ON THE PARALLELISABILITY UNDER RIEMANNIAN METRICS OF DIRECTION FIELDS OVER 3-DIMENSIONAL MANIFOLDS, II

Shobin Kashiwabara

(Received July 12, 1963)

The present note is continued from the preceding paper [1]. The object is to prove Theorem 9, and to induce Theorem 10 that is the desired conclusion. First let us explain some terminologies, though they are already defined in [1] except few ones, so that the meaning of Theorems 9,10 can be immediately grasped. As for other terminologies and notations etc., see [1].

An S-manifold is a connected differentiable manifold over which a differentiable field of directions (oriented) is given. This field and each of its maximal integral curves are called the S-field and an S-orbit respectively of the S -manifold. That an S-manifold is S-diffeomorphic onto an S -manifold means that there exists a diffeomorphism preserving S-orbit. An $R S$-manifold is a connected complete differentiable Riemannian manifold over which a parallel field of directions is given. We shall sometimes regard it as an S-manifold whose S-field is the parallel field. The field of tangent vector subspaces orthogonal and complementary to the S-field is called the R-field and each of its maximal integral manifolds with the induced metric an R-orbit. An $R S$-torus is a locally Euclidean $R S$-manifold whose underlying manifold is a torus. The notation " x " means the operation of metric product.

Let E be the Euclidean 1 -space $\{t \mid-\infty<t<\infty\}$ and $d t$ denotes the infinitesimal distance. Let R be a 2 -dimensional connected complete differentiable Riemannian manifold. Then we define
A_{0}-manifold: $R S$-manifold $R \times E$ where each S-orbit is defined by (x, E) for fixed $x \in R$.

Let E^{\prime} be the part $\{t \mid 0 \leqq t<\infty\}$ of E. For a constant $L>0$ let [L] be the part $\{t \mid 0 \leqq t \leqq L\}$ of E. Let X be a 2 -dimensional $R S$-torus whose S orbits are all non-closed and let S_{X} be any one of its S-orbits. Then we define
A_{1}-manifold: $R S$-manifold $X \times E$ where each S-orbit is defined by (S_{x}, t) for fixed $t \in E$.
A_{2}-manifold: $R S$-manifold formed from $X \times[L]$ by identifying (x, L) with $(J(x), 0)$ for all $x \in X$, where J is an isometry of X leaving the S-field invariant. Each S-orbit is defined by $\left(S_{X}, t\right)$ for fixed $t \in[L]$.
A_{3}-manifold : $R S$-manifold formed from $X \times E^{\prime}$ by identifying ($x, 0$) with
$\left(J_{0}(x), 0\right)$ for all $x \in X$, where J_{0} is an involutive isometry of X having no fixed point and leaving the S-field invariant. Each S-orbit is defined by (S_{X}, t) for fixed $t \in E^{\prime}$.
A_{4}-manifold: $R S$-manifold formed from $X \times[L]$ by identifying $(x, 0)$ with $\left(J_{1}(x), 0\right)$ and (x, L) with $\left(J_{2}(x), L\right)$ for all $x \in X$, where J_{1}, J_{2} are isometries of X having the same properties as J_{0} above. Each S-orbit is defined by (S_{X}, t) for fixed $t \in[L]$.
A_{5}-manifold: $R S$-torus of dimension 3, where each S-orbit is dense there as subset.

Let Y be Euclidean, elliptic, or spherical 2-space. Take an isometry J of Y leaving a point $x_{0} \in Y$ fixed, i. e., a rotation at x_{0}, whose rotation angle $\theta(0 \leqq$ $\theta \leqq \pi)$ satisfies $\pi / \theta=$ irrational number. Let B be an $R S$-manifofld formed from $Y \times[L]$ by identifying (x, L) with $(J(x), 0)$ for all $x \in Y$, where each R-orbit is defined by $t=$ const. $(t \in[L])$. Then we define
B_{1}-manifold: $R S$-manifold B where Y is Euclidean.
B_{2}-manifold: $R S$-manifold B where Y is elliptic.
B_{3}-manifold: $R S$-manifold B where Y is spherical.
Suppose that Y is spherical. Let L_{0} be the half length of a closed geodesic on Y. Let u be any tangent unit vector at a point $x_{0} \in Y$. By (x_{0}, u, s) we denote the terminal point on the geodesic arc issuing from x_{0} whose direction is of u and whose length is s. Then we define
B_{4}-manifold: $R S$-manifold formed from $Y \times[L]$ by identifying $\left(\left(x_{0}, u, s\right)\right.$, L) with ($\left.\left(x_{0}, J \cdot u, L_{0}-s\right), 0\right)$ for all u and $s\left(0 \leqq s \leqq L_{0}\right)$, where each R-orbit is defined by $t=$ const. $(t \in[L])$.

