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Introduction. Let φ = I φ{y)dμ{y) be an irreducible decomposition of a

representation φ of an involutive Banach algebra 35 over a measure space
(Γ, μ). As shown by several authors in [ 4 ], [ 8 ], [ 9 ], [ 13 ] etc., this decomposition
cannot be regarded as a decomposition of the unitary equivalence class of φ
into the unitary equivalence classes of φ (γ) except for some fairly nice cases,
whereas this decompositon is determined only up to unitary equivalence. For
instance, some representations can be decomposed in two ways that have no
common components as in [ 8 ] and some two representations of quite different
types can be decomposed into the direct integrals of the same components as
in [ 13 ]. Therefore it comes into considerations what determines the unitary
equivalence relation among the components {φ(y) :y zT] of the decomposition

Γ θ

φ = ί φ (y)du(y). For this question we shall answer in § 1 that the algebraic
JΓ

relation between the commutant <p(3ΐ)' = M of φ($$) and the associated diagonal
algebra A determines completely the unitary equivalence relation 9ϊ among the
components [φ(y): y £ Γ} . So we can regard 9ΐ as an algebraic invariant of the
couple {My A). A. Guichardet used 9ϊ for characterization of discrete von
Neumann algebras in [5]. We study the behavior of 3Ϊ in more general situation.
In § 2 we shall give the definitions of simplicity, smoothness and complete
roughness of A in M using sJί. In § 3 we shall reduce the study of smooth
maximal abelian subalgebras to that of simple ones. § 4 is devoted to* show
some relations between simple or completely rough maximal abelian subalgebras
and regular, semi-regular or singular ones defined in [ 3 ] . Finally in § 5 we
shall give some examples of factors of type II and type III with simple maximal
abelian subalgebras and completely rough ones simultaneously respectively.

1. Unitary equivalence relation. Let Γ be a standard Borel space0 and
μ a Borel measure on Γ. Let A = L°°(T,μ) be the commutative von Neumann

1) If a Borel space (Γ,«^) is Borel isomorphic to some separable complete metric space
equipped with the Borel structure generated by closed sets, then we call it standard
according to Mackey[9]. Calling the member of ^ Borel set, we shall omit the letter *#.
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algebra consisting of all essentially bounded measurable functions over the
measure space (Γ, μ) . Suppose that A is imbedded in a von Neumann algebra M
as a von Neumann subalgebra and that M has a faithful representation on a
separable Hubert space. Let π be a normal faithful representation of M onto a
separable Hilbert space φ* and let M'κ be the commutant algebra of π (M).
Then wg eet a decomposition

of ξ)x over the measure space (Γ, μ) relative to π(A). π(A) becomes the algebra
of all diagonalizable operators which is called the (associated) diagonal algebra
and each operator in 7r(A)' is decomposable. Let 2ί be a uniformly separable
C*-algebra which is weakly dense, in M'π. Then for SI we can associate a
family {φy} of representations of Si in %>π(y) such that

ΓΘ
x — I Ψi^)dμ^i) for every x € 81.

J c

Besides, we can choose the family {φy} as follows; the function 7 —> (φΊ(x) ξ (7),
77 (7)) is Borel measurable over Γ for every x € 21 and for every pair of

f = I f (y)dμ(y), η = I η(y)dμ(y) e. ξ>π. We denote such family {̂ γ} by Φ.
•'r Jv

The family{§^(7):7^ Γ} of Hilbert spaces and the family Φ are determined
almost everywhere by the ξ>π and the diagonal algebra τr(^l). Indeed, if ξ)^ is

represented by a decomposition ξ)π = I §^(7) dμ(y) with respect to τr(A) and if
J Γ

Φ' is another associated family of representations of 21, then there exists a null
set AΓcΓ and a family {z/γ: 7 € C^}2 ) of unitary operators of $κ(y) onto §*(γ')
such that UyψyUy1 = ^ for every 7 € £ JV.

Suppose that ^lt = L^CΓ^t) (ί = 1, 2) is a von Neumann subalgebra of M,
where (Γt, μt) (i = 1,2) are measure spaces as well as (Γ, μ). Then we get two
decompositions

[ and β* = J βi(Ύ.)^a(γ2)

of §* over (Γxj/ix) and (Γ2,μ2) relative to ir{A^) and π(A2) respectively and we
fix these decompositions of ξ)π. Let Φ1 = {φ7l} and Φ2 = {φj2} be families of
representations of the C*-algebra 21 which are given by the decompositions of
§* as well as Φ. We define a relation Sΐ^'^'v*2 between the points of Γ̂  and
Γ2 as follows; at*-^'^* 1 (71,72) holds if and only if the representations φ\ and
φΊi of 2ί are unitarily equivalent.

Now let 9ί and ΐR' be two relations between the points of I\ and Γ2. We

2) Q,N denotes the Complement of N in Γ.
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define a relation 9ΐ = 9Γ by the fact that there exist subsets Et of Γέ (z = 1, 2)

with null complements such that 9ΐ(γ1,γ2)is equivalent to 3ΐ'(7i,72) for every

(71,72) £ Ei X E2. Clearly this relation" = " is an equivalence relation. We denoe

the equivalence class of 9ΐ under the relation " = " by 9ϊ.

LEMMA 1.1. $.*'*£$'** depends on neither Φ1 and Φ2 nor weakly dense

uniformly separable C*-subalgebra Si of M*. That is, for two weakly dense

uniformly separable C*-sublalgebras Si and S of M'π and for associated

familis Φ* and Ψ1 (z = 1,2) of representations of SI and .2ίt (z = 1,2), there

exist Borel subsets Et of Γ t (Z = 1,2) wίί/i nz/ZZ complements such that W^χψi

(7i,72) and W'*£;fx^ fa,y2) <zn? equivalent for every (tγl9y2)^E1 X £ 2

PROOF. Let Sί0 be countable uniformly dense subalgebra of Si over the
rational complex number field Co. Then di]iΓ'7C^'Ziφ2 (71,72) is equivalent to the
fact that there exists a unitary u of $i(γi) onto i>*(72) such that w ^ (x)z/"1

= φ2γ2(x) for every ^^Sί 0. Let {xn} be an enumeration of Sί0. For each n there
exists a sequence {j>n, m} in 25 that converges strongly to xn. By [2: Chap. II,
§2, no 3 Prop. 4], there exist a subsequence {yn,m.k} and null sets N? c Γ {

(z = 1,2) such that

ψji (^n) = strong-lim ψ *f (yn,mt) for every γt € CΛT? (z = 1,2).

P u t i V t = U° N? ( i = l , 2 ) . Suppose that JR'-'J?,^*1 (71?72) holds for (γ1 ?γ2)
w = l

^ CNi X C^2 Then there exirts a unitary w of ξ)\ fa) onto β i fa) such that w
ψ'rxCy«•»»*)w"1 = ψ2

7Λyn,mk) for all n and £, which implies w φ\x{x^)u~x = φ2

Ύ2(xn)
for all 71. Hence St*'*^'*" (γ l f γ2) holds. By symmetry ^ ' ^ ^ ' * 2 and Si' ^ β J 1 ^ 1

are equivalent on E1 X Eλ for some subsets £ x c T1 and £ 2 C Γ2 with null
complements.

According to Lemma 1.1, we can denote Sl^'i*^1'*'1 by ΪR%χ and φ\x (x) by
x1 (γi) without the indication of the family Φ1.

Let X be the trivial representation of the scalar field C onto countably
infinite dimensional Hubert space ξ)^. For a representation ΊC of M we define
a representation τr®l onto φ*®§oo by (TΓ®),) (x)(ξ®η) = {rrr{x)ξ)®η for Λ; € M,
I € §Λ and 77 ̂  §oo.

LEMMA 1.2. %£, = fe^.

PROOF. Let 81 and S5 be uniformly separable weakly dense C*-subalgebras
of M'π and!? (̂ 00) with units respectively. Then the uniform closure © of the

set consiting of all Σ"=i χι ®y%& ^i € 5l«y* € ^> which is Sί®α23 in the sense

of Turumaru [14], is also uniformly separable weakly dense C*-subalgebra of

MUi = M* ®β(^oo).From ξ>π^ = ξ)*®^ and (π®ϊ)(M) = τr(M) ® C, we have

&*®ιfa)= Φ*fa) ®$oo and (Λ ® y)* (7i) = Λr*(γt)(2)̂  for almost every γf € Γ t
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(z = 1, 2) and for every x <= 31 and y € » . Suppose that S t * ' * ^ * (yl9 γ2) holds, that
is, there exists a unitary « of φί(yθ onto $J (γ2) such that W.X1 (γO^- 1 ^^ 2 (γ2)
for all xety. Putting v = u<g>I, we have v(x®y)1 (y)v~ι = O(g)j/)2(γ2) for every
α:^ Si and y € S5, which implies JR**^;*1'*" (7 l,γ2), where ψ* is the family of
representations ψι

Ύt of © defined by ψΊi (x®y)= φ\t (x)®y for x e 31 and 3/ € 55 .
Conversely suppose that ^ ' ^ i f ' * ' ^ ^ ) holds. There exists a unitary t;

of &rέι(7i) onto &2

Θt(γ2) such that vOrφ y)1 (γOϊΓ1 = O<S>y)2 (γ2) for all x € SI
and 3/ € 55. Taking a; = I, ^(I®^)^"1 = I®^ for every y £ 55. Hence there exists
a unitary w of $1 (7l) onto $i(γ 2) such that T; = M®I by [7: p. 114, Lemma].
Since (u®ΐ)(x\y1)®y)(u®iy1 = ^^γa)®^, we have uxι{yλ)u~ι = a:2(γ2) Hence
S P ^ Λ ^ C Ύ I ^ ) holds.

THEOREM 1.1. Equivalence class of W'*g£>* under the relation " = "
depends on neither SI τzor TΓ. That is, for normal faithfull representations TΓ
and p of M onto φ^ and ξ>P, for uniformly separable weakly dense C*-
subalgebras 31 and S3 of M* and M'? respectively and for families Φ* and Ψι

of representations of SI and 55 associated with the decomposition of ξ)π and
ξ>p respectively (i = 1,2), ίΛ^re e.rzs£ subsets Ex cTx and E2 c Γ 2 tε»zί/ι nw/Z
complements such that W^fiX** (ΎI,Ύ2) ^^^ Sft*'^^1*1 (Ύi,72) «re equivalent
each other for every (y1,y2)^E1 x £ 2

PROOF. If TΓ and /o are unitarily equivalent, then Lemma 1.1 assures our
mentions. By [8: p. 22, Lemma], we have ir®X^p®X. Hence Lemma 1.2
assures our theorem.

