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After Walker [1]° has introduced a new covariant differentiation in almost

complex spaces under which the almost complex structure Fih is covariant con-

stant and applied such differentiation to the Nijenhuis tensor Njt

h to obtain a new

differential invariant constructed only from the tensor Ff, Yano [2] showed that

there exist an infinitely many Walker differentiations (the one obtained by Walker

in the case of almost complex space is also contained) in almost product as well

as almost complex spaces which leave their structure tensor Ft

h covariant constant.

In this note we intend to give formal extensions of some results by Walker

and Yano to a more general differentiable manifold with an r-7r-structure [3].

Such spaces contain as special cases almost complex spaces, almost product

spaces and also almost contact manifolds studied by Boothby-Wang, Gray,

Sasaki and others.

As preparation we treat in §1 the hybrid and purity of tensors of diff-

erentiable manifold with r-τr-structure. In §2 we prove that the torsion tensor of

an restructure is hybrid. In §3 we determine all Walker differentiations which

leave the fundamental tensor Ff of the r-π-structure covariant constant. In §4

the one corresponding to that of Walker is considered and a differential invariant

constructed only from Ff is obtained. In §5 specialization to almost contact

manifold is given.

1. If in a differentiable manifold Vn there exist r (2 ^ r ^ n) differentiable

distributions 7\,. ., Tr which assign r complemented subspaces of dimension

g: 1 in the complexified tangent space TX

C(TX

C = Ύx + . . . + Tr: direct sum) at

each point x £ Vn, then Vn is said to have an restructure [3].

It is known that for a manifold Vn to have an r-7r-structure, it is necessary

and sufficient that the manifold has a non-degenerate tensor field Ff satisfying

( l . l ) F; = x%\

where λ is a non-zero fixed complex constant, and we have put

(1. 2) >/ - FhιΨh*. .Ff-\ F/ = F/ and F/ = 8/.

The tensor F/ satisfying (1. 1) is called the fundamental tensor associated with

1) Number in bracket refers to the reference at the end of the paper.
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the r-7r-structure. It is evident that

-s ^ ar-s

(1. 3) Ff = -r-^r Fj\ (α, 5 : positive integers, r > αr — s ^ 0).
A

Now let />o* be the projection tensor to the distribution Ta(a = 1, ,r),
a

then we have

(Ί 4) £* = ^ Y " — - — F ι

where w*(a = 1,. ,r) are the r-th power roots of unity.

Define

(I- 5) faJ=ΣPaPj\

then by use of (1. 4) and the following identities

r 1 r 1 1

y ^ = V s — = y ^ ——— — o

we have the following expression:

(l. 6) Φ<j? = i (sffi +
i r \

- Σ

ί=1Furthermore, we define

2 1 / 1 . Λ, • f _ 1

Then for the two tensors in (1. 6) and (1. 7), we have

(1.8) *3

1 2 2 ]

For, by use of

0

we have for example

ΦjgΦg = (23 A*A* ) ( Σ pahpk) — Σ Σ (phpah)(pjkpk) = Σ A*/"/
 =

 Φ<8

Using this relation and (1, 7) other relations in (1. 8) can be easily seen.
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Now, if a tensor T" * * '-' ' satisfies the relation

(l. 9) ΦS T \a;^\ = o (i.e., ΦT = τ\

or

(1.10) Φίi T\ \a

m 'b\ = O (i.e., Φ T = T ) ,

then we say that the tensor T" # " z"." " is hybrid or /wre with respect to the

indices i and j .

2. A basis (et) in the complexified tangent space Tx

c at each point x £ Vn

is called an adapted basis if eaa £ Ta {a = 1,. ,r), where the indices take the
following ranges:

1 ^al9bl9cl9 ^nl9

Wi 4- 1 ^ a29 b29 c2,. . . ^ n x + n29

l^a9b9c9. . ί, >,&, . . . ^ n9

in which

wα = dim Ta and ^! + . . + nr = n.

Moreover, we assume that aa, ba, ca, .(1 ̂  a ^ r ) take all integers [(n — na)
in number] between 1 and n except for na integers between nx +••"•+ na-λ Λ- 1
and nx + - . + V i + wα.

