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1. Introduction. The purpose of this paper is to give the detailed proof
of the theorem which is announced in my previous paper [2], that is, to
show that Marcinkiewicz's theorem on the interpolation of operators (e.g.see
A.Zygmund [6; Chap. XII]) holds good for Hardy class Hp(p ^ 1).

//p-class (p > 0) is the space of all functions analytic in the unit circle
such that

is finite. For p^i 1 this class is equivalent to the space of functions in Lp( — TΓ, TΓ)
with the ordinary L^-norm such that their Fourier expansion is power series
type, that is,

Σ *»*""• (l l)
7ϊ=0

Our method of proof depends on the real one and can be applied to some
w-dimensional analogues of Hp-class.

Sections 2 and 3 contain the case of one variable Hp-space.
Sections 4 and 5 treat ^-dimensional analogues of ίf^-space.
Section 6 contains some applications to the theorems on Fourier series.

2. Two Lemmas. We begin by defining some notations. Let
/ € Lp( — 7Γ, f7r)(p> 1) be periodic with period 2τr and its Fourier expansion be

then its conjugate function/(x) is defined by

or equivalentely
oo

k ) ^ " " . (2.2)

*)The author thanks Professors G. Sunouchi and S. Yano for their encouragement and
valuable suggestions.
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Therefore if we put

Kf=(f+ifj/2 (2.3)
for f€ Lp(— 7r,7r) (p> 1), then by expressions (1.1) and (2.2), we have Kfz Hp

and in particular if fz Hp (p^ 1), then we have Kf = / .
Our first lemma is a modification of that of L.Hormander's [1; p. 115].

LEMMA 1. Let f e Lp ( - TΓ, TΓ) (oo > p ^ l), p ^ r ^ 1 αrc^ teί ws Λ?/wie α0 by

/or every a > Λ0, ίΛ^ following decomposition of f is possible
oo

( i ) f = u + u, u = v + w, w = Σ w*>

(ii) u =f, if \f\ < α αn<i w = 0 elswhere,

(iii) 1*̂ (̂ )1 ^2 1 / r α /or α.e. x in {— 7r,7r),

(iv) ί | I ; ( J : ) | S ^ ^ Γ \u (x)\sdx for each s, 1 ^ s ^ p,

(v) Σ[ \wk(x)\sdx^2s+1 f \u{x)\sdx for each s,l^s^p,
k=l J-π J-7C

(vi) there exists a sequence {Ik} of disjoint intervals such that the support
of Wjc is contained in Ik and

^^r f \u\x)Ydx,

r

(vii) wk(x) dx = 0, k = 1, 2, 3,

PROOF. We define u by (ii) and put u = / — u. Now we decompose u.
If we note that a > a09 by the definition of a0 we have

Z Λ ° ^-πr Λ J-7C

Let us divide the interval (— τr,π) into the four intervals of same length. The
mean value of \u(x)\r over every intervals is less than ar by (2.5). Divide
each interval into two equal intervals and let 7 n, 712, Iί3, ... be those intervals
over which the mean of \u\r is not 5maller than ar. We have

ar\Iιk\^f \u{x)\rdx^2ar\Iιk\. (2.6)

For if Iίk is obtained by subdivision of /', by our construction
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cϊ\Ilk\ ̂  f \u\x)Vdx^ ί \uXx)\rdx^a'\r\=2a'\lιk\.
Jiik Jr

We set

77O) = 7 7 - r I u(y) dy for x in 7lifc, (2.7)

tt'Or) - v(x) for α: in 7lJb

Λ , , ( 2 8 )
0 els where,

* = 1, 2, 3 , . . . .

Next we make a new subdivision of the intervals which are not in {7lfc}.
Denoting by I2k the intervals over which the mean value of \u\ is not smaller
than ar, we extend the definition (2.7) and (2.8) to those intervals. Continuiting
in this way, we get the sequences of functions TX 'S and intervals Γs for

simplicity we write them by {wk} and {Ik}. If we write O = \J Ik and define

v(x) = u'(x). for α: in (— TΓ, TΓ) — O,

then it is clear that (i), (vi) and (vii) hold. By Holder's inequality with
exponents s and 5', 1/s + 1/s = 1, we have