According to Theorem 1.1,in che notation Sϊ3''^^1^2 the letter TΓ does not have
essential meaning. So we assume the von Neumann algebra M to act on a fixed
Hubert space ξ) from the beginning and we can denote $12;,̂ , by SRJ;,̂ ,. In the
following, we denote Sΐ^jfef1-*1' by dϊM>l[%f\ where TΓ means the identical
representation of M. When we consider only one subalgebra A — L°° (Γ, μ) of
M, gt^ J;*'* becomes an equivalence relation defined in the measure space (Γ, μ)
which is simply denoted by SR '̂S'*.

Now we shall give the interpretations of Theorem 1.1 to the decomposition
theory of representations of involutive Banach algebras. In [ 13 ], in order to
describe the structure of decompositions of some representations of certain C*
algebras, at first we have studied the behavior of some special representation
φQ of some special C^-algebra 3l0 and next we have investigated che representation
φ of C^-algebra 31 such that ^o(5ίo) = 9>W by comparing the decompositions
of φ0 and φ with respect to the diagonal algebras which are isomorphic under
the isomorphism between 9?o(2Io) and φ(31)'. According to Theorem 1.1, we
can see the theoretical back ground of these arguments in [13]. Let 31 and 23
be two separable involutive Banach algebras and let φ and ψ be representations
of Si and 23 onto separable Hubert spaces ξ)φ and β ψ respectively. Suppose
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)' ^ <p(23)' under an isomorphism θ. That is, there exist a von Neumann
algebra M and two normal faithful representations ΊΓ and p such that π(M)
= φ(Έ)\ p(M) = ψ(93)' and σ = 0oτr. Let (Γ^ M l ) , (Γ2, u2), A1 and A2 be as in
Theorem 1.1.

Then <p(resp. ψ) is decomposed with respect to π(A^) and 7r(A2)
(resp. σ(Aχ) and />(A2)) as follows

f® Γ®
^ = φ\Ίi)dιxfyι) and <p = <P%

/ Γ® Γ®

resp. Λ|Γ = ψ\Ίι)dμfyy) and ^ = V(Ί2)dμ2(y2).
\ Jvt Jr,

Then we get the folowing

COROLLARY 1. There exist null sets NiCΓΊ αrc<i ΛΓ2cΓ2 5wc/ι ί/iαί
^ equivalent to ΨXΎO ^ψ2dγ2) for every (7i,γ2)^ C^i x

PROOF. Putting §I0 = ^(81) and 25° = ψ<S), the decomposition ^ =
®

= I ^«(γt)

Γ®and ψ4 = I ψXy^dμfyi) (i = 1,2) give the associated families Φ* and

Ψ4 (z = 1, 2) of Sί0 and 33O respectively. Then the relations 'VOi) ^ ^ 2 ( Ύ S ) "

and V f r O ^ f o ) " are equivalent to S^^i&f ^ 1 ? γ 2 ) and ^ ^ f ^ 8 (Ύl,γ2)
respectively. Hence Theorem 1.1 implies our mention.

Corollary 1 states that the unitary equivalence among the components of
representations is completely determined by the algebraic relation between the
commutant algebra and the associated diagonal algebra.

COROLLARY 2. Let A{ = L°° (Γf, μt) be imbedded in a von Neumann
algebra Mt acting on a Hilbert space ξ)t (i = 1, 2). Let SI and SB be two
separable involutive Banach algebras and let φλ and <p2 (resp. ψx and ψ2)
be two representations of 81 (resp. SB) onto ξ>1 nnd ξ>2 respectively such that

Ψι(%)f = Mλ and φ2 (81,)' = M2 (resp. ψ, (88)' = M2 and ψ2(%)' = M2). Then φt

and ψi are decomposed with respect to At as follows (ί = 1, 2)

Γ® Γ®

<P% = ΨiiVί) dμfyi) and ψ t = / ψ^) dufyi) (i = 1, 2).

If (^iθ^.X«y = ( Ψ Ί Θ Ψ Ί X » ) ' , ίAew ίA^ ^/ΛίίoΛ > I ( Ύ O = ^ 2 (γ 2 y o

γ2 Z5 equivalent to "ψfyi) ^ ψ2(y2)" except for some negligible part.

P R O O F . Putting φ = ^ 0 ^ 2 , ψ = t i θ ^ 2 , ^(Sl)' = ^(25)' = M9 (T,μ) =
(Tuμi)®(T2,μ2) and A= Aλ®A2, we have MΌM1@M2Z)A1@A2 = A= L°°(Γ, U)

Application of Corollary 1 to φ, ψ, M and A assures our mention.
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REMARK. If φx and <2>2(resp. ψi and ψ2) are disjoint representations, then
our assumption (ψι@φ2) (81)' = Oψ'iΘ'ψ )̂ (95)' is automatically satisfied. Indeed,
we have (φi®φ2) W = MX®M2. Even if <pχ and <p2 are representations of
quite different types, it may happen that there exists a Borel isomorphism Θ of
Yλ onto Γ2 such that φ^) ^ ^2(Θ(γ0) for all γx £ ΓΊ (cf. [13]), though, of
course, μ2 and Θ(μi) are disjoint.

Suppose that there is an isomorphism θ of A{ — L°°(Tl9μι) onto A2 =
Z/°(Γ2,/i2). By [5 :§1, Prop. 1], there exist null sets iViCΓj and ΛΓ2cΓ2 res-
pectively and a one-to-one measurable mapping Θ of Q, N2 onto C NΊ such that
^C^Xγ2) = ^(θ(y2)) for every α € ^ and for every γ2 ^ C^2 and Θ(/i2) is
equivalentto μ1#

THEOREM 1. 2. Suppose that there exists a unitary u of M such that
uAxu~ι —A2. Let Θ be the measurable mapping of £N2 onto CNΊ associated
with the isomorphism θ of Aλ onto A2 induced by u, where Nλ and N2 are
the null subsets of Γx and Γ2 defined above respectively. Then Sΐ^'f^f (γi,
θ^^Ύi)) holds for almost every yλ

r®

PROOF. Let M act on a Hubert space $. Let ξ> = I ^ x (γ^ dμx (γO and

^>\^2) dμ2{y2) be the decompositions of ξ> with respect to Aλ and ^42

r2

respectively. Applying [2: Chap. II, § 6 Theorem 4] to u and %, there exist
a null set Λ^cΓΊ and a unitary w(γθ of ^ x (Ύi) onto ξ>2 (®-1(7i)) for every

s u c h t^121* ^ e unitary of I ^(γO dμfyλ) onto / ξ)2(y2)dμ2(y2)

naturally induced by {w(γi)} coincides with the original unitary u. For α: ̂  Si,
putting x (Θ'XΎI)) = u(y^l

7l {x)u{yxy
ι for Ίγ € C NΊ and Λ:' (γ2) = 0 for γ2 ^

Θ-^C-ZV'i), ^'( ) becomes a bounded measurable operator field over Γ2 which
defines an operator x on ξ>. Let 2ί0 be a countable dense ^-subalgebra of ξ>
over the rational complex number field Co. Let 5 be a countable dense linear
subspace of ξ> over Co that is invariant under the actions of SI0 and u. For
each £ £ $ there exists a null set iV^cΓx such that (uξX®~\yi)) = u{y^yx) for

γ € CiVf. Putting N=\J Nξ, we have (^XΘ-^γO) = ^(ΎO I (7i) for every ξz g

and for every 7i ^ C ̂  F ° r -̂  ζ Sίo? f
 € 5 and γx ^ C -ZV we have

Or' fXβ- 1 ^)) = x (Θ

so that xξ •= uxu~ιξ for every x £ Sί0 and for every f € 3*. Continuity of x
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and uxu~x implies x = uxu~\ On the other hand, we have uxu~x — x for
every x £ 51. Hence we have x = x for every x £ 51. Then for :r € Sί0 there
exists a null set N x c Γ 2 such that x (y2) = φ2

Ίi(x) for every γ2 £ CΛ^ Putting

2V2 = \̂ y Nx, N2 is a null set and we have

u(yι)φ1

Ύι(x)u(yιy
i = ^'(θ-^γO) .= ?£-.(Ύι>(*)

for every x € Sί0 and for every γx € C (®(N2) Π Λf). By the continuity of u(yx)
φ^uiΎx)'1 and <£>i>-i(7l) we have φ]i ^ φ%-1(Ύι) for almost every γx € ΓΊ, that is,
9iJf 5;S;φt(fyi,θ"1 Oft)) holds for almos every 7i * Γi

REMARK. When an abelian subalgebra A of M is represented in two ways
as A ^ L^CΓj, /ii) and A ^ L°° (Γ2, μ2), taking ^ = ^42 = A and w = / in
Theoreml. 2, there exis null sets NλGTu iV2cΓ2 and a one-to-one measurable
mapping Θ from C N2 onto CM such that Θ (μ2)^μ1 and Sΐ^f Sf2 (Ύi, ©"XΎO)

holds for every γx ^ CM- Hence the behaviors of the equivalence relations
gfjM.Φi a n ( j gpj3r,̂ jΦ2 j n t j i e m e a s u r e spaces (Γj,/^) and (Γ2, μ2) are almost
isomorphic. That is, we can say that the equivalence relation 91^5'* depends
only on the algebraic relation of M and A.

In order to study the behavior of UIAIA^ > we set the following.

THEOREM 1.3. Let Ax = Lr(^uμ^) and A2 = L°°(Γ2,μ2) be two abelian
von Neumann subalgebras of a von Neumann algebra M acting on a Hlbert

space ξ>. Let ξ> = ^KΎI^ICΎO Λwrf ξ) = I $2(γ2) ^μ2 (Ύ2) fe ίAe decom-

positions of ξ> with respect to Ax and A2 respectively. Let *& be a uniformly
separable weakly dense C*-subalgebra of M and let Φ1 = {φι

Ίι: γx € Γx} α̂ z<i
φ 2 = {^>γ2:72

 ζ Γ2] δ^ families of representations of Si associated with the
decompositions of ξ). TΛen ί/ι̂  graph of 9ϊ3i>|;^'2

φ2 ŵ Γj X Γ2 is an analytic
subset of Γx X Γ2. Besides, if Ax and A2 are maximal abelian in M then
there exist null sets NiCΓj and N2cT2 such that the graph of dϊM'%[%'** in
(I\ - iVχ)x(Γ2 - N2) is a Borel subset of (Γx - Nx) x (Γ2 - N2).

