GENERALİZED HIRZZBRUUCH POLYNOMIALS

Yasurô Tomonaga

(Received April 4, 1961)

Introduction. We have generalized the Hirzebruch polynomials in [8] and proved their integrality in [9]. In this paper we shall generalize the Hirzebruch polynomials in the most general way without loss of integrality. Moreover we shall utilize these polynomials for study of the cobordism coefficients or the cobordism ring. The cobordism ring of modulo 2 has been completely studied by Dold ([3]). Recently Milnor and Wall have completely made clear the torsion of the cobordism ring Ω ([6], [11]). However, there are still many unsolved problems concerning the free part of the Ω. We shall introduce a finite group which seems to be the centre of these problems.

1. Let $X^{4 k}$ be a compact orientable differentiable manifold whose dimension is $4 k$. Let

$$
\begin{equation*}
X^{4 k} \sim \sum_{i_{1}+\ldots+i_{t}=k} A_{i_{1} \ldots \ldots i_{l}}^{k} P_{2 t_{l}}(c) \ldots P_{2 i_{t}}(c) \quad \text { mod torsion } \tag{1.1}
\end{equation*}
$$

be the cobordism decomposition of $X^{4 k}$ based on the complex projective spaces $P_{2 i}(c)$'s. It is known that ([8])
(a) $9 A_{4}^{4}=\left(-4 p_{4}+4 p_{3} p_{1}+2 p_{2}{ }^{2}-4 p_{2} p_{1}^{2}+p_{1}^{4}\right)\left[X^{16}\right]$,
(b) $21 A_{31}^{4}=\left(36 p_{4}-33 p_{3} p_{1}-18 p_{2}{ }^{2}+33 p_{2} p_{1}{ }^{2}-8 p_{1}{ }^{4}\right)\left[X^{16}\right]$,
(c) $25 A_{22}^{4}=\left(18 p_{4}-18 p_{3} p_{1}-7 p_{2}{ }^{2}+16 p_{2} p_{1}{ }^{2}-4 p_{1}^{4}\right)\left[X^{18}\right]$,
(d) $45 A_{211}^{4}=\left(-180 p_{4}+159 p_{3} p_{1}+80 p_{2}{ }^{2}-150 p_{2} p_{1}{ }^{2}+36 p_{1}{ }^{4}\right)\left[X^{16}\right]$,
(e) $81 A_{1111}^{4}=\left(165 p_{4}-137 p_{3} p_{1}-70 p_{2}{ }^{2}+127 p_{2} p_{1}{ }^{2}-30 p_{1}{ }^{4}\right)\left[X^{16}\right]$,
(f) $3^{3} \cdot 5^{2} \cdot 7 \tau=3^{3} \cdot 5^{2} \cdot 7\left(A_{4}^{4}+\cdots+A_{1111}^{4}\right)$

$$
=\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right)\left[X^{18}\right],
$$

where τ denotes the index of X^{16} and p_{i} denotes the Pontryagin class of the dimension $4 i$. In [8] we introduced a multiplicative series such that

$$
\begin{equation*}
\prod_{i} \frac{\sqrt{r_{i}}}{\operatorname{tgh} \sqrt{r_{i}}}\left(1+y \operatorname{tgh}^{j} \sqrt{r_{i}}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{i} y^{j} \Gamma_{i j}\left(p_{1}, \cdots, p_{i}\right), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\prod_{i}\left(1+r_{i}\right)=\sum_{i=0}^{\infty} p_{i} . \tag{1.4}
\end{equation*}
$$

If we put $y=0$ in (1.3) we obtain the Hirzebruch polynomials. For brevity
we put as follows:

$$
\begin{equation*}
\Gamma_{i j}\left(p_{1}, \cdots, p_{i}\right)\left[X^{4 i}\right]=\Gamma_{i j} \tag{1.5}
\end{equation*}
$$