(2.8)

for 3; in //t. Thus we have

f \v(x)\'dx = ( { +

^ Γ \u (x)\°dx + Σ, [ \u(y)\sdy= f \u(y)\ dy,
^CO k=l Jrk J-π

where CO = (— TΓ, 7Γ) — O and

f | ^ f c ( α : ) | s ^ ^ 2 s I Γ |M'(Λ:)| Λ C + Γ|t<Λ:)| Λr:}

^ 2s | | I« (Λ)\'dx + f I« '(y)I s φ J = 2S + 1 J I t t'(y)| sdy,

using (2.8) again. Therefore (iv) and (v) are proved. To prove (iii) we use
(2.8) with s = r. If x belongs to some interval Ik, we have
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by (2.6). On the other hand if x does not belong to any intervals Ik, there are
arbitrarily small intervals containing x such that

j ~ f \u(x)\rdx^ar,

by our choice of Ik. Hence \v{ρc)\ = \u{x)\ 5g a for a.e. x in CO.
Therefore our proof is completed.

LEMMA 2. With the notations of (2.3) and Lemma 1, we have

JZ f \Kwk\dx^A f \u\dx, (2.9)

where E is the set obtained by expanding each Ik concentrically three times
and CE = (— TΓ, π) — E and A is some constant1^ not depending on f and
a > a0.

PROOF. This lemma is known, but for the sake of completeness we show it.
Let us fix k and put Ik = I = (α — h, a + h) and Γk = I*= (a — 3h, a-\-

3h) Π (— TΓ, 7r), then we have

[ + \ \ \wk\dx.f [
JOE Δ Jci*

Using (vii) in Lemma 1, we have

I

tan Or-30/2 tan {x - α)/2

tan (Λ: - y)/2 tan (Λ - a) /2

1 1
tan(α: - y)/2 tan α:/2

dx

ra)\dy J
(-7C,7ΐ)-(-3h,3h)

sin y/2
- y)/2) sinr/2

dx.

Noting that 0 < h ̂  τr/2 by our construction, it is easily verified that the inner
integral does not exceed

Js
dx<A\ \y\ ^h.

(α; - y)x

Hence we get f | w^ | J^c ̂  (A"/2) | | ̂  | Jo: and

1) A, A', A", are some constants and may be different in each occasion.
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f IKwkIdx^l/2 + A"/2)f \wk\dx.

Summing up over k and using (v) of Lemma 1 with 5 = 1, we get

Σ, ί \Kwk\dx ^(1/2 +A"/2)Σ f \wk\dx
fc=l JCE k=l J-7C

%

^ ( 1 + A")Γ \u\dx,

which prove the lemma.

3. Main Theorem. An operator T which maps into the scalar valued

functions, is called quasi-linear if T (f+g) is uniquely denned whenever Tf

and Tg are defined, and if

\T{f+g)\^κ(\Tf\ + \Tg\), (3.1)

where K is a constant independent on f and g.

THEOREM 1. Suppose that a quasi-linear operator T of HPi to μ-measurable

functions satisfies

μ({s:\(7»(s)\ > t]y> si ^ M l Λ (3.2)

for all φ in HPι (i — 0, 1) and for all t > 0, where 1 fg pt 5i q% < oo (i = 0, 1),

PQ ̂  Pi and q^Φ qx. Let us put

l/p = (1 - θ)/p0 + θ/p, and 1/ςr = (1 - 0)/qo + Θ/Ql (0 < θ < 1). (3.3)

Then T can be extended to an operator on Hp and satisfies

\\TKf\\q ^A(κ + VfMl'MlWfW,

for all f in Lp(— 7r, 7r), where A depends only on pQ, pu q0, qλ and θ, and

A" = O[(p - iyiq - 9 o ) " ' + ( 9 l - q)'1]. (3.4)

PROOF. First we give the following remarks (cf. [6; vol.2, p.112]). If / is

a non-negative μ-measurable function and p ^ l , we have

=- f ypdμ({s:f(s)>y}) = pj^ y^μ({s: f'(s) > y}) dy

by the definition of Lebesgue-Stieltjes integral and integration by parts. There-

fore if we denote μ({s: 1/(5)] >3>}) by μ(\f\ > y), then

00

\\TKf\\l = q{ y"-'μ{\TKf\ >y) dy.
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Next as is easily verified, we have

μ(\T(f+g+h)\ >3*K

^μ(\Tf\ >y) + μ(\Tg\ >y)+μ(\Th\ >y), (3.6)

since \T(f + g + h)\ ̂ <« + l)(|7J| + \Tg\ + \Th\).