Now let us prove the following theorem more excellent than Theorem 3.
Theorem 3'. In a 3-dimensional $R S$-manifold M, suppose that all the S-orbits are non-closed and that M satisfies Hypotheses $I I$ and $I I_{2}$. Then M is an A_{5}-manifold.

By Lemma 4.6 and Theorems $1,2,4$, it is verified that this theorem is equivalent to the following

THEOREM 9. In a 3-dimensional RS-manifold M, suppose that there exists an S-orbit dense in M as subset. Then M is an A_{5}-manifold.

Under this assumption, it follows that any S-orbit is dense in M as subset and that M and any R-orbit are Euclidean space forms, from Lemma 4.2 and Theorem 3. Accordingly it suffices to prove that M is homeomorphic onto a 3 -dimensional torus.

Let G be the Lie group which consists of all the isometries of M. On the other hand the S-field induces a Killing (unit) vector field over M. Let H be the one-parameter subgroup of G generated from the Killing vector field. Let H^{*} be the subgroup of G which is the closure of H in G. Then H^{*} is a closed
abelian subgroup and a connected Lie group. As H^{*} contains the one-parameter group H dense in H^{*}, H^{*} must be a toral group ([2], p.83).

Take a point $x_{0} \in M$. The set $I\left(x_{0}\right)$ is a subset dense in $R\left(x_{0}\right)$. For any $x \in I\left(x_{0}\right)$ let J_{x} denote the R-map with respect to $S\left[x_{0}, x\right]$. Then we have

$$
d_{R}\left(x_{0}, x\right)=d_{R}\left(y, J_{x}(y)\right), d_{R}\left(x_{0}, y\right)=d_{R}\left(x, J_{x}(y)\right)
$$

for any $y \in I\left(x_{0}\right)$, by Lemma 4.7. Hence it follows that J_{x} is a parallel translation on $R\left(x_{0}\right)$ a Euclidean space form. Take an R-frame F_{0} at x_{0} and put $F_{x}=J_{x} \cdot F_{0}$. Then the R-frames F_{x}, planted at all $x \in I\left(x_{0}\right)$, are parallel to each other on $R\left(x_{0}\right)$. So, $R\left(x_{0}\right)$ admits a parallel field of R-frames containing the R-frames F_{x}. By R-map, transplant this parallel field on each of the R-orbits. We obtain over M the parallel field of R-frames. From now on let F_{x} denote the element of this parallel field at $x \in M$. The 3-dimensional frames ($F_{x}, d(x)$), for all $x \in M$, form a parallel field of tangent frames over M. As is easily shown, for any $x \in M$ there is an isometry of M carrying ($F_{0}, d\left(x_{0}\right)$), where $F_{0}=F_{x_{0}}$ to $\left(F_{x}, d(x)\right)$. This isometry belongs to H^{*} and conversely an element of H^{*} is such one. So the map

$$
f: H^{*} \rightarrow M \text { defined by } f(J)=J\left(x_{0}\right),
$$

where $J \in H^{*}$, is one-to-one and onto. As it is easily seen to be continuous, the map f is a homeomorphism from the compactness of H^{*}. Hence, M is homeomorphic onto a torus. Therefore our theorem has been proved.

Summing up Theorems 6,7 and 9, we have
Theorem 10. In a 3-dimensional S-manifold V suppose that there exists a non-closed S-orbit. Then a necessary and sufficient condition that V admit a complete differentiable Riemannian metric leaving its S-field to be a parallel field is that V be S-diffeomorphic onto an A_{i}-manifold ($i=0,1,2,3,4$, or 5) or a B_{j}-manifold ($j=1,2,3$, or 4).

Bibliography

[1] S. KAShiwabara, On the parallelisability under Riemannian metrics of direction fields over 3-dimensional manifolds, Tôhoku Math. Journ., 14(1962), 24-47.
[2] D. MONTGOMERY AND L. Zippin, Topological transformation groups, Interscience, New York (1956).

Yamagata University.