With respect to an adapted basis, the projection tensors have the following
components:

(2. 1) p%l = his P*«*« = Psuaoi = Λ«" β β = 0.
α α α α

By making use of which, we have

(2. 2) Φ£;»« = 8ί«δS;, Φ ^ L = ΦSTS; = o, Φ - L = o.

Hence we have

(2.3) ΦS2τ 4

β = δs«δS;Tftβ

β« - τ f ? ;-, Φ ; t τ » α = °

Thus it follows from (2. 3) that the necessary and sufficient condition for
the tensor Tf to be hybrid with respect to i and j is

(2:4) Ta°* = 0 , (α = l , . . . , r )

with respect to any adapted basis.
Now consider in each neighborhood U of Vn a local cross section of class
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C°° of the principal fibre space EΛ(Vn) which consists of all adapted bases relative

to all points of Vn. Then at each point of the neighborhood U an adapted basis

(βi) is assigned. Let {θι) be the dual cobasis of (e4)> then we have

(2. 5) dθι = -j CjkΨ A θ\ where Cjk

ι + Q/ = 0.

Then by definition the torsion tensor tjk of an r-7r-structure is the one with

the following components with respect to the adapted basis (et):

(2. 6) foαC-β« = C5αC-Λ

α-, tjk

ι = 0 for other indices.

Hence

/o 7\ + aa + aΛ A
V̂  ' J h a c a — ί j ί / — U.

Therefore, tjk is hybrid both with respect to i,j and to i,k. Q.E.D.

In a previous paper [3] of the present author it is shown that

(2. 8) tlk

m = ̂ - r ^

where Sjk

m is the torsion tensor of a 7r-connection Tjk

m and the operation Φ and

Φr are defined as follows:

(2. 9)

(2.10) Φ'Sjk™ = Sik" - ^

From these relations we have the following by virtue of (1. 8) 3 :

(2.11) Φtjk

m = 0.

Since Φ and Φr commute, it follows that t}k

m is hybrid both with respect to

m, j and m, k.

3. Hereafter we assume that the torsion tensor of the r-7r-structure tik does

not vanish.

Let U and V be two local coordinate neighborhoods of Vn such that

U Π V 4= Φ and let (xl) and (α:α) be respectively the local coordinates in U and

V.

Suppose Yjkι

ι and Tβγ? be respectively the components of a geometric object

having the following transformation law which is associative and reversible:

(3. 1) Tjkl =

where tΊk is the torsion tensor of the considered r-τr-structure of Vn and
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(3. 2)
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dx«dxβ
and ^ - dxi

are formed from the coordinate transformation xi = x\xa).
Then the following are tensors provided that v\ w} and φ/ are tensors:

(3. 3)

W = (/: scalar),

m\ etc.

This sort of covariant differentiation is a formal extension of the one first
introduced by Walker and following Yano we shall call the left hand side terms
of these formulas as Walke?- derivatives. The same calculation rules as those of
ordinary covariant differentiation hold also in the present case.

We shall now determine all Walker differentiations which satisfy2)

(3. 4) J = 0,

where F/ is the fundamental tensor of the considered r-7r-structure.
Let Vm denote the covariant derivative with respect to a fixed affine con-

nection Yjk, then (3. 4) may be written as

(3.5) (VmF^hr + τmkιψr - τ5krFj = o,

1 jjci = ίjkι Γjh tfci .

ί1,-.

where we put

(3. 6) 1 jjci = ίjkι

From (1. 1) and (3. 5) we have

(3.7) τm" - -^r Frτm

Since from VuFj1 = 0 it follows that

(3. 8) VtiF/ = 0

so we have the following:

(3. 9) T n _
r-s "I

mkl £ i — ^r lkl

s r-s
p ί\τp n

j Mi (5 - 1,. . ,r - 1).