From now we use the notations of Lemma 1: we put r — (p + l)/2.
We consider separately the four cases.

Case ( i ) . 1 = ρ0 < pu q0 < qγ. Let /<= Lp(— 7r,7r), then by (3.5) we have

\\TKf\\l = ί + I )y^μ(\TKf\ >y)dy

/

3κ(κ + l) y0

t?-^(\TKf\>t)dt
CO

+ g(3tf(* + l))α f y-V(|TK/|>3/</. + liy)£ίy.

We put

a = (y/Bf and a0 = (yo/B)\ (3.7)

where λ and JS are constants determined later. We assume λ > 0. Since a > a0

if y >yo> we can decompose/ into u,v and w by Lemma 1.

Hence using (3.6) we have
3κ(κ+l)ϊί0

\\TKf\\l ̂ g [ t"~>( I TKf\ >t) dt
Jo

>y)dy + [ ya-^(\TKv\ >y)dy

= qlx + g( 3^(^ + 1))Q {72 + 73 + 74], say.

Now we estimate /i,/2,/3 and 74.

By the definition of y0 and Holder's inequality with exponents p/r and
/>/(̂ > — r), we have

j ( | f j (3.8)
By (3.2), we have

κ +l)2/o
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By Holder's inequality and M.Riesz' inequality \\Kf\\p^ Ap\\f\\p, Ap =
O{(p— I)" 1}, p> 1, the last expression does not exceed

^ M? AQ; WKffv {3(* + m
Hence we get

3(K + 1 ) 2 ]

By (3.2) and M.Riesz' inequality, we get
oo

^ MΓ Al\ f y™-1 [ I u(x) I »'dx I φ .
4 U )

(I r \ l/r I \ l/r

Applying Minkowski's inequality] Γ I h(x,y)dx dy\ 1=k \\ \Xh(x&)\τdy\ dx
(JF\ Jjz j JE\^F i

(r ^ 1), the last integral does not exceed

Γ Γ 7 ( Γ°° 1, / M , ) ft/*"]*/*

Pι/Qi-Λi/Pi

]
= ^ ^ / I/I ̂ (̂α-αOPx/.A] J ^ (3.10)

Qi y [ J ) '
Using (3.2) and M.Riesz' inequality again we have

( ) Qι/Pι

Iz 5S Mϊ A\x f y-*- 1 J JI v(x) I »<
Since |t;(α:)|2Jl g 2 ( f t - 1 ) / f B - ^ - V ( P r l ) 1^)1 by (iii) of Lemma 1, the last
integral is bounded by

ί r
J j \
IJ

Applying (iv) of Lemma 1 with 5 = 1 and Minkowski's inequality, the above
integral does not exceed

j y-«ι 1 + [ Pι x^i PI] j j I # (,r) I α.£ [• «y

r Γ ( Γ°° ) Λ/a-jβi/ft
< 1 ^ 1 yr-βi-i+[(ft-DffiVΛ] | ̂ ' ( x ) | <&/ft rfy

LJ (4 ) J
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B l f l
Vλ Pl/Ql

βQ-Qi+\.{Q-Qι)Pι/^Qi\ /•

Hence we get

/ < 2cfl(Pl""1)/rA - p, ^ /O 1 1 \

By our hypotheses (3.2) and />„ = 1, we have

^ 2β» Λ4? j f y-*"1 ( f I Kw I <ir J'ίί> + Γ y"-"''1 If \Kw\dx\ dy
(Λ. \JE I Jy, VCE I

(3-12)

say, where £ is the set defined in Lemma 2.
For J 2, we have

2 rg A / y - * - ' | J |M'

^ A ijdxU y"""-11 w'(x) I "'dy ί|

, , Γ r f Γwι'/;ι

^ A /Ac j j /••-'[/(a:)|*<ίy
1/QO - . <7o

ί dxl , (3.13)

using Lemma 2 for the first inequality and Minkowski's inequality for the
second. On the other hand, by Holder's inequality, we get

Ji^f yq-Q°-ι\E\««ίr'U\Kw\rdxV dy,

where 1/r + 1/r' = 1. Applying (vi) of Lemma 1 for \E\ and M.Riesz'
inequality for the inner integral, we have

J j ^ 3 Ar Bλ(br/1" / y^o-l-[<7cλr/rΊ I / j ̂  | r d χ \ \\\wγdχ\ dy.