PROOF. Let R be the graph of SP S ίί;*. Putting Γ? = {yt € Γ t dim. & (yt)
= n}> i = 1,2, Γ? becomes a Borel subset of Γ* for each w, £ = 1,2, and we

have ( \ J Γ? ) UIT = Γt, £ - 1, 2, and Λ c Q (Γf X ΓJ) U (ΓΓ X Γa-).So we may
\ n=l / w=i

assume that there exists a fixd Hubert space ξ>0 such that t^
ΐ(γi) = $ 0 for each

γt ^ Γt, £ = 1, 2. Let B = JB(§0) be the algebra of all bounded operators on ξ>0

equipped with the Borel structure induced by the weak topology. Then B is a
standard Borel space, since B is covered by countably many metrizable compact
subsets. For each x e 81 the function (yl9y2,u) € I \ x Γ2 x U-^(x1(y1\ x2(y2),
u) £ B x B X U becomes a Borel function, where U means the unitary
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group of B. Besides the function (x,y,u) s Bx B X U -* ux — yu £ B is a
Borel function. Indeed, let {ξn} be a complete normalized orthogonal system of
§0> then we have

([ux - yu] ξn9 ξm) = (ux ξny ξm) - (yu ξm, ξm)

= Σ " (xξn,ξ*Xuξk,ξm) - Σ (uξn,ξk)(yξk,ξm).
k=l k=i

Since each member of summands is a Borel function of (pc,y9 u) £ B x B x U,
([ux — yu]ξn,ξm) is a Borel function of (x,y,u). For each £, ?7 € ξ)0)0

([ux - j/tt]|, η)= Σ, (6 tnfahίm)(Wx - yu] ξn, ξm)
n,m

is a Borel function of (x,y,u). Hence the function (x, y, u)—> ux — yu is a Borel
function. After all, the set

A = {(yu γ2, u) € Γi x Γ2 x ?7 : wx^γO = x2(rγ2)u for each x € 8ί]
is a Borel subset of a standard Borel space Γ\ x Γ2 x U. R is the projection
of A to Γj X Γ2, so that i? is analytic.

If Aλ and ^42 are maximal abelian in M, then there exist null set5 iVΊ c Γ t

and iV2 c Γ2 such that (^ and <?>γ2 are irreducible representations for every
y, € Γi - M and γ2 € Γ2 - N2. Hence (γ^-γ,) € i? Π (Γx - iSΓO x (Γ2 - N2) is
equivalent to %t(<p\iy φ2

j2) > 0, where ^(^y,, φ2

7s) means the linear dimension of
the space of all bounded operators u such that u φι

Ίϊ (x) — <p2

7ι (x)u for all x
£ SI. But %}(<p\l9 φfy is a Borel function of (7i,72) by [9; Theorem 8.2]. Thus.

R Π (φΛ- NO x (Γ2 - N2) is a Borel subset of (I\ - iVx) x (Γ2 - N2).

2. Classification of abelian von Neumann subalgebras. Let A = L°°
(Γ, /i) be an abelian von Neumann subalgebra of M. Then di^'f^ = fR is an
equivalence relation associated with M and A defined in the measure space
(Γ, μ). Let Γ be the Borel space of all ^-equivalence classes in Γ equipped with
the quotient Borel structure of the Borel structure of Γ under 3ϊ. If Γ is
countably separated Borel space, then for each Borel set S c Γ the space S of
all 3ϊ-equivalence classes in S equipped with the quotient Borel structure of the
Borel structure of S is so. Hence we can set the following definition by
Theorem 1. 1 and Theorem 1. 2.

DEFINITION 2.1. If there exists a Borel null set N c Γ for any 9ϊ associ-
ated with M and A such that (Γ — N )/ίR is countably separated, then we call
A smooth in M. If Ae is not smooth in eMe for each nonzero projection e of
A9 we call A completely rough in M. If for any 3ΐ there exists a Borel null
set IV c Γ such that 9ϊ (Ύ,γ') implies 7 = 7' for each (7,7') £ (Γ - N)x(Γ-N),
then we call A simple in M. Of course, simple subalgebra is also smooth.

LEMMA 2.1. An abelian subalgebra A = L°° (Γ, μ) of M is smooth if and
only if for any diM^'Φ there exists a Borel subset N C Γ and an analytic
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subset E of Γ such that μ(N) = 0 and such that E contains one and only one
element in common with each ^'^-equivalence class in Γ — N. Besides if
A is smooth, then we can choose E to be a Borel subset of Γ.

PROOF. Denote 3^1'* = 9ϊ. Suppose that A is smooth. Eliminating a Borel
null set from Γ, T = Γ/9Ϊ is countably separated, so that f is an analytic Borel
space by [9: Cor. of Theorem 5.1]. Hence there exists a Borel μ-mi\\ set
N C Γ such that Γ — N is standard by [Theorem 6.1], wehre μ is the quotient
measure of μ in T. Let r be the natural mapping of Γ onto T. Then r is a
Borel mapping from the standard Borel space Γ — r~ι(N) onto the standard Borel
space (T — N), so that it follows from [1 : § 6, Ex. 17] that the graph of r in
{Γ -r~XN)} X (T - N) is its Borel subset. From [9: Theorem 6.3] we
conclude the existence of a Borel null set NΊ C T and a Borel mapping φ from
Γ — Nt to Γ such that roφ(7) = 7 for every 7 € Γ — Ar

1. Since φ is one-to-one, its
image £ is a required subset of Γ by [9: Theorem 3. 2].

Conversely, suppose that there exist an analytic set £ c Γ and a Borel null
set N c Γ as in the statement of our Lemma. Then r isa one-to-one Borel
mapping of E onto (Γ — 2V)/9ΐ = (Γ — iV)Ήence if r is a Borel isomorphism
then (Γ — N) is analytic Borel space, so that (Γ — 2V)/9t is countably separated.
So it suffices to show that r is a Borel isomorphism, that is, to show that
r{F) is a Borel subset of (Γ — JV)A. for every relative Borel subset F of E.
Hence we shall show that r~ιr(F) is a Borel subset of Γ — N. Let R be the
graph of 3ϊ in ( Γ - N)A x (Γ - N). Then we have r~ιr(F) = pr2 (F x (Γ - 2V)
Π i?), where pr2 is defined by pr2(γ, y) = 7' for (7,7') € Γ X Γ. Since F is a
relative Borel subset of the analytic set E, F is analytic. Hence r~ιr{F) is
analytic by Theorem 1. 3. Similarly r~ιr(E — F) is also analytic. Since r~ιr{F)
and r~1r(E — F) are complementary subsets of Γ — N, they are both Borel
sets. This completes the proof.

LEMMA 2. 2. Let A be an abelian subalgebra of a von Neumann algebra
oo

M. 1°. If there exists a partition of unit^ pn = / in A such that Apn is

smooth in pnMpn for each n> then A is smooth. 2°. If there exist two von
Neumann algebras Mλ and M2 and their smooth abelian sub algebras Aλ and
A2 such that M'= Mx® M2 and A = Aλ ®A2, then A is smooth under the
additional assumption M = Mx' ®M 2 ' 3 ).

PROOF. 1°. Let A = L°°(Γ, μ). Let Pn be the Borel set in Γ associated
with pn. Then we have Apn = L°°(Pn, μ). By eliminating a Borel null set we

3) When the one of Mx and M2 has the part of type III and the other is not of type I,
the question whether M' = M{®M2 does or does not hold remains open up to now
(cf. [2 : p. 30 and p. 102]).
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may assume 1 / Pn = Γ. Let δl and Φ be the couple as in the preceeding

arguments. Putting Mn = ρn Mρn, An = Aρn, Sίn = Sϊ ρn and Φn = {φΊ e Φ γ
e Pn}> the equivalence relation SlΛ" 2Γ'φ" = 3?n in P n becomes the restriction of

the original equivalence relation 9ΪΛΊ>Φ = 9ϊ to Pn. It follows from Lemma 2.1
that there exist a Borel set JVW c Pn and a Borel set En C i^ for each rc such
that μ(Nn) = 0 and such that En contains one and only one element in common
with each 3?^-equivalence class in Pn — Nn. Let Qn be the 3ΐ-saturation of En

A).
oc n-i

Then we have Qn D Fw - Nn. Putting E = \J (En - \J Qk), E is an analytic
n=i Λ=i

subset of Γ whose saturation becomes \^J Qn and it has one and only one
7 2 = 1

element in common with each ^-equivalence class in \^J Qn. Putting TV = Γ —

Qn, we have N c \^J Nn, so that N is a null subset of Γ. Therefore A

becomes smooth by Lemma 2.1.

2°. Let A, = L~(Γuμi\ A2 = L~(Tl9μ2) and (T,μ) - (Γ, x Γ2, μx x /ιa).
Then we have A = L°°(Γ, μ). Let iV̂  c Γt and ££ c Γt be the couple statisfying
the condition of Lemma 2.1, i = 1,2. Let 2li, Φi and Sί2, Φ2 be the couples
as in the preceeding discussion for Mly A1 and M2, A2 respectively. Then
Si = Sίi ®« Si2 becomes a uniformly separable weakly dense C*-subalgebra of
M by our assumption. Putting Φ = Φj®Φ2 = [φ^^) = φ\x ®φ\ : φ\, ^ Φi,^?2

€ Φ2, (γi,γ2) ^ Γj X Γ2], Φ is a family of representations of 21 associated with
the decomposition of § == $ι <g) ̂ 2 with respect to i l = A 1®^2, where ^ ! and
ξ)2 are the underlying Hubert spaces of Mx and M2 respectively. It is clear
that the equivalence relation 3ta/ j ι ' φ in Γ is defined as the canonical product
equivalence relation di^f^1 x *••-*•«.*« in Γj x Γ2. Putting N = Ni x Γ2 u IΊ x
N2 and E = Eλ x E2, ΛΓand E satisfy the condition of Lemma 2.1. Hence A is
smooth in M. This completes the proof.