We have proved in [9] that the $\Gamma_{i j}$'s are integers. Some of them are as follows :

$$
\begin{cases}\text { (g) } & \Gamma_{44}=p_{4}\left[X^{16}\right], \\ \text { (h) } & 3 \Gamma_{43}=\left(8 p_{4}-p_{3} p_{1}\right)\left[X^{16}\right], \\ \text { (i) } & 45 \Gamma_{42}=\left(108 p_{4}-27 p_{3} p_{1}-7 p_{2}{ }^{2}+6 p_{2} p_{1}{ }^{2}\right)\left[X^{16}\right], \tag{1.6}\\ \text { (j) } & 3^{3} \cdot 5 \cdot 41 \Gamma_{41}=\left(744 p_{4}-325 p_{3} p_{1}-176 p_{2}{ }^{2}+248 p_{2} p_{1}{ }^{2}-51 p_{1}{ }^{4}\right)\left[x^{16}\right] .\end{cases}
$$

The parametric multiplicative series (1.3) admits the following generalization :

$$
\begin{gather*}
\prod_{i} \frac{\sqrt{\operatorname{tgh}^{r_{i}}}}{(1)}\left(1+y_{1} \operatorname{tgh}^{2} \sqrt{r_{i}}+y_{2} \operatorname{tgh}^{4} \sqrt{r_{i}}+\cdots+y_{m} \operatorname{tgh}^{2 m} \sqrt{r_{i}}\right)^{*} \tag{1.7}\\
=\sum_{i=0}^{\infty} \sum_{\alpha_{1} \ldots \alpha_{p}} y_{\alpha_{i} \cdots} \cdots y_{\alpha_{p}} L_{\alpha_{1} \ldots \alpha_{p}}^{i}\left(p_{1}, \cdots, p_{i}\right),
\end{gather*}
$$

where $L_{\alpha_{1} \ldots \alpha_{\nu}}^{i}{ }^{\prime}$ s denote certain polynomials of p_{1}, \cdots, p_{i} whose weight is i. The integrality of

$$
\begin{equation*}
L_{\alpha_{1} \ldots \alpha_{p}}^{i}\left(p_{1}, \cdots, p_{i}\right)\left[X^{4 i}\right] \tag{1.8}
\end{equation*}
$$

can be proved in the same way as in the case of (1.5) (Appendix, [9]). In the case of X^{16} we need only the following one:

$$
\begin{equation*}
\prod_{i} \frac{\sqrt{r_{i}}}{\operatorname{tgh} \sqrt{r_{i}}}\left(1+u \operatorname{tgh}^{2} \sqrt{r_{i}}+v \operatorname{tgh}^{4} \sqrt{r_{i}}\right)=\sum_{i} \sum_{\alpha, \beta} u^{\alpha} v^{\beta} K_{\alpha \beta}^{i}\left(p_{1}, \cdots, p_{i}\right) . \tag{1.9}
\end{equation*}
$$

In particular we need the following term :

$$
\begin{equation*}
45 K_{01}^{4}\left(p_{1}, \cdots, p_{4}\right)=\left(-216 p_{4}+156 p_{3} p_{1}+94 p_{2}^{2}-147 p_{2} p_{1}^{2}+33 p_{1}^{4}\right) \tag{1.10}
\end{equation*}
$$

We put as follows:

$$
\begin{equation*}
K_{01}^{4}\left(p_{1}, \cdots, p_{4}\right)\left[X^{16}\right]=K_{01}^{4} . \tag{1.11}
\end{equation*}
$$

Of course the K_{01}^{4} is an integer.
2. We see from $2(f)+(\mathrm{c})$ that $5 A_{22}^{4}$ is an integer. It follows from $2(\mathrm{f})+(\mathrm{e})$ that $9 A_{111}^{4}$ is an integer. The integrality of $3 A_{31}^{4}$ follows from $2(\mathrm{f})+(\mathrm{b})$. We see from $111(\mathrm{j})+126(\mathrm{f})-(\mathrm{d})+70(\mathrm{i})$ that A_{211}^{4} is an integer. From (a) it is clear that $9 A_{4}^{4}$ is an integer. From above facts and the integrality of $A_{1111}^{4}+A_{4}^{4}+A_{31}^{4}$ $+A_{22}^{4}+A_{211}^{4}+A_{1111}^{4}$ we see that A_{22}^{4} and $3 A_{4}^{4}+3 A_{1111}^{4}$ are integers. From $2(\mathrm{f})$ $+(\mathrm{e})+9(\mathrm{j})+9(\mathrm{~h})+9(\mathrm{~d})+9(\mathrm{~b})$ we see that $3 A_{1111}^{4}+A_{31}^{4}$ is an integer. Since A_{211}^{4}, K_{01}^{4} and $3 A_{31}^{4}$ are integers we see from $-2(\mathrm{~d})+45 K_{01}^{4}+3(\mathrm{~b})+4(\mathrm{f})+4(\mathrm{j})$ that $7 A_{31}^{4}$ is an integer and hence A_{31}^{4} is an integer. Therefore $3 A_{1111}^{4}$ and $3 A_{4}^{4}$ are also integers. Since $A_{4}^{4}+\ldots+A_{1111}^{4}$ is an integer we see that $A_{4}^{4}+A_{1111}^{4}$ is