By (iv) of Lemma 1 with s = r, above integral is not greater than

r ί r
g(»"+l)9o I yQ-Qo-l-lQcχr/r'] J J \u'yd.
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If we assume that

q - qϋ - [Λqoφ'] > 0, (3.14)

then by the same way as in estimating J 2 , the integral does not exceed

r r ί r°° ) Q o Ί 1 / < Z O

I \dx J y^-ι-^λr/rΊ\u(x)\^r dy[ I

j Λ,Q-Qo-l-[Qoλr/r'] I *.'(~Λ\ QoT J,

Jo

Γ"

Hence we get

J

Therefore we have

74 < 2««Mq: ~ Γ. r 7 Ί + 4 L ^ — I f I/I <™^+ydx . (3.15)
\ g-^-[λgr/r] q-q)\JJ ) J

< 39o/^2(r + 1)g° r J j j f \ KQ-QoVQoM + i ^ I

'~ q-qo-ΐλqor/r]\J u j

Now if we put

q — q0 — [Kqr/r] = (q — qo)/2 > 0 which is the assumption (3.14) and \f\ in
Iu I2, /3 and 74 contain the same power p. Next we set

B =

and select p,σ and T SO that the powers of Mo, Mx and \\f\\p in 7's are same,
that is, we put

P = - ^o/(gi ~ go), o"= - W(?o - tfi) and r = {pγq - pqλ)/'px(q - qx).

Then we obtain by (3.9), (3.10), (3.11) and (3.15)

\\TKf\\Q^ (ιcJrlΎQAM {ι-θ)QMθM — 1 - I - A -

where we used that Ar, Ap =O (p—1) and A' is a constant depending only
on p09 pl9 q0 and qγ.

Therefore we get Theorem in this case.

Case (ii). 1 = p0 <. pl7 qλ < g o We can prove this case by the same way.
Since λ < 0 in this case, a > a0 if y <y0, therefore we put f o r / in Lp(— π, π)
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/ Γ°° 3κζK + l)l/o \

\\TKf\\l = ? I + / y-V( I TKf\ > y) dy
\JMκ+i)y0 Jo I

\f
*«-yIτκ/\ >t)dt

yq-ιμ(\TKu\>y)dy + jy«-*μ(\TKv\>y)dy + ^ y^μ{\TKw\> y)dy

= qlx + <7(3tf(* + 1))*(J2 + 73 + 74),

say. 7i, 72,73 and 74 can be estimated by the same way as previous case but we

must replace the domains of integrals (0,β|/ | 1 / λ ), and ( β | / | 1 / λ , oo) by ( 5 | / | l A ,

oo) and (0, JB|/|1/λ) respectively, and in the concluding expressions (3.9), (3.10),

(3.11) and (3.15) the sign of the denominators will be changed. Further the

inequality (3.8) will be replaced by

Case (iii). 1 < p0 < pί9 qo<qι- In this case our theorem degenerates to the

special case of that of Marcinkiewicz's.

For every a > 0, we put

/ = u + u and a = (y/Bf,

where u =f if \f\ < a and u = 0 otherwise, and λ, B are the same constants

as in case (i). (3.5) and similar inequality to (3.6) show that

\\TKf\\l = q f y«->μ(\TKf\ >y)dy

- (2κ)"q f y"-ιμ(\TKf\ > 2κy)dy

j J y-y | τκu \ > y) dy + jf y-y | TKu \>y)dy\

/i + /,), (3.16)

say. By the assumption (3.2) and M.Riesz' inequality, we have

^AlMΐ' f y"-^\\u\\ldy.
Jo

Remarking that λ > 0 and arguing in the same way as (3.10), we get
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\ <hlV\

^ f P+1(Q-P)p/Qλl 1

For L we have

J

= M?°Λ?0 [ Jdx\ J y-"'-11 u\x) I *ίίy J
/

y ^ L

By (3.16), (3.17) and (3.18), we get the theorem.

Case (iv). 1 < p0 < pu qx < q0. We can prove this case by the same way as
case (iii). But since λ < 0, the integration domains (0, B\f\ι/λ) and (5|/|1 / λ,oo)
in (3.17) and (3.18) must be interchanged.