THEOREM 2.1. Let A be an abelian von Neumann sub algebra of a von
Neumann algebra M. Then there exists a unique partition of unit e + / = /
in A such that Ae is smooth in eMe and such that Af is completely rough
in fMf

PROOF. Let {pa} be a maximal family of orthogonal non-zero projections
in A such that Apa is smooth in paMρa. By the separability of underlying

4) For any equivalence relation & in Γ the ^-saturation of any subset SczΓ is the set of
all elements of Γ that are 9?-equivalent to some element of S. If S contains every
element that is 9?-equivalent to some one of S, S is called [H-saturated.
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Hubert space of M, {pa} is at most countable, e = Ί*pa and / = / — e are the
α

desired projections in A by Lemma 2. 2 and by the maximality of {pa}. The
unicity of e and f is clear from Definition 2.1. This completes the proof.

Theorem 2.1 reduces the study of abelian von Neumann subalgebras to
that of smooth ones and that of completely rough ones,

3. Smooth maximal abelian subalgebras. In the present section we
reduce the study of smooth maximal abelian subalgebras to that of simple ones.
In the following if a maximal abelian subalgebra A = L°°(Γ, μ) of a von
Neumann subalgebra is smooth, then we assume that the quotient space Γ/3Ϊ = Γ

of Γ is standard by eliminating a null set from the whole space Γ.

LEMMA 3.1. Let A1 = L°°(T1,μ1) and A2 = L°°(T2,μ2) be two abelian von
Neumann subalgebras of the von Neumann algebra M. Let 81, Φ1 and Φ2 be a
triard as in §1. Let Ex c Γ\ and E2 c Γ2 be Borel subsets respectively. If
there exists a Borel mapping % from Ex to E2 such that Sf'S;?;*1 (Ύi, θ C^))
holds for almost every 7i € El9 then for almost every γx £ Eί there exists a
unitary u(yι) from «&2(Θ(γi)) onto ^ ( ^ I ) such that MCΎO"1^1 (ΎIVCΎO = χ2

(®(7i)) / ^ r £^£ry :r <= 5ί αwJ 5̂ c/ι ί/iαί M(YI) ?(^(γi)) w Λ measurable vector
field over Ex if £(•) Z5 50 ox ̂ r £ 2 If Θ w ^ βor^/ isoamorphism such that

/ι̂  operator u defined by

J Γ | V

/or f = / ζ2dy<ι)dμ2^/2) £ $ is a partial isometry of M which carries e2 onto
JY

βγ where ex and e2 mean the projections of Aλ and A2 associated with Ei

and E2 respectively.

PROOF. We use the notation in the proof of Theorem 1. 3. As in the
proof of Theorem 1.3 we may assume that there exists a fixed Hubert space
§0 such that &(yi) = £)0 for each γ* £ Γt, i = 1, 2. Putting B — {(7^ u) € Ex

x U; u'Wiy^u = xX^iji)) for every x € SI}, B is a Borel subset of Eί X t/*
whose projection to £ x covers Eλ. Indeed, B is the projection of the intersection
of A and the product of the graph R@ of Θ in Eλ x £ 2 and U to Ex X f/. 2?*
is a Borel set in Ex x £ 2 by [1 : § 6 Ex. 17] and the projection of Ex x E2 to
Eλ is a one-to-one Borel mapping on R®. Hence the projection of A Π (R<s> x
U) onto B is a one-to-one Borel mapping of the standard Borel space A Π
(jR=) x U) into the standard Borel space Eί x ί7, so that B becomes a Borel
subset of Ex x U by [9 : Theorem 3. 2]. Applying [9 : Theorem 6. 3] to JE1? U
and 5, there exist a null set iVΊ c Eλ and a Borel mapping w(7i) from £ x —
iVΊ to Z7 such that (y^uiyj) € β for evry yι ^ Ex — Nλ. This w( ) is desired
one. Suppose that Θ is a Borel isomorphism of (E^μ^ onto (JE2,/ι2).
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For ξ = f * ξ\y2)dμ2(y2) € £

we have

= f 1 (̂6(70)1

= f l l 2 (Ύ 2 ) i 2

•'β(^1)

For each x e Si we have

uxξ fξ = f

= f
V dμ.λ

= Γ+ ^ΎiMϊOf (Θ(γθλ /
JEX V

Λ V α

= Λ:W? /or ^wry f =

so that M is a partial isometry of M mentioned above.

THEOREM. 3.1. For a maximal abelian subalgebra A of a von Neumann
algebra M, acting on a Hilbert space ξ), to be smooth, it is necessary and
sufficient that there exists a simple maximal abelian subalgebra A of some
von Neumann algebra M on a Hilbert space & and a normal isomorphism θ
of A into A such that Θ{A) c A and Θ(M') = M'. If A is smooth, then
(M, A, θ) is unique.

P R O O F . NECESSITY: Let 81 = gp jf'* and (f, ft) = (Γ,») /M. Let r be the

canonical mapping of Γ onto Γ. Then there exists a Borel mapping φ of f*
into Γ such that φ(γ) £ r~\Ύ) for every Ύ € T by Lemma 2.1, eliminating a null
set from Γ. Putting β(?) = ξ>(φ(f/)) for each y z T, where $(y) means the

component of the decomposition ξ) = I φ(y) dμ(y) of ξj with respect to ^4,
•T

we get a measurable Hilbert space field {$(?/)} over t1, so that we can define

a Hilbert space β by S) = / ®(7)<iμ(7). The diagonal algebra of this decom-

of $ becomes i l = L°°(Γ, μ). Since the mapping θ = φor of Γ onto φ(T)
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is a Borel mapping such that 9ϊ(γ, Θ(γ)) holds for every 7 <Ξ Γ, there exists a
family {u(y)} of unitaries from {$(7)} o n t o ί!K®(7))} a s m t n e conclusion of
Lemma 3.1. Since each operator x £ A is decomposable with respect to the
decomposition of β, there exists a measurable operator field {x(^)} over f such

that Λ; = / x(Ύ)dμ(Ύ). Putting θ{x) = z/(7)~1x(r(7)) ̂  (7) <i/κ (7) for x € A',

0 becomes a normal isomorphism of A into ^1'. In fact, if there exists another

measurable operator field 3:1(7) over Γ for x <Ξ A such that / xι(y)dμ(Ί) =

/ x(Ύ)dμ(Ί) = r, then £ = {? ;#iC?) ̂  ^(7)} is a Borel null set in f. Since

{Ύ Λ^KΪ)) ^ ^i(r(7))} = r~\E) is a Borel null subset of Γ, we have

I u(y) ιx{r{y))u(^)dμ{y) = I ^(7) ̂ i(r(γ)Mγ)Jju(γ),

so that # is well defined. Similarly it is easily verified that θ preserves the

/\

algebraic operations. Let {xn} be a sequence in the unit sphere of A* converging

strongly to zero. Then there exists a subsequence {xnj} and a null subset N of

f such that {^(7)} converges strongly to zero for every 7 £ £ JSI by [2: Chap.
/\

II, §2 Prop. 4]. Since XnΛHy)) converges to zero for every 7^Ξr-1(iV) and
/\

r~\N) is a null subset of Γ, θ(xnj) converges strongly to zero in ξ>. Therefore

any subsequence of [θ(xn)} contains a subsequeαce converging strongly to zero,

which implies the strong convergence of {θ(xn)} to zero. Hence θ is strongly

continuous on the unit sphere of A. It is clear that Θ(A) c A', and Θ(A)

C A\ since each operator of Θ(A) is diagonalizable and each one of Θ(A) is

decomposable.
Putting x = I x(φ(Ύ))dμ (7) for each j ; € 81,

we have 0(£) = f ^ (7)-1 x (r (7)) «(7) ̂  (7)

y)-1 x(®(v))u(y)dμ(y)/

= x(y) dμ (7) = x.
Jτ

Hence Θ(A) covers M'. Putting Θ-\W) = 81 and 81' = M, we have Θ(M') = Λf'.

Since each 7-component of δl coincides with φ (7)-compoHent of St as the operator

algebra over $(*?) = $) (φ(7)), almost every 7-component of Si is irreducibly

acting on fi) (7). Because, putting JE = {7 7-component of SI is not irreducible},

E is saturated and £ is a null set by the maximality of A in M. Hence

μ (r (E)) ΞΞE 0. On the other hand, we have
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^ ^ z\

r (E) = {7 7-component of 21 is not irreducible},
^ /^ . ^ .

which implies that almost every 7-component of 21 is irreducible. Hence A is a
/\

maximal abelian subalgebra of M.
Finally we shall show that A is simple in M. Putting <pf (x) = 0 (£) (φ(7))

= £(7) for each £ £ 51 and Φ = {φ*: 7 € f } , suppose that dtM'fΦ (γ1?γ2) holds
for 7i,γ2

 ζ Γ. That is, there exists a unitary u of ffi(7j) onto S(7 2) such thac
W(^fi {x)u~ι = <Pft(x) for each £ € 21, which implies that

i ^ (*) i r * = «0 (£) (φ (70) «"^= β (£) (φ (72)) ^
for each £ € 81. Hence we have ux (φ (7Ί)) w"1 = x(φ(Ύ2)) for each ĉ ^ 21,

which implies 9ΐ(Φ Ĉ i)> Φ(?2)) Hence we have 7X = 7 2, so that 4̂ is simple in

ilf. After all, the triard (M, A, θ) is the desired one.