[^0]an integer. Thus we have the following results:
\[

\left\{$$
\begin{array}{l}
\text { (i) } 3 A_{4}^{4}, A_{31}^{4}, A_{22}^{4}, A_{211}^{4}, 3 A_{1111}^{4} \text { are integers, } \tag{2.1}\\
\text { (ii) } A_{4}^{4}+A_{111}^{4} \text { is an integer. }
\end{array}
$$\right.
\]

In the case of the manifold $W=F_{4} / \operatorname{Spin}(9)$ ([2], p.534) we have

$$
\begin{equation*}
A_{4}^{4}=-\frac{28}{3}, A_{31}^{4}=36, A_{22}^{4}=18, A_{211}^{4}=-92, A_{1111}^{4}=\frac{145}{3} \tag{2.2}
\end{equation*}
$$

This is an example of non-integral A_{4}^{4}. Another example is found in the 16 dimensional submanifolds of the $P_{9}(c)$. Let X^{16} be a submanifold of X^{18}, i.e. X^{16} $\xrightarrow{\mathrm{J}} X^{18}$. Let X^{18} correspond to a cohomology class $v \in H^{2}\left(X^{18}, Z\right)$. Then the cobordism coefficients of X^{16} are given by

$$
\begin{align*}
& \text { (a) } A_{4}^{4}=\frac{1}{9}\left\{-v\left(4 p_{4}-4 p_{3} p_{1}-2 p_{2}^{2}+4 p_{2} p_{1}{ }^{2}-p_{1}^{4}\right)-v^{9}\right\}\left[X^{18}\right], \\
& \text { (b) } A_{31}^{4}=\frac{1}{21}\left\{v\left(36 p_{4}-33 p_{3} p_{1}-18 p_{2}{ }^{2}+33 p_{2} p_{1}{ }^{2}-8 p_{1}{ }^{4}\right)+v^{3}\left(-3 p_{3}\right.\right. \\
& \left.\left.+3 p_{2} p_{1}-p_{1}^{3}\right)-v^{7} p_{1}+10 v^{9}\right\}\left[X^{18}\right], \\
& \text { (c) } A_{22}^{4}=\frac{1}{25}\left\{v\left(18 p_{4}-18 p_{3} p_{1}-7 p_{2}{ }^{2}+16 p_{2} p_{1}{ }^{2}-4 p_{1}{ }^{4}\right)+v^{5}\left(2 p_{2}-p_{1}{ }^{2}\right)\right. \tag{2.3}\\
& \left.+5 v^{9}\right\}\left[X^{18}\right], \\
& \text { (d) } A_{211}^{4}=\frac{1}{45}\left\{v\left(-180 p_{4}+159 p_{3} p_{1}+80 p_{2}{ }^{2}-150 p_{2} p_{1}{ }^{2}+36 p_{1}{ }^{4}\right)+v^{3}\left(21 p_{3}\right.\right. \\
& \left.\left.-19 p_{2} p_{1}+6 p_{1}{ }^{3}\right)+v^{5}\left(-11 p_{2}+5 p_{1}{ }^{2}\right)+8 v^{7} p_{1}-55 v^{9}\right\}\left[X^{18}\right], \\
& \text { (e) } A_{1111}^{4}=\frac{1}{81}\left\{v\left(165 p_{4}-137 p_{3} p_{1}-70 p_{2}{ }^{2}+127 p_{2} p_{1}{ }^{2}-30 p_{1}{ }^{4}\right)+v^{3}\right. \text {. } \\
& \left.\left(-28 p_{3}+23 p_{2} p_{1}-7 p_{1}{ }^{3}\right)+3 v^{5}\left(5 p_{2}-2 p_{1}{ }^{2}\right)-12 v^{7} p_{1}+55 v^{9}\right\}\left[X^{18}\right] .
\end{align*}
$$

