1
Furthermore, from (3.11) we have
r-1 r-1 3 r-s-
(3.28) Fi Py R = = S v, B R
$=1

Hence, from (3.27) and (3.28) we have (3.23).
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For the proof of (3.24), we have by the definition of ?:

r-1
lr FH (WM F
A1 1

>il'-‘

{ W T +%— Ty, Hbl}

j —

r—2 s
{Fhl Wtklth“"‘ZF kal Flk; Szt_l

$=0

<

r=1

ikl "+ XTZF hkal Fi } cDWu:z .

R B

—_—— ¥

Thus the most general T);.,' which gives rise to a Walker differentiation
satisfying (3. 4) is given by (3.21).

4. We consider now a special case with the following
r-1
(4~ 1) ijzi = - ?g’j(Vbtkza)'F '—_I Z F thk (Vz Fj ) - Z F ithl (Vlc th)}

For such W}, it can be shown that
(4- 2) ‘?}zbJkaz“ = ijli-

For the proof of (4. 2) if we take account of (1. 8),, it needs only to show
that

j-1 r—1
(4. 3) ZF “ter™(V, Fb } ZF ‘5( V. Fbﬂ)
t=1
Let the left hand side of (4. 3) be denoted by A, then we have
r-1 r— r-17-1,
(4. 4) A =" F.ltaX(V, Fj ) + ?Z > F ta™(V, Fbﬂ) Fj
t=1 §=1 t=1

Let the second block of the right hand side of (4. 4) be denoted as B, then we

have by virtue of F f —-F,;B F ,b

lr_lr_ s+t 17‘11‘]
(4. 5) B=— ZZFitﬂk Fﬂ(VIFb)’i‘ ZZF Lok (Vz Fjﬂ)
$=1 t=1 $=1 t=1
Now denote the first and second block of the right hand side of (4. 5) res-
pectively as C and D. Then by making use of the fact that #;° is hybrid with
respect to ¢ and j, that is

r—1

1
(4. 6) ‘Daotm =" Z Fit,® Fb =0,
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we have

r-1

r—3 =1 s r—8
4.7 C=- —ZFV (Z Fita” F, )(Vl FY) = 3 Byt (v, FY).
§=1

However, by virtue of (1. 2) and VZF # =0 we have

r=1 r+3-1
_1

4. 8) Z > thk(vlF") (w=s+1)
8=1u=8+1
1 r—1 r—1 r+38—-1 ” PY—
( S >Fait,ek“(Vz 7P
= u=S+1 u=r+1

Z{ Z F tﬁk(Vsz)'*‘Zi;wtﬁk(Vsz Yoo (v =u —r1).

=1 \u=8+1

Substitute (4. 7) and (4. 8) into (4. 5), we have

r—17r-1 r—1
(4. 9) B = ZZF K7 (VLF A)=(r—1) LF ltﬁka(VlFB)
s=1u=1 u=1

Put (4. 9) into (4. 4) we get (4. 3).

Finally, under the assumption that the affine connection T';;* is symmetric,
we shall calculate the following T’ obtained by putting (3.21) and (4. 1)
into (3. 6):
(410) T, '=Tu't" + Pm,-‘t,c,"‘

J

1

_(Daj (Viti®) + = N

{ZFltnk (VLF;B ) — ZFltkz (VlcF )t

First of all, we have

11 oF, "\ 7=t
(4.11) ijitklm = 7 v tkt Z (ax > Fai
_ Tl
- r—l ijltklm + — 1 73:7- " Z thFhm Fai’
and
o Otw*
(412) - VL) = — D <~aﬁ)
1 1S [N~ n
- 7Fnjitmh - r X; ot a Jb s Lt
1 r—1 -1 ¢
- ?Z F F (I‘kb thl ) + — r )\’TZ Fa‘LF (Plbntkh )

t=

1 1
+ 7ijhthli + 7 P”htkhl.
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The last two terms are equal to the following by the fact that #;.' is hybrid
with respect to 7 and j:

1 1 _125 h 1 17‘—1 i r_tn b

(4.13) ——WZF tn” Fb | _‘;X;Z Ftp,* F,"T,.
=

Moreover, we have

11 :
(4.14) - 7 'x; Z F th,l Vk F

aF h r—t
- r )\,TZFitma( 5+ Tyt F;b Ty’ Fy").

Thus from (4.10), (4.11), (4.12), (4.13) and (4.14) we have

11, , 2 ek 7 o
(415)  Tu'= ot Z( ’) ‘I’?’(a;l)

Since ¢;,* is constructed only from F ;' and their first order partial derivatives,

S
it is seen that I';,,' is expressed by F;' and their partial derivatives up to the
second order.

S .
Therefore, the tensor V.t;' is constructed only from F (s=1,-..,0r —1)
and their first and second order partial derivatives.

5. As an example we consider now an almost contact manifold [4] (or a
manifold with a (¢, &, 5)-structure), that is one over which there exists a tensor
field ¢, a contravariant vector field & and a covariant vector field #; such that
the following conditions are satisfied :

5. 1) rank |¢;'| = 2n,

(5. 2) ¢'ji“:‘j =0, ¢ji771 =0,
(5. 3) En =1,

(5. 4) bs'dr’ = — & + E'n.

It is known [5] that such manifold has a 3-m-structure whose fundamental
tensor is given as follows:

= ';_(— & + 3E'n; — &/ 3¢

2

(5. 5) b= §<— 8, + 3t + /3 ;)

3
Fji = Sji.
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Therefore V. F;' = 0 is equivalent to V;,¢;' =0
In this case we have

q’a: = _(Saisjb - Saifb"h' - &ina&-” + 3?’7«1?’71 - ¢ai¢jb)
(5. 6)
q)aj - (Saisjb + Saiebnj + &i”asjb - 3§i77a§b"71 + ¢ai¢'1b)

and
(5.7 = % {— (Vip")' — (V; 8V + 2(Vm)E" + 3Ena(V,E 3.
The torsion tensor of the 3-w-structure is given by
(5.8)  tu' =5 [~ Nut = 3@, — 0m) + 5Npm — Nen)
+ E'6," 9 (00 — Oumn) — N, (5"me — S5},

where 9y, = %and

Nji' = ¢ (0e9s' — 0;04") — &7 (0’ — Oihy') — 1,0, + 048,
(5. 9) N;' = E(0.¢;" — 0;") — ¢,°0ut",
N; = E*(0,m; — Omp).
It is easily shown that
(5.10) natn"8" = 0.
Then W' in (4. 1) turns out to be the following by virtue of (5.10):

(5.11) Wii' = —dff&(vbtkﬂ) + % ¢ {(VidP)ta™ = (Vid;P)te’}
+ % 7 (L (ViEP) — tai'(V.E°)} —%Einma {te(ViEP)
— tp(V.EP)} +é‘§‘s {te(Vims) — ta'(Vim;)].

Finally T'y,' in (4.15) is written as follows in this case:

(5.12) I\j“i — @ib atlcl a¢’] m 1 aEl

o
2a) S0 ¢a Py L T o Migm L™ +§i m el IR

3 @ o o
+ 2 Eﬂan} aﬁ + ¢a ¢)] tbla 2 ¢a 9¢]L tbk

1 Lo 1,0 3 og"
gt o — gt Ger = 5 B o
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3 LB 1, Oy 1, .0
+ g Bt Sh B Gl — P

In concluding, I express my hearty thanks to Prof. S.Sasaki for his en-
couragement.
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