2) This method is quite the same as that of determination of all ̂ -connections of an
r-ir-structure which was reported (unpublished) by the present author in a seminar conducted
by Prof. S.Sasaki at Tδhoku University, Sendai, Japan in the spring of 1960.
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Adding these relations, we have by virtue of (1. 7)

(3.10) Φ%Thkι

a = tkι

mPmj

n,
2

where

(3.11) ^"=i-rri:(vJ^W.

Thus (3.10) is a necessary condition to be satisfied by Tm

ι so that the Walker

differentiation with coefficients Γ jA/ to satisfy (3. 4).

First of all, we shall solve the system of equations (3.10) for unknown

tensor Tjkl\

It is evident that

(3.12) ψ

However we show that

(3.13) ψPmb

a = 0.

For, each term of Pmb

a is written as

s=0

(3.14) (V^oKf = Σ

and we have

(3.15)

However,

(3.16)

y

1 r~1r+s-t r+t-s-1

Σ FHVF^) FJ

r+ts-l _ r+3-t t-s-l

s-1 u r-u-1 r ~ l v t-s-l

so we have

(3.17) Φ[Fih'(^jFh

hi^1) Fh+ι

h]= ΣtFf'iVjFfi711'*1) FhΛ+* =•—VjF t

h = 0.

Thus we have (3.13) and consequently from (3.12) and (1. 8)x
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(3.18)

that is Ύm

h = tkι

mPmj

h is a special solution of (3.10).

Let Tjkl

h be any solution of (3.10) and put

(3.19) Wm

h = Tm

h - tkί

mPmJ\

then from (3.10) and (3.18) we have

(3.20) ΦWjkι

h = 0 or ΦWjkι

h = Wjkι

h.
2 1

Conversely for any tensor Wjkι\ tkι

mPmj

h -h ΦWm

h is a solution of (3.10).
1

Thus the most general solution of (3.10) are expressed as

yO.ΔL) 1 jjci — tkι Γmj + Ψαj Wbkl ,

where WjkL

h is an arbitrary tensor.

In the next place, we shall show that the solutions (3.21) of (3.10) all

satisfy (3. 7) which is equivalent to (3. 4). Since

1 r—1 1 r~\

(ό.ΔΔ) tkιΓpj — Λ r ^ j (tkιΓpm ) Γi — tkι{Γpj — — t j Γpm t\ ),

it needs only to show that

/ Q oθ \ ~P ft IT1 w. ~D i TT* ΊI / - 77* i \ ~π* n

w.Zό) rpj — τ^fj *pm fii —T^KVpΓjjrί

and

(3.24) h FΛΦWm^F71 = ΦWjkί

n.
λ 1 1

For the proof of (3.23), if we take account of
* r—s r—l s-i r- s

then by virtue of

Pόi

h can be written as follows:

(3.27) Pjih = —r \ (VjFf1) F* h 4- — Y" F,m*(x7,F^ M R h I

Furthermore, from (3.11) we have

r-i i r-

(3.28) Ft Pji^Fn* = -

Hence, from (3.27) and (3.28) we have (3.23).
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For the proof of (3.24), we have by the definition of Φ :

r+t-i r-M

1 1 ( r-l r " 2 s r-s )

V X ( 8=0 )

aF}\ = ΦWίkl

h.

Thus the most general Tjkι

ι which gives rise to a Walker differentiation
satisfying (3. 4) is given by (3.21).

4. We consider now a special case with the following

For such Wjkι
ι, it can be shown that

(4. 2) Φ3W*w

β = Wm\

For the proof of (4. 2) if we take account of (1. 8)2, it needs only to show
that

(4. 3) Φ% J Σ k%ΛVιFb

&) J = Σ Λ^ίVι Ff )•

Let the left hand side of (4. 3) be denoted by A, then we have
r~1 r-t i r ' 1 r~ι s+t r-t r-t

(4. 4) A = Σ Fa%k*(Vi F/) + ̂  Σ Σ ^«V(Vi F/) Ff.

Let the second block of the right hand side of (4. 4) be denoted as B, then we
Ίr-t—s r—f r—s

have by virtue of Ff =Fb

β F /

(4. 5) B = - ^ r Σ Σ βFa%/Fi(V*F,b) + ̂ Σ Σ 'Fa%ΛvΓFJ).