SUFFICIENCY: Suppose that there exists a triard (M, -4., ff) satisfying the

condition in our theorem. Let A = L°°(Γ, μ). Let 21 and Φ = {<p?} be a couple

as in § 1 for (M, A). Let J6 = I ffi (7) J/Z (7) be the decomposition of ft with

respect to ^4', which induces the central decomposition A = / A' (7) J/^ (7) ofthe von Neumann algebra A'. Since almost every component A (7) becomes

the algebra B (ffi (7)) of all bounded opertors on ff (7) and almost every φΊ is

irreducible, almost every A (7) is the weak closure of φη (21). By [2: Chap. II,
Γ ®

§ 3 Prop. 11] there exists a decomposition ξ> = I ξ>(V)dμ (7) of ξ) over Γ with
J

respect to Θ(A) which induces the decomposition θ (A) = / θ(A)(Ύ)dfi(Ύ) of

#(-4/) and there exists a measurable field {Θ^:Ύ € Γ} of normal isomorphisms
~ ^ Φ ^

of -4'(7) onto Θ(A)(Ύ) such that β(α:) = | θy (x(Ύ)) dμ (Ύ) for each Λ: € A,

that is, θ = I βη dμ (7). Putting θ (2ί) - 2ί and ψ f (x) = fff ^7< ^"x (#)) for each

J: e 21, 21 is weakly dense in M' and almost every ψ? (21) is weakly dense in

^(-4') (7) by the continuity of almost every θη. Hence almost every ψ^ is a
representation of type I which is quasi-equivalent to irreducible representation

φηoβ~ι of 21. Modifying Φ on a null subset of Γ, we can assume from the

assumption for A that each distinct members of Φ are disjoint. Besides, elimi-

nating null set, ψv is quasi-equivalent to φγ°θ~ι for every 7 £ Γ. After all, we

conclude that there exists a von Neumann subalgebra B = θ (A) ^ L°° (Γ, μ) and
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fΘ

a decomposition «£) = / ξ> (7) <i /£ (7) of | ) with respect to B which induces a
•ίp

family Ψ = {/Ψvl °f mutually disjoint factor representations of type I of Sί such

Γ e
that x = / ψy(x)dfi (7) for each r € δl.

Λ5

By [5 : § 5, Prop.2] we get the following :

1°. there exist null subsets N c Γ and N (Z V and a Borel mapping Θ of

T—N onto T — N such that for each α € A θ(a)(y) = <z (Θ (γ)) for almost every

γ € Γ — iV and Θ (μ) ^ /Z.

2°. there exists a decomposition μ = I μ* dfi (7) of μ such that // is

concentrated on Θ - 1(7) for every 7 € Γ — N.

3°. there exist a null set iVx c Γ and a unitary of <£) (γ) onto / β(γ) ^ f (γ)
•'β-i(f)

for every 7 e Γ — iVΊ which carries ψy(x) onto / ŷC ̂ ) d^di) f ° r every

Since ψ̂ f is a factor-representation of type I, <pγ is quasi-equivalent to ψy for

μγ-almost every γ ^ Θ " 1 (7) by [8: p. 103, Lemma]. Putting iSΓ = {7 € Γ; ^ is

not quasi-equivalent to ψVγ)}* we have μ(N') = I μ* (N') dfi (7) = 0. For each
• f

pai r (γ ,γ) € {Γ - (NuN')} x {Γ - ( N u J V ) ) , % , 7 ) holds if and only if

Θ(γ) = Θ(γ'), so that (Γ — ( N U JV')> A1)/^ ΐ s isomorphic to the standard measure

space (Γ — Nl9 fi), which implies the smoothness of A in M.

UNICITY : Suppose that there exists another triard (Mu Au θx). For (Ml9 A\,

θx) we shall use the corresponding notations in the proof of sufficiency adding

the suffix 1 (For instance, let Ax = L°° (Vu μλ) and so on.) Suppose that θ {A)

= 0λ (Ai) is proved. Since A (resp. Aί) is generated by M' and A (resp. Mx'

and Aλ) by the maximality of A (resp. Aλ) in M (resp. Mλ\ θ (A) (resp. ^ (AΊ))

is generated by M' = Θ(M') and β(A) (resp. M = Θ^Ml) and 6̂  (A0), which

implies ^ ( A ) = 6Ί (AJ). Hence θ~1°θι becomes an isomorphism of A[ onto A',

which is a spatial isomorphism by [2: Chap. Ill, §3 Cor. of Prop. 3]. Therefore

it remains only to prove θ (A) = 0X (Aλ). Each element α € A = L°°(Γ, μ) belongs

to Θ(A) (resp. 1̂ (AO) if and only if α(γ) is constant on the coset θ " 1 ^ ) (resp.

ΘfK^i)) f° r almost every 7 € Γ (resp. 7X e Γx). As seen in the proof of sufficiency,
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almost every coset Θ~J(7) (resp. Θ'XΎx)) becomes 9ί-equivalence class in Γ, which

implies Θ(A) = θι{Aι). This completes the proof.

DEFINITION 3.1. For each smooth maximal abelian subalgebra A of a von
Neumann algebra M, we call the triard (M, A, θ), appeared in Theorem 3.1, the
simplification of the pair (M, A).

DEFINITION 3. 2. Let Al9 A2, (ΓΊ, μλ), (Γ2, μ2) and M be as in § 1. Let ρx

and p2 be non-zero projections of A1 and A2 associated with Borel subsets
Px C I\ and P2 C Γ2 respectively. Let F x and E2 be the projections of the graph
of SΛ^ϋ Sί*1 = 9ϊ in Pλ x P2 into Γ\ and Γ2 respectively. If there exist partitions
of Ex and E2 such that E, = F, u F{, E2 = F 2 u F ; ? F X Π F; = F 2 Π F2 = φ,
JFΊ, , F 2 are measurable, /xx (Fί) = μ2 (F2) = 0 and Fί contains every γ t £ JE^
satisfying the condition 9ΐ(7i,72) for some γ^ € Fj z ̂ y , z,y = 1,2, then we say
that 4̂î >i and 4̂2̂ >2 are unrelated. That is, ^4i/>i and ^42/>2 are unrelated if and
only if 9ϊ(γi,y2) does not hold for every pair (7i,γ2) ^ -Pi x F 2 , eliminating null
sets from Px and P 2 . Otherwise, we say that Axpx and A2p2 are related.
Moreover if for each non-negligible subset Et c F 4 (t = 1,2) the set F^ of
all γ/s of P? satisfying the condition 9ΐ(γi,y2) for some yt € F έ (z =^y, i j = 1,
2) is not negligible, then we say that Aλpγ and -A2̂ >2 are similar

THEOREM 3. 2. For a maximal abelian subalgebra A of a von Neumann
algebra M to be smooth, it is necessary and sufficient that there exists a

partition of unit p0 + ]L pnΛ- p^ — lin A satisfying the following conditions :

1°. For each 1 fg n ^ °o pnMpn and Apn can be represented such as
pnMpn = ilfn ® Bn and Apn = An ® l°° ({1, 2, , w}) &)> 5ome ^on Neumann
algebra Mn and its simple maximal abelian subalgebra An, where Bn means
the full operator algebra over the n-dimensional Hilbert space Z2({1, 2, • ,n}).
Besides Apn and Apm are unrelated if n Φ m,n,m^l.

2°. p0Mp0 and Ap0 can be represented such as pQMρ0 = MQ® Bo and
Ap0 = AQ ® L°° (0,1) by some von Neumann algebra MQ and its simple
maximal abelian subalgebra Ao, where Bo, means the full operator algebra
over the Hilbert space U (0,1).

If A is smooth, then the above decomposition of M and A is unique. If
M is of finite type, then p0 = p^ = 0.

PROOF. The sufficiency is a direct conclusion of Lemma 2. 2, so we shall
prove only the necessity. Suppose that A is smooth. Let A = L°° (Γ, μ) and
3ί = a f f φ. Let (f, β) be the quotient measure space of (Γ, μ) by dt and let r be
the canonical mapping of Γ onto f. Identifying / and for for each / € L°° (Γ, β)
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= A,A becomes a von Neumann subalgebra of A. By [5: §6, Prop. 7] there
exist unique orthogonal projections p0 and q0 in A such that p0 + q0 = 7, p0 is
the greatest relatively continuous projection with respect to A and q0 is the
greatest relatively discrete projection with respect to A. So we shall study
(p0Mq0, Aq0) and (p0 Mpo,ApQ) separately.

1°. Case of q0 = I. For each non-zero projection e € A there exists the
smallest projection e in A majorizing e, which is called ^-carrier of e. Let e
and f be two relatively minimal projections in A with respect to A with the
same ^-carrier. Let E and F be the Borel subsets of Γ associted with e and f
respectively. Since Ae = Ae and Af= Af, both the r\E and r\F, the rest-
rictions of r, are one-to-one mappings except for negligible parts. Since eandf
are the projections of A associated with r{E) and r(F) respectively, we have
r{E) = r{F). Hence there exists a one-to-one Borel isomorphism φ from E onto
F such 9Ϊ (γ, φ (γ)) for almost every y £ E. Since Ae = Ae = Ae under the
canonical correspondence, r transforms the class of all null sets in E onto the
one in r (E). Hence φ is an isomorphism of the measure space (F, μ \ E) onto
(F, μ IF). By Lemma 3.1 there exists a partial isometry u oί M defined by a
family {w (γ), γ € F] of unitaries from ξ) (φ (γ)) onto <p (γ) such that uΦ = ^
and w* u =f. Hence, for each pair of relatively minimal projections e,f of A
with respect to A, there exist orthogonal projections g, h, k in A such g + h
+ k = I, {geY = {gfy ^ g, g + h^e, g + k~^f a.nά ge ^ gf.

For each non-zero projection e£ A there exists a relatively minimal projection
/ of A with respect to Λ such that f ^ e and f = e. Indeed, let {f«} be a
maximal family of relatively minimal orthogonal projections in A such that

fa :g e and thej^Λ 's are orthogonal each other. Then / = ]P /« is requried

one.
Let {̂ α} be a maximal family of relatively minimal orthogonal projections

in A with J>carrier I. If 7=τ̂  Σ e«> then {I — Σ ea)~ ^ I hy the maximality

of {ea}. Putting p = I - (7 - Σ« e«)~ € X w e n a v e P = Σ α /̂ « a n d P = (/*«)

If the cardinal of {̂ α} is finite, then we repeat this argument for A {I — p)
and A (7 — />). If it is infinite, there exits a family {/«} of relatively minimal

orthogonal projections such that Σ<* f* = ^ a n d / α = 7. Indeed, let {gβ} be a

maximal family of relatively minimal orthogonal subprojections of 7 — ^ ea in -4.