4. Several Variables Case. We consider the n-dimensional analogue of
§§2 and 3. We use the following notations; Euclidean space of w-dimension is
denoted by En9 its points Or l rr2, ;xn), (3Ί,;y2, %yn), etc. by X, Y etc. and the
element of volume dxλdx2 dxn by dX.

Now we define an analogue of Hp-class.
We put

7 f L(Y)f(X-Y)dY,

where L(Y) is Calderόn-Zygmund type kernel, that is, L(Y) is locally integrable
except the origin and satisfies the inequality

JL I LiX -Y)- L(X) I dX ^ A' (4.1)
J\X\>A\T\

for all Y in En and there exists q > 1 such that
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for all / in Lq(En).

We define vector ffi/ by

and φp(p^ 1) as the space of all vectors such thatfi/ belongs to Lp(En). Then

we have

\\®fϊp^Ap\\f\\p for a l l / in Lp(En\ (4.2)

where p> 1 and Ap = O K p - l ) " 1 } (cf.J.Schwartz [3]).

Specially the case L(X) = X/cn\X\n+1 was studied in detail by E.M.Stein-

G.Weiss [ 5 ] , where cn = 7r(ϊI+1)/2/Γ(r(τι + l)/2).

Next two lemmas correspond to Lemmas 1 and 2, respectively.

LEMMA 3. Let fz Lp(En) (oo> p^l) and p^rT^l, then for each

a > 0 the following decomposition of f is possible

( i ) f = u+ u, u = v + w, τv = Σ w* >

(ii) u =f, if \f\ < a and u = 0 elswhere,

(iii) I v(X) I ̂  2w/rα /or α. ̂ . X in En,

(iv) Γ Iv(X)\sdX^ [ Iα'(X)IsdX for each s,l^s^p,

(v) Σ[ \wk(X)\sdX^2s+1 f \u (X)\sdX for each s,l^s^p,

(vi) there exists a sequence [Ik] of disjoint cubes such that the support of wk

is contained in Ik and

(vii) f wk{X)dX = 0, k = 1, 2, 3, .

PR OOF. We define u by (ii) and put u =f— u. Divide the space En into

a mesh of cubes of volume>α~ r / \u\rdX. Next divide each cube into 2n equal

cubes and let In, I12, /i3, be those cubes over which the mean value of \u\r

is not smaller than ar. Then we have the analogous inequality to (2.6) and the

rest of arguments proceeds as in Lemma 1.

The following lemma will be proved by the same way as in Lemma 2, if

we note the assumption (4.1).
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LEMMA 4. With the notations of Lemma 3, we have

f) f \®zυk\dX^A f \u\dX,
fc^i JOE JEV

where E is the set obtained by expanding each Ik concentrically A times and
CE= En- E.

5. n-dimensional Version of Theorem 1.

THEOREM 2. Suppose that a quasi-linear operator T of $QPt to
μ-measurable functions satisfies (3.1) and suppose that we have

μ{s:\(TF)(s)\ > t}1"* rg ^f \\F\\Pi (5.1)

for all F in ξ)Pi (z = 0,1) and t > 0, where 1 ^ pi ^ qi <oo (j = 0,1), p0 Φ pl9

q0 =^ qγ. Let us define p and q by (3.1).
Then T can be extended to an operator on Lp(En) and satisfies

IIWII, Ξi M« + l)Ml~βM\\\f H, (5.2)

for all f in Lp(En), where A is a constant independent on f and of the order
of (3.4).

PROOF. Our proof proceeds as Theorem 1. We consider separately
four cases too :

( i ) 1 = po<Pι, qo<qi, (ϋ) 1 = po < Pi, Qi < Qo,
(iii) 1 < pQ < pl9 q0 < qu (iv) 1 < p0 < pu qγ < q0.

But since the proofs of Cases (iii) and (iv) are not different from the
corresponding cases of Theorem 1, we treat only Cases (i) and (ii).

We use the notations of Lemmas 3 and 4.

Case (i). 1 = p0 < pί9 q0 < q^ Let f e Lp{En). Using (3.5) replaced by and (3.6),
we have

^ q(3κ(κ + 1)Y I f y V( I T®u \>y)dy +

f y"-^{\Titv\>y)dy+ f y«-1 μ{\T&w\> y) dy
Jo Jo

+ I2 + /,), (5.3)

say. We put a = (y/B)λ where λ and B are same as before.

