STRONG AND ORDINARY SUMMABILITY

GEORGE G. LORENTZ AND KARL ZELLER¹⁾

(Received June 28, 1963)

1. Introduction. We consider infinite matrices $A = (a_{nk})$ and corresponding matrix transforms and summability methods (compare [5]). A sequence $\{s_k\}$ is said to be \overline{A} -summable to the value σ , if all sums

(1)
$$\sigma_n = \sum_{k=0}^{\infty} a_{nk} s_k, \ n = 0, 1, \cdots$$

exist and converge to σ for $k \to \infty$. The sequence $\{s_k\}$ is strongly A-summable (shortly: \overline{A} -summable) to the value σ , if all sums

(2)
$$\sigma_n = \sum_{k=0}^{\infty} a_{nk} | s_k - \sigma |, \quad n = 0, 1, \cdots$$

exist and converge to zero. Strong summability is usually considered only for positive A (i.e., for $a_{nk} \ge 0$). In this case the limit σ is uniquely determined [3] if A is *regular*, i.e., sums each convergent sequence to its ordinary limit. A *row-finite* matrix contains only a finite number of non-zero elements in each row; a *normal* matrix has non-zero elements on the main diagonal and zeros above it.

We compare here strong and ordinary summability methods. The basic question is the following. Given a matrix A, does there exist a matrix B, such that a sequence $\{s_k\}$ is *B*-summable if and only if it is strongly *A*-summable? (In this case *B* and \overline{A} are called *equivalent*). For the Cesàro method of order one, $A = C_1$, the question has been answered positively in [4]. We generalize this result to arbitrary row-finite regular matrices A (Theorem 1). There exist, however, row-infinite regular matrices A for which no equivalent B exists (Theorem 4). Even for row-finite regular A it is not always possible to find a normal B equivalent to \overline{A} . We give (Theorem 2) necessary and sufficient conditions for the existence of a matrix B with these properties. As a simple special case of Theorem 2 we have: the method \overline{A} is not equivalent to any normal ordinary method B if $\rho_k = \max_n a_{nk} \rightarrow 0$ as $k \rightarrow \infty$. A corollary (Theorem 3) of Theorems 1 and 2 concerns the question of equivalence of ordinary row-finite and normal methods.

We avoid the use of Functional Analysis (although its application could

¹⁾ This work has been supported by the Office of Scientific Research, U.S. Air Force, through the Grant no. AF-AFOSR-62-138.

316 G. G. LORENTZ AND K. ZELLER

shorten some proofs). For simplicity we assume that the matrix A of the strong summability method is always regular and positive; generalizations are possible.

2. Row-finite matrices. A strong summability method \overline{A} , based on a row-finite regular matrix A, can always be replaced by an ordinary matrix method:

THEOREM 1. For each row-finite regular positive matrix A there is a row-finite regular positive matrix B such that a sequence $\{s_k\}$ is \overline{A} -summable to the value σ if and only if it is B-summable to this value.

The proof is based on

LEMMA 1. Let K be a finite set of natural numbers, let x_k be complex and a_k positive ($a_k \ge 0$) values defined for $k \in K$. Put

(3)
$$\sum_{k \in \mathbb{R}} |x_k| = x, \qquad \sum_{k \in \mathbb{R}} a_k = a.$$

Then there exists a subset K' of K such that

(4)
$$\left|\sum_{k\in \mathbf{K}'} x_k\right| \ge \frac{1}{6} x, \qquad \sum_{k\in \mathbf{K}'} a_k \ge \frac{1}{2} a.$$

PROOF. One of the sums $\sum |\operatorname{Re} x_k|$ or $\sum |\operatorname{Im} x_k|$ is not less than $\frac{1}{2}x$, hence it is sufficient to derive (4) from (3) for the case of real x_k but with $\frac{1}{6}x$ replaced by $\frac{1}{3}x$. For real x_k , we destinguish two cases. If $\left|\sum_{k\in\mathbb{R}}x_k\right| \ge \frac{1}{3}x$, we can take K' = K. If this absolute value is less than $\frac{1}{3}x$, let K^+ , K^- denote the sets of k with $x_k \ge 0$ or $x_k < 0$, respectively. Then we select K' equal to one of the sets K^+ , K^- , so as to satisfy the second condition (4); we will also have $\left|\sum_{k\in K'}x_k\right| \ge \frac{1}{3}x$

PROOF OF THEOREM 1. It is obviously sufficient to find a regular matrix B such that \overline{A} -lim $s_n = 0$ and B-lim $s_n = 0$ are equivalent.