These relations are derived from the multiplicative series

$$
\begin{align*}
& \prod_{i} \frac{\sqrt{r_{i}}}{\operatorname{tgh} \sqrt{r_{i}}}\left(1+y \operatorname{tgh}^{2} \sqrt{r_{i}}\right)^{-1}=\sum_{i} \Lambda_{i}\left(y, p_{1}, \cdots, p_{i}\right), \tag{2.4}\\
& \begin{aligned}
& \sum_{i} \Lambda_{i}\left(y, p_{1}\left[X^{16}\right], \cdots, p_{i}\left[X^{16}\right]\right) \\
& \quad=j^{*}\left[\frac{\operatorname{tgh} v}{v}\left(1+y \operatorname{tgh}^{2} v\right) \sum_{i} \Lambda_{i}\left(y, p_{1}\left[X^{18}\right], \cdots, p_{i}\left[X^{18}\right]\right)\right]
\end{aligned} \tag{2.5}
\end{align*}
$$

and the relation

$$
\begin{equation*}
\Lambda_{4}\left(y, p_{1}, \cdots, p_{4}\right)\left[X^{16}\right]=\kappa^{18}\left[\operatorname{tgh} v\left(1+y \operatorname{tgh}^{2} v\right) \sum_{i} \Lambda_{i}\left(y, p_{1}, \cdots, p_{i}\right)\right]\left[X^{18}\right] . \tag{2.6}
\end{equation*}
$$

In the case of $P_{9}(c)$ it is known that

$$
\begin{equation*}
p_{1}=10 g^{2}, p_{2}=45 g^{4}, p_{3}=120 g^{6}, p_{4}=210 g^{8}, g^{9}\left[P_{9}(c)\right]=1 \tag{2.7}
\end{equation*}
$$

Letting $X^{18}=P_{9}(c)$ and $v=2 g$ we have from (2. 3)

$$
\begin{align*}
& A_{4}^{4}=-\frac{164}{3}, \quad A_{31}^{4}=180, \quad A_{22}^{4}=90 \tag{2.8}\\
& A_{211}^{4}=-400, \quad A_{1111}^{4}=\frac{560}{3}
\end{align*}
$$

We denote above submanifold of $P_{9}(c)$ by Q_{16}.
We have from (2.1) and (2.2) the
THEOREM. A compact orientable differentiable manifold X^{16} admits the following cobordism decomposition:

$$
\begin{align*}
& X^{16} \sim \bar{A}_{4}^{4} P_{8}(c)+ \bar{A}_{31}^{4} P_{6}(c) P_{2}(c)+\bar{A}_{32}^{4} P_{4}(c)^{2}+\bar{A}_{211}^{4} P_{4}(c) P_{2}(c)^{2} \tag{2.9}\\
&+\bar{A}_{1111}^{4} P_{2}(c)^{4}+\bar{A}_{0}^{4} Q_{16} \\
& \text { mod torsion }
\end{align*}
$$

where the \bar{A} 's denote some integer and the \bar{A}_{0}^{4} takes the values 0,1 and 2 and the \bar{A} 's are uniquely determined by X^{16}.
3. We denote by G_{k} the additive group of the cobordism classes of the compact orientable differentiable manifolds of the dimension $4 k$ modulo torsion and let

$$
\begin{equation*}
X^{4 k} \sim \sum_{i_{1}+\ldots+i_{l}=k} A_{i_{1} \ldots i_{l}}^{k} P_{2 i_{1}}(c) \ldots P_{2 i_{t}}(c) \quad \text { mod torsion } \tag{3.1}
\end{equation*}
$$

be the cobordism decomposition of such a manifold. Among them, those cobordism classes whose all coefficients are integers form a sub-group. We denote this group by \widehat{G}_{k}.