Since A is discrete over A, we have 7 — Σe« = Σ ^^ Since 71/ is acting on a

separable Hubert space, both {ea} and {gβ} are at most countable. Let {en}
and {#„} be their enumerations respectively. Let En and Gn be Borel subsets of
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Γ associated with en and gn respectively. Since en — I^-gn and en and gn are
relatively minimal, there exists a one-to-one Borel mapping φ from Γ into

yj En such that φ(Gn) c E2n+1, φ(En) = E27Z, 9ΐ(γ, φ(γ)) for almost every γ € Γ
71 = 1

and φ (μ) » μ\φ (Γ). By Bernstein's method it is easily shown that there exists a
oo

Borel one-to-one mapping ψ from Γ onto \^J En such that 9ϊ (γ, Ί ^ (γ)) for almost

every γ £ Γ and ^ (μ) ̂  μ,
£ n . The family {fn} of projections associated

with ψ~1(En) is the required one.

After all, there exists a family {pn} n=lt2,...,co of orthogonal projections of A

and for each n there exists a family {en9 k'Λ^k^n} of relatively minimal
orthogonal projections of A such that en, k — pn for k = 1, 2, , n and />w

= 2^ eM, fc. Besides for each n and £ there exists a partial isometry u oί M

such that w* w = en, u uuk = en, k and ιιAen, λu* — Aen, k. Since Aen, x ^ ^ 4 ^
under the natural correspondence, pnMpn = en, XM® Bn and Apn = Aen, ι ®
l°°(l, 2, ,n). Now it is clear that Aen, i is a simple maximal abelian subalgebra
of en, ιMen,ι and that Apn and Apm are unrelated if n Φ m.

2°. Case of ^ 0 = I Replacing μ by an equivalent finite measure, we may
assume the finiteness of μ. By the smoothness of A we get a decomposition

μ = Γ μ7 dβ(y) of /x over the measure space (f, /£) with respect to the mapping

r. By [5 : § 5, Prop. 1] we can define

£ ( ? ) = / " £ (Ύ) ̂  (7) and x C?) = ί * (γ) J ^ (γ)
»/7"—'("y) / — ^ ί y )

for almost every γ € Γ and for :r £ SI and we get a decompostion

and x = I x (f) dβ (r)[ (
under suitable identification. 4̂. becomes the diagonal algebra in this new decom-

position. Since there exists a unitary u of ξ) (γ0) onto ξ> (γ) for each γ € r"1 (*?(,)
such ux(y^)u~x = x(γ), we get

^ (*?o) - a (Ύo) ® ^ 2 (r-1 (*?), Λf) and Λ: (70) = x (γ0) ®/

for almost every Ύo £ f by [2: Chap. II, § 2 Theorem 2]. Moreover, A is
decomposable with respect to this new decomposition, whose almost every
component A(Ύ) is represented by A(Ύ) = C ® L°° (ΐ'^Ύ), μ9), where C

means the complex number field. By [5: § 6, Prop. 10] A (y) is relatively
continuous with respect to A(ff) = C for almost every Ύ £ f, so that almost
every measure space (r"1 (7), μΎ) has no discrete summand. Since almost every
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f " 1 ^ ) is a Borel subset of the standard Borel space Γ, almost every measure
space (r~ι (7), μΎ) is isomorphic to (0, l)-interval equipped with Lebesgue
measure. Hence we get

Φ (?) = £ (Ύ) ® L2 (0,1) and A (7) = C ® L~ (0,1)

for almost every γ £ Γ.
By Lemma 2.1 there exists a measurable mapping φ from T to Γ such

that φ(γ) <= r~x(7) for almost every y. Since

£ ( ? ) = £ (Φ (?)) ® £ 2 (0,1) and ^ (γ) = x (φ (7)) <g> 7

for almost every γ, we get

and

r = I ί x(φ (7)) du (7) I ® 7 for each x € ST.
l 'p )

Putting ft - [ £(φ(7)) du (7)and xΛ = f x(φ(Ύ)) dβ(Ύ) for x € Si, we have

$ = β ® 7/2(0,1) and ^: = ^ ® 7. It is clear that the diagonal algebra Ao in
the decomposition of B is isomorphic to A under the canonical corres-
pondence and that {x^ (γ) x £ &} = {^(φ(7)) ^ ^ 51} acts on β (γ) = $ (φ(γ))
irreducibly for almost every γ € Γ. Besides the representations Λ:^~> ^& (7) of
the C'*-algebra SίΛ = (α:^; α: <= SI} are mutually disjoint. Hence Ao is a simple
maximal abelian subalgebra of Mo = 8l'ft. Since J: = X& ® 7 for every x € SI,
we have M = 3Γ = M 0 ® BQ. And we get 4̂ = Ao (g) L°° (0,1).

The unicity of ί/>n}n-o,if.fββ is almost clear from its construction. This
completes the proof.

THEOREM 3. 3. Let A1 and A2 be two maximal abelian subalgebras of
a von Neumann algebra M. Let ex and e2 be non-zero projections of Aλ and
A2 such that Axeγ and A2e2 are smooth in eγMex and e2eM2 respecsively. Axex

and A2e2 are similar if the simplifications {{exMex\ {Aλeλ), θλ) and {{e2Me2\
(A2e2), θ2) are unitartly equivalent in the sense that there exists a unitary u
of the underlying Hubert space Vίx of {eγMe^)onto the one β 2 of (e2Me2) such
that u{Aιe^)W1 = (A2e2), uie^Me^u'1 = (e2Me2) and θ2 (uxu~ι) = θx(x) for x
€ (e.MeJ.

PROOF. Suppose that Axeι and A 2e2 are similar. Let Ex and E2 be the
Borel sets in I\ and Γ2 associated with ex and e2 respectively. Putting % = %et

a n d Φ ^ = WΊi € Φ'; yt z E,} (ί = l,2), W*χ*t;** - % and 8 P ^ ^ ^ = di2 are the
restrictions of 9t* 5 (

φl and Dϊ̂ f;*2 to Ex and E2 respectively. Let (Eί9 βx) and (E2, β2)
be the quotient measure spaces of {El9μ ^) and (E2, μ2) by 9ϊi and 3ί2 respectively.
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Let rx and r2 be the associated canonical mappings of Ex and E2 onto Eγ and

£ 2 respectively. Since WMΛ ( Ύ i , ^ ) , ^ ^ * 1 (Ύi,Ύ.) and 9 ί ^ φ 2 (7«,7£ impjy
71,72) for γ1?γί £ I\ and for γ2, γ2 € Γ2, the mapping e of 2^ to E2

defined by

r (?0 - r2o£r2 ( ( r r W X £2) ΓΊ 2?)
for 7i ζ £1 is a one-to-one mapping, where i? is the graph of Sΐ^;,^ 2 in Ex

X I£2. By the similarity of Aλβι and ^42£2 r is defined almost everywhere in Eλ

and it has the range with null complement in E2. Eliminating null sets from
Ex and E2 respectively, we may assume that r is a one-to-one mapping of Eλ

onto %. Since r~ι(β2) = r^pr^^ X r Γ 1 ^ ) ) Π 2?), f"1 (52) is analytic in %
for each Borel subset S2 c 2£2, so that £ is measurable. Similary r~x is also
measurable. Besides the similarity of A^i and ^42^2 implies that £ is an
isomorphism of the measure space (Eλ, βx) onto the one (E2, fi2). Let φι and φ2

be measurable mappings of Eλ and J52 to £ x and E2 such that φx (7X) € rf1 (7χ)
and φ2 (72) € r2

-1 (72) for almost every ^ and 72 respectively. Then we have
3*JΓf2i<S?f*(Φi(̂ i)>Φa (r(^i))for almost every fίι € Ej. Using the naturally corresponding
notations in the proof of necessity of Theorem 3.1, there exists a unitary u of
Jfc^) = φ1, (φxC/O) onto ffi2 (r (70) = §2(φ2 (^2))) for almpst every Ύ1 € £x such
that w"1 :̂1 (φiiΎ^u = :r2 (φ2(f (70) for each :r € 2ί. By Lemma 3.1 there exists
a family [u(!?1);f/1 € £Ί} of unitaries from ξ>2 (φ2 o £ (70) onto ξ)1 (φi(7θ) such
that tt(7i)~lΛ:1(Φi(7i) = ^ 2(φ2 ° ^"(^0) f° r e a c n -̂  ζ 2ί? which defines a unitary w of

$ 2 onto fi)χ by

uξ=f u (7Qg(K7i)\/ d β ~ 1 / 2 (Ύύdμ-1 (fi*) (7Q for § € «2.

It is clear that u carries(A2e2) onto {Ax eί). Since uθ2

ι (x)u~ι = 0Γ1 (^) for each
Λ: € Sί, w"1 induces the desired spatial isomorphism of (^ilfei) onto (e2Me2).

Conversely suppose that there exists a unitary u of K̂  onto β 2 satisfying
the condition of our theorem. By [8 : Theorem 2. 7] and Lemma 3.1 there exists
a one-to-one mapping r from a Borel suset of E1 onto a Borel subset of E2

with null complements such that y(fii)^z fi2 and there exists a family {u (70? 7i

€ Ei} of unitaries from ffi2(£(7θ) onto Ri(7i) such that

uξ= Γ u (70 ξ (r(7θ) k I

for I 6 0% and tt (^O'^Γ 1 ^!) (90 w (70 = ft"X^») (K?i)) for almost every 7i € £x

and for each x £ 21. By the proof of necessity in Theorem 3.1 there exist
unitaries uγ and u2 of ^(γO and ξ>\y2) onto £Ί(ri(γ0) and $2(r2(γ2)) for almost
every γx £ JSX and γ2 ^ E2 respectively such that

uλx (γ2) uΓ1 = ^Γ1 ̂ 0 (n(n)) and w2 x ( γ 2 ) u 2

ι = ĝ"1 (x^2)(r2(γ2))
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for every x e 21. Theorefore we have 91*$,* (γi,y2) if ^ ° n(7i) = r2 (γ2) for
almost every rγ1 € E2, and 72 ^ £ 2 that is,

pr2((Sx X £2) Π R) D r2

ιrrx(Sx) and ^ ( ( ^ X S2) Π R) D nλrr2{S2)
for each subset ASΊ C EX and S2 c E2 respectively. Since rx(μx) = A and r2(/i2)
= β2, we have

μλpr2((Sx x £ 2 ) Π i?)) > 0 and μx(prx((Ex X S2) Π i?)) > 0

for each non-negligible subsets Sx c £χ and S2 G E2, which implies the

similarity of Axex and 4̂.2<?2. This completes the proof.