For each $n = 0,1, \dots$, let $K = K_n$ be the finite set of integers k for which $a_{nk} > 0, k \in K, a_{nk} = 0, k \notin K$. If $\sum_{k} a_{nk} = a_n$, we consider all subsets $K' = K'_{nv}$, $v = 1, 2, \dots, N(n)$ of K_n which have the property $\sum_{k \in K'} a_{nk} \ge \frac{1}{2} a_n$. Corresponding to one row a_{nk} of A, let us define N(n) rows of a matrix B (each corresponding to a set K'_{nv}) which consist of the numbers

STRONG AND ORDINARY SUMMABILITY 317

$$(5) \quad b_{mk} = (\sum_{k \in K'} a_{nk})^{-1} a_{nk} \text{ if } k \in K'_{nv}, b_{mk} = 0 \text{ if } k \notin K'_{nv}.$$

Since A is regular, for some M > 0, $a_n \leq M$, and hence $a_{nk} \leq Mb_{mk}$. We order the rows of B in the following way: first N(0) rows corresponding to the row a_{0k} of A; then N(1) rows corresponding to the row a_{1k} of A; and so on.

It is easy to see that B is regular, and that $\sum b_{nk}s_k$ converges to zero whenever the sequence s_n has the property $\sum_{k \in \mathbf{K}_n} a_{nk} |s_k| \to 0$. Conversely, if s_k is B-summable to zero, then taking $x_k = a_{nk}s_k$, $a_k = a_{nk}$ in Lemma 1, we see that for at least one m with the corresponding set K'_{nv} ,

(6)
$$\sum_{k \in K_n} a_{nk} |s_k| \leq 6 \left| \sum_{k \in K'_{nv}} a_{nk} s_k \right| \leq 6M |\sum_k b_{mk} s_k|.$$

Thus, s_n is \overline{A} -summable to zero, and the result follows.

3. Normal matrices. In contrast to Theorem 1, it is not always possible to replace a row-finite strong summability method by a *normal* matrix method. We prove more. We consider also row-infinite matrices, and give necessary and sufficient conditions when this replacement is possible.

For a regular positive matrix A we write

(7)
$$\rho_k = \max a_{nk}, \ k = 0, 1, \cdots$$

THEOREM 2. Let A be a regular positive matrix. There exists a normal method B which is equivalent to \overline{A} if and only if for some M and k_0 ,

(8)
$$ho_k
eq 0, \qquad k \geq k_{\scriptscriptstyle 0},$$

(9)
$$\sum_{k=k_0}^{\infty} a_{nk} \rho_k^{-1} \leq M, n = 0, 1, \cdots.$$

If the conditions are satisfied, B may be taken to be regular and consistent with \overline{A} .

The following two lemmas will be needed:

LEMMA 2. Let $\rho_k \geq 0$, $k = 0,1, \cdots$ be an arbitrary sequence and B be an arbitrary matrix method. Then (i) B sums all sequences $\{s_k\}$ with $\rho_k s_k \rightarrow 0$ if and only if

(10) $\lim_{n\to\infty} b_{nk} \quad exists for each k = 0, 1, \cdots,$

and there are M and k_0 such that

G.G.LORENTZ AND K.ZELLER

(11)
$$\rho_k = 0, \ k \ge k_0 \ implies \ b_{nk} = 0, \ n = 0, 1, \cdots,$$

(12)
$$\sum_{\rho_k \neq 0} |b_{nk}| \rho_k^{-1} \leq M, \ n = 0, 1, \ \cdots.$$

(ii) B sums all sequences $\{s_k\}$ with $\sum \rho_k |s_k| < +\infty$ if and only if B satisfies (10) and there are M and k_0 such that

$$(13) |b_{nk}| \leq M\rho_k, \quad k \geq k_0.$$

PROOF. In both cases (i), (ii), it is easy to prove the necessity of the existence of a k_0 for which (11) is satisfied. If this holds, we can omit from B all columns b_{nk} for which $\rho_k = 0$. Thus it is sufficient to prove our lemma for the case when $\rho_k > 0$, $k = 0,1, \cdots$. But then the lemma follows from the well-known theorems about matrices which sum all null sequences, or all absolutely convergent series (compare for example [1, p. 63] for (i), and [2,p.29] for (ii)).

LEMMA 3. Let A be a positive regular matrix, with the ρ_k defined by (7). Then \overline{A} -lim $s_n = 0$ implies $\rho_k s_k \rightarrow 0$.

PROOF. Assume that $\{s_n\}$ is \overline{A} -summable to zero, we have to prove that $\rho_k s_k \rightarrow 0$. Let $\epsilon > 0$ be arbitrary. We take first N so large that $\sum_k a_{nk} |s_k| < \epsilon$ for $n \ge N$ and then K so large that $a_{nk} |s_k| < \epsilon$ for $k \ge K$, n < N. Then $a_{nk} |s_k| < \epsilon$ for $k \ge K$ and all n, hence $\rho_k |s_k| < \epsilon$, $k \ge K$.