It is well known that $G_{k}=\widehat{G}_{k}, k=1,2,3$ ([4]).
Let us consider the factor group $G_{k} / \widehat{G_{k}}$. We have proved in the last paragraph that

$$
\begin{equation*}
G_{4} / \widehat{G_{4}} \approx Z_{3} . \tag{i}
\end{equation*}
$$

Moreover we see that
(ii)

$$
G_{k} / \widehat{G}_{k} \text { is a finite group. }
$$

PROOF. First of all G_{k} / \widehat{G}_{k} consists only of torsions because the cobordism coefficients are rational numbers. Moreover the number of these torsions is finite, because all $A_{i_{1} \ldots i_{\iota}}^{k}$'s $\left(i_{1}+\ldots+i_{t}=k\right)$ become integers by multiplying a suitable large integer depending on k ([5] p.p. $77 \sim 79$).
(iii) The sequence $\widehat{G}_{4} / G_{4} \rightarrow \widehat{G}_{5} / G_{5} \rightarrow \cdots \rightarrow \widehat{G}_{k} / G_{k} \rightarrow \widehat{G}_{k+1} / G_{k+1} \rightarrow \cdots$ is decreasing.

Proof. If we multiply an element of G_{k} by the $P_{2}(c)$, we obtain an element of G_{k+1}. We denote this injection by j :

$$
G_{k} \xrightarrow{j} G_{k+1} .
$$

It is clear that the injection j is isomorphic into and induces an injection such that

$$
G_{k} / \widehat{G}_{k} \xrightarrow{j^{*}} G_{k+1} / \widehat{G}_{k+1} .
$$

It is also clear that j^{*} is isomorphic into.

Appendix

Integrality of $\Gamma_{i j}$ ((1.5)).
It suffices to prove that
(i) the $\Gamma_{i j}$ does not contain the factor 2 in its denominator when it is written as a quotient of relative prime integers.
(ii) $2^{\alpha} \Gamma_{i j}$ becomes an integer for a suitable integer α.

First of all let us prove (i). It is well known that

$$
\begin{align*}
& \frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}=1+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{2^{2 k}}{(2 k)!} B_{k} z^{k} \tag{1}\\
& \operatorname{tgh} z=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{2 n}\left(2^{2 n}-1\right)}{(2 n)!} B_{n} z^{2 n-1} \tag{2}
\end{align*}
$$

Moreover it is known that
a. B_{k} (Bernoulli number) contains the factor 2 exactly to the first power $\left\{\begin{array}{l}\text { in its denominator. }\end{array}\right.$
b. (2k)! is not divisible by $2^{2 k}$ ([2] II p.341).

The statement (i) easily follows from these facts and (1.3). Next let us prove (ii). It suffices to show this for the complex algebraic manifold ([6]). In this case we have

$$
\begin{equation*}
\sum_{i=0}^{\infty} p_{i}=\prod_{i}\left(1+\delta_{i}{ }^{2}\right), \quad \sum_{i} c_{i}=\prod_{i}\left(1+\delta_{i}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{gather*}
\prod_{i} \frac{\sqrt{r_{i}}}{\operatorname{tgh} \sqrt{r_{i}}}\left(1+y \operatorname{tgh}^{2} \sqrt{r_{i}}\right)=\prod_{i} \frac{\delta_{i}}{\operatorname{tgh} \delta_{i}}\left(1+y \operatorname{tgh}^{2} \delta_{i}\right) \tag{5}\\
\quad=\prod_{i} \frac{\delta_{i}}{1-e^{-\delta_{i}}}\left(\frac{1}{\operatorname{tgh} \delta_{i}}+y \operatorname{tgh} \delta_{i}\right)\left(1-e^{-\delta_{i}}\right)
\end{gather*}
$$

$$
=\operatorname{II}_{i} \frac{\delta_{i}}{1-e^{-\delta_{t}}}\left\{\frac{\frac{1}{2}\left(1+e^{-2 \delta_{i}}\right)}{1-\frac{1-e^{-\delta_{t}}}{2}}+y \frac{\frac{1}{2}\left(1-e^{-2 \delta_{t}}\right)\left(1-e^{-\delta_{t}}\right)}{1-\frac{1-e^{-2 \delta_{t}}}{2}}\right\}
$$

