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In § 1 a concise exposition of the Postnikov system of a CW-complex is
presented to prepare for the rest of the paper. In § 2 fibrations due to Cartan,
Serre, and G. Whitehead, are discussed. In § 3 it is shown that the suspension,
operation S (not exactly the usual one) and the loop operation Ω are "dual*'
in a sense that for certain Postnikov complexes Y of a CW-complex with
vanishing lower dimensional homotopy groups, ίl S (Y) is4 of the same homo-
topy type as Y. This enables us to construct a fibration such that for pairs of
such Postnikov complexes the injection map is homotopically equivallent to
the injection map of a fibre into the total fibre space. In § 4 an exact sequence
is discussed to study a role of Postnikov complexes and invariants in determi-
ning homology and homotopy.

If / : X —> Y is a map, the following notations are adopted unless other-
wise stated: 1) fp denotes the homomorphism induced by f between homotopy
groups in dimension p, 2) /# and / * denote the homomorphisms induced by /
between homology and cohomology groups respectively, and 3) the superscript
p on the shoulder of a map denotes the p-th map of a sequence of maps.
The numbers in square brackets refer to the papers of the bibliography at the
end of the paper.

1. Postnikov complexes and self-obstruction cocycles. Let X be an
arcwise-connected CW^complex and let x be a base point in X. Attaching cells
of dimension (w + 1) to X by maps representing a set of generators of
τrn (X, x), we may embed X in a CW-complex X such that τrn (X, x) — 0, and
for each p < n, the injection homomorphism 7rp (X, x) —> τrp (X, x) is an
isomorphism onto. By iterated use of the process of killing homotopy of X in
dimensions greater than n, a CW-complex Bn is obtained with the following
properties:

1) X is a closed subcomplex of Bny and B" = Xn, where Bl and Xn denote
the w-skeleton of Bn and X respectvely.

2) 7rp(βn, x) = 0 for each p^n.

*) A part of the paper was submitted by the junior author* in partial fulfillment of
requirements for the degree of Doctor of Philosophy in the State University of Iowa.
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3) j: X —> i?n is the injection map, then jp : 7ro (X, x) —» ir9 (Bny x) is an

isomorphism onto for each p < n.

Thus we have a sequence of spaces {Bn : n — 2, 3, } and Bn will be called

a Postnikov complex of type (τrίy 7r2, , τrn-ι), or simply a Postnikov complex

if there is no ambiguity.

By using Postnikov complexes we shall define the notion of obstruction

cocycles of a map so that we may discuss them in tefrns of self-obstruction

cocycles of a space. Unless otherwise stated, all spaces considered in this work

are assumed to be arcwise connected and n-simple for each integer n §: 1. Let

X and X be CW-complexes, and let / : Xn -+ X be a given map. Let Bn be a

Postnikov complex of type (τru , τrn-ι) for X, then / has an extension

f:(Xn+1,Xv)->(Bn, X) which is unique up to homotopy. Hence the induced

homomorphism fn+1: τrn+ί (Xn+\ Xn) —> 7rn+1 (Bn, X) is uniquely determined by

f Consider the following diagram

7ΓW+1 (X- 1 , X*) Z n ± l _ > ^ (β n , X)

Cn+1 (X) = Hn+1 (Xn+\ Xn) τrn(X)

where p is the natural homomorphism of homotopy into homology, 3 is the

homotopy boundary operator, and Cn+1 (X) is the integral group of (n + 1)

chains of X. Define the obstruction cocycle cn+ι(f) to be 3 fn+1 p~ι. Although

p is not necessarily one-to-one, cn+ί(f) is well defined. For X is /z-simple.

Let X be a CW-complex and let Bn be a Postnikov complex of type

(TΓJ, , TΓn-i). Let i : Xn -> X be the injection map. Since β£ = Xw by the constr-

uction of Bn, i may be considered as a map i : B\ —> X. Consider the obstruction

cocycle c n + 1(z')of extending i over β^+1. Then cn+1 ( ί ) = 3 ^ + i /°~\ where

Cw + 1 (5n) = H n + 1 (BS+1, Xw) ^ - τrn+1 (BΓ1, Xn) ^ ^ τrn+1CBw, X) — 7rn (X).