Then we get the following

COROLLARY. Similar simple maximal abelian sub algebras of a von
Neumann algebra are unitarily equivalent.

THEOREM 3. 4. Let Ax and A2 be two maximal abelian subalgebras of
a von Neumann algebra M. Let ex and e2 be non-zero projections of Aλ and
A2 respecively. If Axeλ and A2e2 are both smooth in eλMeι and e2Me2 respect-
ively, then there exist unique projections pι and p2 of Ax and A2 majorized
by eλ and e2 respectively such that Aλpx and A2p2 are similar and Ax{ex — px)
and A2(e2 — p2) are unrelated.

PROOF. If Axex and A2e2 are unrelated, then our mention is trivial. So we
assume Axex and A2e2 are related. We use the notation in the proof of Theorem 3.3.

As in the proof of Theorem 3.3, there exists a one-to-one measurable
mapping r from subset of E\ into E2, whose definition domain Fi and range
F2 are given by

Fi = n o pΓiiϋEi x E2) Π R) and F2 = r2 o pr2(iEλ X E2) Π R) respectively.
By the relatedness of AYex and ^42^2 the measures r(β1\Fi) and β2\P2 are not
disjoint. Hence there exists a unique subset P2 C F2 up to /χ2-null set such- that
the measures r(β1\Fi)\P2 and β2\P2 are equivalent and the measures r(β1\Fί)\
(F2 - P2) and β2\{F2 - P2) are disjoint. Putting rx

l°r ~\P2) = Pλ C Ex and r2

ι

(p2) = P2 C E2, the projections px and p2, associated with Px and P2 respecti-
vely, are required ones.

In closing this section we state the following interpretation in the represent-
ation theory.

COROLLARY. Let φx and φ2 be two representations of an involutive
separble Banach algebra 23 over separable Hilbert spaces $x and ξ>2 respectively.
Let Ax = L^CΓj, μx) and A2 — L°°(Γ2, μ2) be smooth maximal abelian subalgebras
of 9>i(33)' = Mx and ^2( ;S)' = M2 respectively. Decompos eφx and φ2 into direct
integrals of irreducible representations over Tx and Γ2 with respect to Ax

and A2 as follows respectively,
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ΦI = I £i(Ύi) ^ I ( Ύ I ) , ξ>2 =

Ψ\ = / <Pι(yι)dμι(yι\ and <2>o = I ^2(72) dμ2(y2).

5oreZ subsets Pλ c Γ, awd P2 c Γ2 swc/i ί/iαί <?i(γi) φ ^2(72)
/or ei tfry (γi,γ2) ^ C^i χ ZP2 and if P1 and P2 are non-negligible then for
each non-negligible subset St c Pt we have

μλiVj e Pjl <Pi(!Yι) = φλΊϊ) for some γt > 5t}) > 0

ij = 1,2, iΦj. Bedides if pι and p2 are the projections of Ax and A2

associated with Px and P2f then φψ and φψ are quasi-equivalent^. Hence if
φx and φ2 are disjoint, then μι(Px) = μ2{P2) = 0.

P R O O F . Put

β = ^ i θ & φ = φ i θ φ 2 and A = Ax θ A2 = Lr<px 0 Γ2, μλ 0 μ2).

Then A C Mi @ M2 C <p(J&)' = M and 4̂ becomes a maximal abelian subalgebra
of M. Let £x and e2 be the projections of ξ> onto ξ)ι and ^ 2 respectively. Then
ex and ^2 belong to A. Application of Theorem 3.3 and 3.4 to M, Aex and Ae2

yields our mention.

REMARK. Unfortunately φi1'^ and φ{

2 "
Λ ) need not be disjoint. Indeed, if

eλ — pi ^ e2 — p2 in M then φi1^0 and φi1'^ are unitarily equivalent. Such
case often occurs if it/ is of continuous type. For instance, let A be a simple
maximal abelian subalgebra of M and let e be a projection of 4̂ such e ~~ I — e.
Then <pe and <p(/~e) are unitarily equivalent, though the decompositions of φe

and φiτ~e) with respect to ^ and A(I — e) has no common component.

4. Simple maximal abelian subalgebras and completely rough maximal
abelian subalgebras. In [3] Dixmier introduced the notions of regularity,
semi-regularity and singularity for the maximal abelian subalgebra of factor.
This section is devoted to the study of the relation between these algebraic
properties and rather analytic properties : simplicity and complete roughness,
of maximal subalgebras. First we shall slightly generalize the notion defined by
Dixmier.

DEFINITION 4.1. Let M be a von Neumann algebra, Z its center and A
a maximal abelian subalgebra. Let P be the von Neumann subalgebra of M
generated by all unitaries of M safisfying the condition uAu'1 = A. We call A
regular, semi-regular or singular according to P = M, PπM=Z or P = A.

5) For a representation φ of <& and a projection e of φ{^), φe is the representation of
to e ϋ defined by φe{x)ξ = $»(a?)e! for every ξ £ eϋ and xζ<&.
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THEOREM 4.1. A simple maximal abelian subalgebra is singular.

PROOF. Suppose that a maximal abelian subalgebra A = L°°(Γ, μ) of a von
Neumann algebra M is not singular. Then there exists a unitary u of M such
that uAu~ι = A and u φ A. By the maximality of A, u does not commute with
some element of A, so that u induces a nontrivial automorphism θ of A. Hence
the associated mapping Θ of Γ onto Γ is not trivial, that is, there exists a
Borel set E such that μ(E) > 0 and Θ(γ) 4= γ for every y £ E. By Theorem 1. 2
we have dtM'ϊ'φ (γ, Θ(γ)) for almost every γ £ E9 so that 31*-2'φ (γ,γ') does not
imply γ = y. Hence A is not simple.

THEOREM 4. 2. / / there exists a semi-regular smooth maximal abelian
subalgebra in a von Neumann algebra M, then M is of type I.

PROOF. Let A = L°°(Γ, μ). Let G be a countable group of unitaries satisfying
the condition uAu~ι — A which generates P. The existence of such group is
guaranteed by the separability condition for M. By the countability of G we
may assume that the associated automorphism Su in (Γ, μ) is defined over the
whole space Γ for all u £ G by elimination of some null Borel set from Γ.

Replacing the measure μ with an equivalent finite one, we assume that μ
is a finite measure. We shall use the notations in the proof of 2° of Theorem 3. 2.
As in the proof of Theorem 3. 2, we decompose μ over the measure space

(Γ,μ) as follows; μ = / μ^dβiΎ) and μ9 is concentrated in r"1 (7) for almost

every γ. Putting

£00 = A Φ(Ύ) dμ\y) and x(y) =
•Ί -»(7) Jr-H

for each :r € SI, we have

for some γ € r"J(7) and

for each J: ^ Si as in the proof of Theorem 3. 2. Since L̂ is maximal abelian
in iMΓ, {x(y) \x^%] acts irreducibly on §(γ) for almost every γ £ Γ, so that
{̂ c(γ): x € SI] generates a factor of type I on ξ)(γ). The associated diagonal
algebra in the new decomposition of ξ> becomes A~ L°°(T,μ\ On the other
hand, ΘM, u £ G, transforms each equivalence class onto itself, so that every
element of A commutes with u £ G. Hence we have A = Z, since P' Π M' = 2Γ.
Therefore the new decomposition of § induces the central decomposition M'

= f AΓC?) rf/SC?) of M; Since J f (*?) is generated by {x(Ύ) : ̂  € SQ, M\7) is of
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type I. Hence M is of type I by [2: Chap. II, § 3 Prop. 3], so that M is of
type I. This completes the proof.

COROLLARY. Every semi-regular maximal abelian subalgebra A of a
von Neumann algebra M of continuous type is completely rough.

PROOF. Let A — L°°{T, μ). Suppose that there exists a non-zero projection
e of A such that Ae is a smooth maximal abelian subalgebra of eMe. Let E
be the Borel subset of Γ associated with e. Then we have Ae = L°°(£, μ).
Denote $ = 91*3'φ and die = W**>**'*° in Γ and E respectively. By Lemma 2.1
there exists a Borel subset S c E which has one and only one element in
common with each 9ΐe-equivalence class, eliminating a null set.

Now let G and {ΘM: u € G} be the groups of unitaries of M and of
transformations in (Γ, μ) defined in the proof of Theorem 4.2 respectively.

Putting U {®UE; u e G} = Z, the projection z of A associated with Z commutes
with every u £ G. Hence z is a non-zero central projection. Since 9ΐe is the
restriction of 9Ϊ to E, S has one and only one element in common with each
^^equivalence class in Z where 9ΐ* means 3fffiiSι*'φ*. Hence Az is a smooth
maximal abelian subalgebra of Mz by Lemma 2.1. Moreover the semi-regularity
of A yields the semi-regularity of Az in Mz. An application of Theorem 4. 2.
to Az and Mz yields our mention.

THEOREM 4. 3. A completely rough maximal abelian subalgebra and a
smooth one are unrelated.