Now denote the first and second block of the right hand side of (4. 5) res-
pectively as C and D. Then by making use of the fact that tik is hybrid with
respect to i and j , that is

(4. 6) Φ%thl

a - tbι

a + fr Σ Fa

ιtJ~Fb

h = 0,
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we have

(4. 7) C = - fr I) Fγ ( i : ίϊtw«"FA (V, F>) = £ Fy%ΛvίF}).>

r

However, by virtue of (1. 2) and Vz-F1/ = 0 we have
£ i r + 5 _ ! u 2r_u

(4. 8) £> = γr Σ Σ ΛV(V t *7) (u =

r-l r-l r-fs-l

(
s=l ^ u=s + i u=r+l '

r~1 f ' - 1 „ r-u s~ι v r-v )

= Σ Σ FaWVt Ff) + Σ ΛV(V, ^/) , (v = « - r).
l J

Substitute (4. 7) and (4. 8) into (4. 5), we have

r " 1 r " 1 u r-u r~l u

(4. 9) B = Σ Σ FJtβfiVi Ff) = (r-l)Σ FJtβk%\

Put (4. 9) into (4. 4) we get (4. 3).
Finally, under the assumption that the affine connection Γ^* is symmetric,

we shall calculate the following Γ^* obtained by putting (3.21) and (4. 1)
into (3. 6):

(4.io) r. f c ; = τjhHkι

h + pm}

ιtkr
(r-l t m . r-

First of all, we have

. -i 1 1 r ι t r-t

j L hm ^ a

ί=l

and

\ ^ t -L^'/ ^^aj\\b Ίcl ) ^*^aJ
1 1

+ v^Σ

~ ΓΆci Λ̂ί* + "̂ Γ
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The last two terms are equal to the following by the fact that tjk

ι is hybrid

with respect to i and j :

(4.13) - -i- ~ Σ, Fa%/Fb*Γkj

b - v ^ Σ hh/WTj.
r X ί-i r X t=i

Moreover, we have

(4.14) -v^ΣO^v/^/

r-i r~t

Thus from (4.10), (4.11), (4.12), (4.13) and (4.14) we have

Γ t-A-J-

Since tjk is constructed only from F/ and their first order partial derivatives,
s

it is seen that Tjkι

ι is expressed by F/ and their partial derivatives up to the

second order.
s

Therefore, the tensor Vimtjk is constructed only from F/ (s = 1, ,r — 1)

and their first and second order partial derivatives.

5. As an example we consider now an almost contact manifold [4] (or a

manifold with a (φ, ξ, ^-structure), that is one over which there exists a tensor

field φ/, a contravariant vector field ξι and a covariant vector field η5 such that

the following conditions are satisfied :

(5. 1) rank | φ/1 = 2n,

(5. 2) φ/f' = 0, φ/Vί = 0,

(5. 3) ξ% = 1,

(5. 4) φ/φk

j = - hi + fV

It is known [5] that such manifold has a 3-π-structure whose fundamental

tensor is given as follows:

- χ / 3 φ / )

( 5 5> Λ' = y (- 8/ + 3ξ% + »/Tφ/)
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Therefore VkiF/ — 0 is equivalent to VkiΦ/ = 0.

In this case we have

(5. 6)
fδ = y (W - *aψη, - W/

1

(5. 8) tjlc

ι = -i {- Nj*1 -

and

(5. 7)

The torsion tensor of the 3-π-structure is given by

- djVk) + 5(NjVk - NkVj)

where o * and

(5. 9) N; = r(3βΦ/ - ^ΦΪ) - φ/d.ξ',

It is easily shown that

(5.10) ηahkψ = 0.

Then Wm

ι in (4. 1) turns out to be the following by virtue of (5.10):

(5.11) Wm

ι = - δ § '

Finally Γ)U

ι in (4.15) is written as follows in this case:

2Ψa

3
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xk 2*

In concluding, I express my hearty thanks to Prof. S.Sasaki for his en-
couragement.
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