Hence we have
(6) $\sum_{j=0}^{n} y^{j} \Gamma_{n j}\left(p_{1}, \cdots, p_{n}\right)=\kappa_{4 n}\left[\Pi \frac{\delta_{i}}{1-e^{-\delta_{t}}} \boldsymbol{\Pi}\left[\frac{1}{2}\left(1+e^{-2 \delta_{i}}\right)\right.\right.$

$$
\begin{aligned}
& \times\left\{1+\frac{1-e^{-\delta_{t}}}{2}+\left(\frac{1-e^{-\delta_{t}}}{2}\right)^{2}+\cdots+\left(\frac{1-e^{-\delta_{t}}}{2}\right)^{2 n}\right\}+\frac{1}{2} y\left(1-e^{-2 \delta_{t}}\right)\left(1-e^{-\delta_{t}}\right) \\
& \left.\left.\times\left\{1+\frac{1-e^{-2 \delta_{t}}}{2}+\left(\frac{1-e^{-2 \delta_{t}}}{2}\right)^{2}+\cdots+\left(\frac{1-e^{-2 \delta_{t}}}{2}\right)^{2 n-2}\right\}\right]\right] \\
& =\kappa_{4 n}\left[\left(\sum_{t} y^{t} \sum_{a_{1}, a_{m}} A_{a_{1}, \ldots a_{m}}^{t} \sum_{i_{1} \neq \ldots \neq i_{m}} e^{a_{1} \delta_{i_{t}}+\ldots+a_{m} \delta_{i_{m}}}\right) \times \prod_{l} \frac{\delta_{i}}{\left.1-e^{-\delta_{t}}\right]},\right.
\end{aligned}
$$

where A denotes some rational number which becomes integer by multiplying suitable power of 2 and a_{i} denotes some integer.
Putting

$$
\begin{equation*}
\prod_{i_{1} \neq \cdots \neq i_{m}}\left(1+a_{1} \delta_{i_{1}}+\cdots+a_{m} \delta_{i_{m}}\right)=\sum_{i} d_{i} \tag{7}
\end{equation*}
$$

we see that d_{i} is an integral cohomology class, i.e. $d_{i} \in H^{2 i}\left(X^{4 n}, Z\right)$. Hence we have

$$
\begin{equation*}
\Gamma_{n k}=\Gamma_{n k}\left(p_{1}, \cdots, p_{n}\right)\left[X^{4 n}\right]=\sum_{i} b_{i} T\left(X^{4 n}, W_{i}\right)=\sum_{i} b_{i} \chi\left(X^{4 n}, W_{i}\right), \tag{8}
\end{equation*}
$$

where b_{i} denotes some rational number which becomes integer by multiplying some power of 2 and $T\left(X^{4 n}, W_{i}\right)$ denotes the Todd genus with regard to W_{i} and W_{i} denotes a complex analytic vector bundle whose Chern class is Σd_{i} and $X\left(X^{4 n}, W_{i}\right)$ denotes the Riemann-Roch number with regard to $W_{i}([5]$ p.154). Thus we have proved (ii).

Bibliography

[1] M. AdACHI, On the group of cobordism Ω^{k}, Nagoya Math. Journ., 13(1958), 135-156.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, II, III, Amer. Journ. of Math., 80(1958), 458-538, 81(1959)315-382, 82(1960) 491-504.
[3] A. Dold, Erzeugung der Thomschen Algebra N, Math. Zeitsch., 65(1956), 25-35.
[4] F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math., 60(1954) 213-236.
[5] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956.
[6] J. Milnor, On the cobordism ring Ω^{*} and a complex analogue, Amer. Journ. of Math. (Part I, 82 (1960), 505-520)
[7] R.THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helvet., 28(1954), 17-86.
[8] Y. Tomonaga, Coefficients of cobordism decomposition, to appear in this journal.
[9] Y. Tomonaga, Integrality of a certain kind of genus, to appear in the Proc. Amer. Math. Soc.
[10] Y. Tomonaga, Cobordism coefficients of a Differentiable manifold, Bull. of Utsunomiya Univ., 9(1960), 1-8.
[11] C.T. C. Wall, Determination of the cobordism ring, Ann. of Math., 72 (1960) 292-311. Utsunomiya University.

[^0]: *) $\operatorname{tgh}^{2 m} \sqrt{r_{i}} \equiv\left(\operatorname{tgh} \sqrt{r_{i}}\right)^{2 m}$.