PROOF. Let Ax = L°° (Γ1,μι) be a completely rough maximal abelian
subalgebra of a von Neumann algebra M and A2 = L°°(Γ2, μ2) a smooth one of
M. Put m = «*#£•*•,»! = SP S;*1, and % = SI***. Suppose that Λ and 4 2

are related. Let R be the graph of 9ϊ in Γx x Γ2. Put Eλ = prx{R) and £ 2 = ^ 2
(Λ). By Theorem 1. 3, i^ and E2 are analytic subsets of Γx and Γ2 respectively.
Eliminating a null set from Γ2, we may assume that Γ2 is a standard Borel
space, so that E2 = r2(E2) is an analytic subset of Γ"2. Since 9ϊ(Yi,y2)> ^ICΎIJΎI)

and $2(72,72) imply 9t(γί, γ2), /(ΎO = r2 o ̂ ( {γ i } x Γ2) ίl ί ) defines a mapping
of £χ into Γ*2 whose range is E2. For each Borel set S2 c Γ2, f~\S2) = prx

({Γi x Γa" 1^)} Π 2?) is an analytic subset of Eλ. Since f'λ(β^) and / - 1 ( C ^ )
are analytic and complementary subsets of Eu f~\S2) is a relatively Borel subset
of £χ. Hence / is a Borel mapping of Eλ into T2. The measures /(/^O and /£2

are not disjoint by the relatedness of Ax and A2, so that there exists a Borel
subset F2 c f 2 contained in E2 such that /(μΊ) | F2 and /621F2 are equivalent.
Putting Fλ =/~ 1 (F 2 ), F x is a relatively Borel subset of El9 so that / defines a
Borel mapping from the analytic Borel space Fx onto the standard one F2.
Besides, for each r 2 £ F2, f~\r2) becomes a 9Vequivalence class in Fl9 so that
the mapping φ defined by ^(^1) =f(rι~~ι(y)) becomes a well defined, one-to-one
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Borel mapping of Fι/'^\ι = F1 onto F 2 because of T V ^ " 1 ^ ) = /~1(S2) for
each Borel set S2 C F2, where rλ means the canonical mapping of Fx onto Fx.
For each Borel set Sλ c Fu φ{Sλ) =f(rl~

l(S1)) is analytic in F2 and φ(C*SΊ) a nd
ΦOSΊ) are complementary subsets of F2, so that φ becomes a Borel isomorphism
of Fj onto F2. Hence F 2 is a standard Borel space. Since Fx is analytic, there
exists a relatively Borel null set Nλ c i<\ such that i^ — JVΊ is standard, that
is, Fλ — Ni is a Borel subset of Γ l 5 (Fi — N^/fRx = (Fx — JVj) is analytic since
(Fx — iVO ^ r^Fi — Nι) c F x . Hence if f{ is the projection of Ax associated
with Fx — iVithen Aλfλ becomes smooth in f1Mf1, but fx does not vanish by the
definitions of Fτ and F 2 . This contradicts to the complete roughness of Ax in M.

Combining Corollary of Theorem 4.2 and Theorem 4. 3 we assert the
following

COROLLARY. In the von Neumann algebra of continuous type, a smooth
maximal abelian subalgebra and a semi-regular one are unrelated.

THEOREM 4. 4. A smooth singular maximal abelian subalgebra is simple.

PROOF. Let A be a smooth singular maximal abelian subalgebra of a von
Neumann algebra M. Let {pn}n=o,ι,...,oo be the family of projections appeared in
Theorem 3.2. If pn Φ 0 for some n Φ 1, it is clear that there exists a unitary
un of pnMpn such that un A pnun~

ι = Apn and un φ Apn. Putting u = un

+ (/— pn), then u Au~ι = A, u z M and u φ A. Hence A is not singular.
Therefore we have pn = 0 for each n Φ 1, which implies the simplicity of A.

Throughout the discussion of § 3 and § 4 the following natural questions arise
for us : Are there algebraic characterizations of simple, smooth or completely
rough maximal abelian subalgebra? In particular, is any singular maximal
abelian subalgebra simple? Indeed, as shown in the next §, every already known
example of singular maximal abelian subalgebra is simple.

5. Examples. In [8, Chap. Ill § 5] Mackey gave an example of unrelated
pair of maximal abelian subalgebras in a factor of type IIj which consists of
simple one and regular. Besides his arguments show that the example of
singular maximal abelian subalgebra of hyperfinite factor constructed by Dixmier
[ 3 ] is simple. So in this section we shall give an example of simple max-
imal abelian subalgebra in a factor of type III by showing the example of
singular one in a factor of type III constructed by Pukanszky [12] to be simple.

Let G be an arbitrary countably infinite discrete abelian group. For each
element g € G we associate the cyclic group Ωg = {0,1} of order 2. By ί l we
denote the product compact group of {Ωg; g £ G}. Δ is the subgroup of Ω
composed of the element a such that oί(g) = 0 except for a finite member of
#'s. For 0 <p^l/2 we define the measure μg in Ωg by μg ({0}) = p and
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= 1 — p and the measure μ in Ω by μ = U μg. For g0 £ G we define

an automorphism of Ω by ω 6 ^ ) = ω{gQg). Putting © = G X Δ, we define the

product in ® by (gu aγ) (g2, ct2) — (<7i#2> #ί2 Ί- #2) We canonically identify G

and Δ with G X {0} and {e} X Δ respectively. Next we define the action of ©

on Ω by ω s = ωg -i- a for s = ga £ ©. Then the measure /x becomes quasi-

invariant under the action of © by [12: p. 144]. Putting --Jrs (ω) = /o(ω, 5), where

yu β means the measure defined by μs(E) = μ(Es), we have p(ω, got) = ρ(ωg,a) for
g £ G and tf £ Δ.

Let § Δ = L2(ίl x Δ, /x x δ), where 8 is the discrete measure in Δ. Let Γ
be the dual group of G with Hear measure v. For each γ <= Γ and £ € § Δ ,
defining

^) 1 / 2 f (ω0 + *, £ ' + Λ) for g € G and tf € Δ,

(ω, /3) for α € L-(Ω, /.),

(^Δ(^)I) (ω, /3) = £(ω, /9 - α) for a

and

/β) = α(ω - β)ξ{ω, β) for α € L~(ί2, ̂ ),

we get bounded operators #Δ(s), ZΔ(α), ^ Δ ( oi ) and mλ(a) on § Δ for 5 ^ ©,

α € Δ and a £ L~(ί2, μ). Besides uΎ

A(s) becomes a strongly continuous operator
valued function over Γ and ZΔ(α) becomes a constant function, so that we can
define operators ϋ(s) and l(a) on § = § Δ (g) L2(Γ, 1;) by

= / ul(s)dv(y) and Z(α) = /
JT JΓ

Of course, we have l(a) = ZΔ(α) ® /.
Let Ϊ7γ be the unitary representation of © induced by the one-dimensional

representation γ of the subgroup G and let u be the unitary representation of
© on L\ίl, μ) defined by

(u(s)ξ)(ω) = p(fi),ίff(β)5) for s e © and ξ € L2(ί2, /.).

Then we have, for 5 € © and a € L~(ίl, /A),

wlO) = ι<5) ® £/70) and ZΔ(α) = α <g> / on ξ)Δ = L2(O, /x) ® Z2(Δ).

Since
© = «Δ <g> L2(Γ, 1;)= § Δ (g) l\G) = L2(Ω, yu ) ® Z2(@)

under the natural identification and the right regular representation R of © is

Γ®

decomposed into the direct integral R = / U7(s) dv (γ) by [7 : Cor. of Theorem
J Γ
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10.1], we have

u{s) = u(s) ® R(s) and l{a) = a ® I on ξ> = L2(il/*) <g> /2(®),
for s € © and <z e L°°(ίl, μ). Since the diagonal algebra in the decomposition

i? = / UΎdv(y)is generated by the image of G under the left regular representation
JΓ

r Θ

of ©, the diagonal algebra A in the decomposition u(s) = I ui(s) dv(y) is

generated by the image of G under the respresentation v of © defined by

(.v(so)ξ)(ω, s) = ξ{ω, Soλs) for s0, s £ ®

and ξ € ξ) = L2(Ω x ®, /x x δ). Let MΛ be the von Neumann algebra generated
by {vA(a\ mA(a): a z Δ, a € L°°(ίl,/x).} Then for every Ύ e Γ M(α), β(α) :
^ € Δ and α e L°°(ί2,/x)} generates Mi. Let M be the von Neumann algebra
acting on § generated by {v(s)9 m(a): s e © and α € L°°(ίl, /A)} , where m(α)
is defined by {m(ά)ξ)(ω,s) = α(ω5"1)f(ω^) for ξ e § = L2(ίl x ®, /x X δ). Then
M and MΔ becomes a factor of type II or type III according to the choice of
p and A is a singular maximal abelian subalgebra of M by [12]. We shall
show that A is simple.

Let 81 be the C*-subalgebra of M' generated by {M(S), l(a): s € © and
α e C(Ω)}. Then SI is a uniformly separable weakly dense subalgebra of M
by [12]. For Ίλ and Ύ2 of Γ suppose that there exists a bounded operator .r on
ξ)^such that

uϋ(s)x = *w2(s) and Zl2(α)x = ^ ( α )

for every 5 ^ © and for every a € C(O). Then j ; belongs to Ml, so that x can

be expressed by x = ^ mΔ(xa)x(a) in the strong operator topology. For each

g ζ'G we have

and

= γ2(«7)ΣΔ

for every ξ € ξ)Δ. Hence we have

γί\9) 2—ι Xβ\<& — OL ) ς \ ω ,<X
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tor every ξ £ § Δ . Putting ξo(ω,a) = 1 if <2 = 05 = 0, if aφO we have

for every a £ Δ, g € G and for almost every ω € Ω. Hence

for every tf <= Δ, g £ G and for almost every ω € 12. It follows that

Γ Γ 2 Γ

Since X) Γ \xa(ω)\2dμ(ω) = (xx"A'ξ0,ξ0) < + °° and the set [ctg: g £ G] has
αe Δ Ω

infinitely many elements if a φ 0, we have .rα(ω) = 0 almost everywhere for
a Φ 0. Putting

(ω(flr)-l/2)α(er)

for a € Δ, {fα; Λ £ Δ) becomes a complete orthonormalized system of L2(ί2,
by [12 : Lemma 4]. Putting

Cα ='.= C ^OJ ?«) = I xo{ω)ξa{ω)dμ{ω),

we have

Γ Γ —i

c°a = ί ^ o ( ω ) | α ( ω ) dμ(ω)= I X0(ω) ξa(ω° x) dμ{ω)
Ω Ω

dμ(ω)= [ ^S^ xo{ω) ξa{ω) dμ {

which implies \d\ = \ca\. Hence ca = 0 if a Φ 0. This means that xo(ω) is a
constant. That is, x becomes a scalar. Therefore, if 7X and Ύ2 are different
characters of G then r = 0. If Ίx = 72, say 7, then {wl(s) and ZJ (a) (a) : 5 € ©
and <z ̂  C (ίl)}, which generates the 7-component of 81, acts irreducibly on
§ Δ Hence 3ί3Λ2'φ (71? 72) implies V1 = 72 for 7b72 € Γ, that is, i is a simple
maximal abelian subalgebra of M, where Φ means the set of representations
of δt defined by its 7's-compoments.

After all, we get the following
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THEOREM 5.1. Hyper finite factor has a simple maximal abelian sub algebra
and a completely rough one simultaneously. There exists a factor of type III
which has a simple maximal abelian subalgebra and a completely rough one
simultaneously.
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