PROOF OF THE SUFFICENCY OF THE CONDITIONS. Assume that the conditions of Theorem 2 are satisfied. We may suppose that $k_0 = 0$. Since A is regular, the sequence ρ_k is bounded. We cannot have $\rho_k \rightarrow 0$, since then (9) would imply that the sequence $\{1,1,\cdot\cdot\cdot\}$ is A-summable to zero, in contradiction to the regularity. Hence we can find a sequence k_j strictly increasing to infinity for which $\rho_{k_j} \rightarrow \rho \neq 0$. We define B as follows:

(14)
$$B = \begin{pmatrix} 1 \\ 1-\rho_1 & \rho_1. \\ \vdots & \ddots \\ 1-\rho_{k_1-1} & \rho_{k_1-1} \\ 0 & 1 \\ & 1-\rho_{k_1+1} & \rho_{k_1+1} \\ \vdots & \ddots \\ & 1-\rho_{k_2-1} & \rho_{k_2-1} \\ & & & & \end{pmatrix}$$

318

The matrix *B* is regular, and one easily sees that *B*-lim $s_n = 0$ is equivalent to $\rho_n s_n \to 0$. By Lemma 2 (i) applied to the matrix *A*, we have *A*-lim $s_n = 0$, and hence even \overline{A} -lim $s_n = 0$ for all sequences s_n with $\rho_n s_n \to 0$. By Lemma 3, \overline{A} -lim $s_n = 0$ is equivalent to $\rho_n s_n \to 0$. This, together with the regularity and the linearity of the methods *B* and *A*, implies that *B*-lim $s_n = \sigma$ is equivalent to \overline{A} -lim $s_n = \sigma$.

PROOF OF THE NECESSITY. We begin with the following

LEMMA 4. If a normal matrix B and a sequence $\epsilon_k > 0$ are given, there exists a sequence $\{s_k\}$ with the properties

(15)
$$|b_{kk}| |s_k| \ge \epsilon_k, |\sigma_n| = \epsilon_n,$$

where σ_n is the B-transform of $\{s_k\}$.

Making $\epsilon_k \to 0$ slowly, we obtain a sequence s_k which is *B*-summable to zero, and whose terms in absolute value are close to $|b_{kk}|^{-1}$.

PROOF. We construct s_k by induction. Put $s_0 = \epsilon_0 b_{00}^{-1}$. If s_0, \dots, s_{k-1} are already determined, let $\tau_k = b_{k0}s_0 + \dots + b_{k,k-1}s_{k-1}$. We choose s_k so that the modulus of $b_{kk}s_k$ is $|\tau_k| + \epsilon_k$, and the sign is opposite to that of τ_k ; the sequence s_k satisfies (15).

Now we assume that there is a normal method B equivalent to \overline{A} . From Lemma 2 (ii) we derive that each sequence s_k with $\sum \rho_k |s_k| < +\infty$ is \overline{A} -summable to 0. This applies also to $|s_k|$, hence s_k is \overline{A} -summable to zero, and thus B-summable. Again from Lemma 2 (ii) we derive that

$$(16) |b_{kk}| \leq M\rho_k, \ k \geq k_0.$$

Since $b_{kk} \neq 0$, we must have $\rho_k \neq 0$, $k \ge k_0$, so that (8) is satisfied.

Applying Lemma 4 and (16), we find, for each null sequence $\epsilon_k > 0$, a sequence s_k , *B*-summable to zero, for which $M\rho_k|s_k| \ge \sqrt{\epsilon_k}$. Hence s_k is \overline{A} -summable and the sequence $\epsilon_k \rho_k^{-1} = o(|s_k|)$ is \overline{A} -summable to zero. Applying Lemma 2 (i) to the matrix with the coefficients $a_{nk}\rho_k^{-1}$, we see that also the condition (9) is satisfied. This completes the proof of Theorem 2.

Theorems 1 and 2 contain the following corollary:

THEOREM 3. There exists a row-finite regular matrix B which provides a 1-1 mapping and which is not equivalent to any normal matrix.

PROOF. We take the matrix B which corresponds to the strong C_1 -

summability according to the proof of Theorem 1. Since B contains all rows of C_1 , it provides a 1-1 mapping as the latter matrix.

If the restriction to a 1-1 mapping is omitted, the construction of B becomes trivial. In this case one can take for B any row-finite regular matrix for which $b_{nk_i} = -b_{n,k_i+1}$, $n, i = 0, 1, \cdots$ for some sequence $k_i \to \infty$.