For Ix using the arguments of 72 of Case (i) in Theorem 1 but applying
Calderόn-Zygmund inequality (4.2), we have
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-> jj |«(X)|VXJ ^
ί " ) ft/ft-,.

[ y«-«-*\u\ »dy\ J

By (5.1), (4.2) and (iii) of Lemma 3, we get

Λ+[(ϊ_3,)ft/λ3i]
1

Qί/Pι

Lj [Jo ) J

Γ Λ ί Λ 2 ί l / | 1 / λ ) ft/ft

2 r z ( P l ~ 1 ) < 7 l / m B ~ λ ( P l ~ ι ) Q l / P ι fdX \ I y7-<7i-i+t( L
L J [Jo

" 9 - qx + [(A - l)9iλ/Al

For 73 we put as (3.12)

f
o

w|dXj dy+ I y"*"'(f IS

= 2"M 0

9 ' (J 1 + J 2), (5.6)

say, where JE is the set defined in Lemma 4. By the last lemma, we get

^A* f y- -ι
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^ A- [fdX Jjf" y-*-1u{X) \<-dyΓ^'

/ n ί A )i/βbΊd.

| J
A Qo TiQ-Qo

' ' I / I 1

By Holder's inequality and (vi) of Lemma 3, we have

JL ^ Γ y*- 1 I £ I */-' j f I ίfiu; I rdxY dy

^AQ/rΆQ

r

0BλQ°r/r' f y«-Q°-ι-^λr/r']\ί\u\rdxΓ J ϊ\w\rdxC dy,

where 1/r + 1/r' = 1. By virtue of (v) of Lemma 3,

^ Aq°'r> 2(r+1)i»/r AQr BM°r'r' Γ Γ J X j f yi-Λ-i-i^'/'Ί | U'(X) \ ^dyX' Ί

J ,/,/ Γ Λ ί Λ B | / | l A

^ A'0 7 1" 2"-+i)5»/r Aβ;β [ ta f y-*-i-toir^] i ω ' ( X ) i , 0 ^

- g 0 )

where A' and A" depend only on po,pi,qo and qλ.

Thus we obtain the estimation

(5.7)

(r-l)q0 {q-q0— [λgor/r]]

(5.8)

&" depending only on p% and qt (i = 0,1).
Therefore a proof of Case (i) is completed.

Case (ii). 1 = p0 < pu Qi < Qo- A proof of this case may proceed as above
case. But the domains of integrals (0, B\f\1/λ) and (B\f\1/λ, oo) in Ik

(k = 1, 2, 3) must be interchanged.

6. Some Applications. For the sake of convenience we restate the
examples of application of our theorem.
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Littlewood-Paley function g* is defined by

9*(β,φ) = Σ
where Sn(θ) and σn(θ) are n-th partial sum and (C, l)-mean of Fourier series of
φ in Hx respectively. E.M.Stein [ 4 ] proved that this operator is weak type
(1,1) for iϊi-class (on the other hand g* is not weak type (1,1) for L{(— TΓ, TΓ),
see [6, vol.11, p. 315]), and it is rather easily verified that g* is strong type (2, 2).
Therefore we get the well-known inequality applying Theorem 1

110*11, ̂  Ap\\f \\p for all / in L p ( - τr? TΓ) ,

where Ap = O{(p- 1)~2} and 2 ^ p> 1.

Another example is the operator (Tφ)(θ) = Sn^0\ where nifi) is any
integral valued measurable function. This operator T is strong type (1,1) for
Ht and strong type (2.2) for L2(-7r,τr) (see [6, Chap. XIII]), when dμ(θ)
= dθ/log(\n(θ)\ + 2) with the notation of Theorem 1. Since the factorization
of functions in Hi is possible by real methods (see e.g., W. Rudin Fourier
Analysis on Groups, Interscience, New York, 1962, p.205), our theorem gives
a real proof of Littlewood-Paley inequality

Γ SUP —l^Wl-—\dx<A ί \f(x)\pdx
Lπ ^ log (w + 2) ( = * J_„ ' J W 1 '

for all/* in Lp(— π,TΓ) ( 2 ^ ^ > > 1), where Ap is a constant.

CORRECTION : The estimation of the norm of T of the Theorem in the
previous paper, S. Igari [2] is incorrect, that is, {p—I)"1 in AQ must be replaced
by (/>-l)-*\
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