4. Row-infinite matrices. Another counterpart of Theorem 1 is the fact that a row-infinite strong summability method is in general not equivalent to an ordinary matrix method :

THEOREM 4. There exists a row-infinite regular positive matrix A such that no ordinary matrix method B sums exactly the strongly A-summable sequences.

PROOF. We put

$$A = \begin{pmatrix} 2^{-0} & 0 & 2^{-1} & 0 & 2^{-2} & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

The strongly A-summable sequences $\{s_k\}$ are exactly the sequences for which

(17)
$$\sum_{k=0}^{\infty} 2^{-k} |s_{2k}| < +\infty; \qquad \lim_{k \to \infty} s_{2k-1} \text{ exists.}$$

If B sums every such sequence, then the matrix C:

$$(18) c_{nk} = 2^k b_{n,2k}$$

sums every sequence $\{w_k\}$ with $\sum |w_k| < +\infty$. The statement of the theorem is therefore a consequence of the following lemma:

LEMMA 5. If a matrix C sums every sequence $\{w_k\}$ satisfying $\sum |w_k| < +\infty$, then it sums also a sequence $\{x_k\}$ with $\sum |x_k| = +\infty$.

PROOF. If is easy to see (and is also the special case of Lemma 2(ii) when all $\rho_k = 1$) that the assumption about C of the lemma is equivalent to the following. There exists an $M \ge 0$ and a (bounded) sequence $\{c_k\}$ such that

(19)
$$|c_{nk}| \leq M, \quad n,k=0,1,\cdots,$$

(20) $\lim_{n \to \infty} c_{nk} = c_k, \quad k = 0, 1, \cdots.$

320

By means of these conditions we construct the required sequence x_k . We define recursively integers $k_0 < l_0 < k_1 < l_1 < \cdots$ and $n_0 < n_1 < \cdots$ such that:

(21)
$$|c_{k_j} - c_{l_j}| \leq 2^{-j}, j = 0, 1, \cdots$$

- (22) $|c_{nk_j} c_{nl_j}| \leq 2^{-j}, n \leq n_j;$
- (23) $|c_{nk_j} c_{k_j}| \leq 2^{-j}, |c_{nl_j} c_{l_j}| \leq 2^{-j}, n > n_{j+1}.$

If k_{j-1} , l_{j-1} , n_j are already determined, we extract a convergent subsequence from the bounded vector sequence $\{c_k, c_{0k}, c_{1k}, \dots, c_{n_jk}\}_{k=0}^{\infty}$ and hence are able to satisfy (21) and (22) with proper k_j , l_j ; an integer n_{j+1} , suitable for (23), exists because of (20). From (23) and (21) we derive

(24)
$$|c_{nk_j} - c_{nl_j}| \leq 3 \cdot 2^{-j}, \ n > n_{j+1}$$

Now we put

(25)
$$x_{k_j} = -x_{l_j} = \frac{1}{j+1}, j = 0, 1, \dots; \qquad x_k = 0 \text{ for other } k.$$

The C-transform of x_k

(26)
$$\sum_{k} c_{nk} x_{k} = \sum_{j=0}^{\infty} (c_{nk_{j}} - c_{nl_{j}}) \frac{1}{j+1}$$

exists because of (22). Also,

$$\sum_{j=0}^{\infty} |c_{nk_j} - c_{nl_j}| \leq 3 \sum_{j=0}^{\infty} 2^{-j} + 2M,$$

because of (22), (24) and (19). By a variant of Toeplitz' theorem ([1, p. 63]; this is the special case of Lemma 2(i) when all $\rho_k = 1$), the matrix $D = (d_{nk})$, $d_{n_j} = c_{nk_j} - c_{nl_j}$ sums all null sequences. Hence $\{x_k\}$ is C-summable, while $\sum_{i=1}^{n} |x_k| = +\infty$.

References

- [1] R.G.COOKE, Infinite matrices and sequence spaces, London, Macmillan and Co., 1950.
- [2] H. HAHN, Über Folgen linearer Operationen, Monatshefte Math. Phys. 32(1922), 3-88.
- [3] H. J. HAMILTON and J. D. HILL, On strong summability, Amer. Journ. Math. 60 (1938), 588-594.
- [4] K.ZELLER, Über die Darstellbarkeit von Limitierungsverfahren mittels Matrixtransformationen, Math. Zeitschr. 59(1953), 271-277.
- [5] K.ZELLER, Theorie der Limitierungsverfahren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1958.

SYRACUSE UNIVERSITY TÜBINGEN UNIVERSITY