This obstruction cocycle cn+1(i) will be often denoted by cn+1 for the sake of

brevity, and will be appropriately called a self-obstruction cocycle of X after

Adams [ 1 ].

PROPOSITION 1.1. Let Bn,^Bn be Postnikov complexes of types (iru ,

TΓΠ-I) and (τ?i, , τrn-ι) for given CW-complexes X, X respectively. Let f : X

—> X be a given map and let i: X —> Bn and i : X —> Bn be the injection

maps. Then there exists a map F: Bn —> Bn such that the diagram

F -

Bn ± Bn

X
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is commutative. Moreover F is uniquely determined by f up to homotopy

relative to X.

PROOF. Since 7rp(Bn) = 0 for p^n, iof:X—>Bn has an extension F:

Bn —» Bn and the commutativity of the diagram is immediate. Let G: Bn —>

Bn be another extension. Decompose Bn X I into a CW-complex in the usual

manner, and define H: (Bn x 0) U ( I x / ) u (JBn x 1) —• Bn by

H(f, 0) = F ( f ) for all ξ e Bn,

H(ξ, l) = G ( f ) for all I € β n ,

f, t) = f ( I ) for all § € X and for all f € / .

Since τrp (Bn) = 0 for p ^ n, H has an extension to Bn x I. Hence F and G
are homotopic relative to X.

PROPOSITION 1. 2. Let X and X be CW-complexes of the same homotopy

type, and let Bn and Bn be Postnikov complexes for X and X respectively.

Then Bn and Bn are of the same homotopy type.

PROOF. L e t / : X —• X be a homotopy equivalence and let F: Bn —> Bn

be an extension as is shown in the previous proposition. Consider the commutative
homotopy diagram

/ τ> \ Fp ( TT" \
7Γp \Dn) > TΓp \JDn)

P

As fp, ip, and ip are isomorphism for p < n, F9 is an isomorphism for all p.

It follows from a theorem due to J. H. C. Whitehead [16] that F is a homotopy

equivalence.

COROLLARY 1. 3. The Postnikov complexes of type (ττu , πn_λ) for a

given CW-complex are of the same homotopy type for each integer n §: 2.

PROOF. Let Bn, Bn be Postnikov complexes for X. Since the identity map

i : X —> X is a homotopy equivalence, there exists a homotopy equivalence

φ : Bn —> βH by the above proposition.

Let cn + 1 (/) be an obstruction cocycle of / : Xn —> X where X and X are

CW^-complexes. In the next proposition cw+1 (/) is expressed in terms of the

self-obstruction cocycles cn+\ cn+ι of X and X.

PROPOSITION 1.4. Let F: Bn-*~En be the extension off: Xn —> X as in

Proposition L 1. Let i: XΛ —> Bn be the injection map. Then
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we have

and

where

and

PROOF. For the proof of (1), refer to Adams [ 1 ]. For ( 2) consider the
commutative diagram

F# : Hn+1 (BT\ Xn) -> Hn+1 m+\ X")

i#: Hn+1 (X"+\ X") -> Hn+1 (BV\ Xn).

"n+1 (X"+ 1, X") Jn+1 n+1 (Bn, X)

Hn+1

Xn)

X")

n, X)

3

(F\X)n

Hn+ί X")

Then we have cn+\f) = dfn+1 P~
ι = (F\X)n3Ϊn+1 p"1 i# = (F\X)n cn+1 i%.

This completes the proof.

Let X be a CW-complex and let Bn be a Postnikov complex for X.
Then the self-obstruction cocycle cn+1 represents an element ln+1 (X) of
Hn+1(Bn; TΓXX)). By the cL-system of a CT^-complex X we mean &>(X) = [ln+1(X):
n = 2, 3, •}. The defintion of £>(X) depends upon the choice of the sequence
{Bn: n = 2, 3, •} of Postnikov complexes for X, but it will be shown in a
proposition that the sequence of complexes plays an auxiliary role in the
definition.

Let <£>(X) and £>(X) be ^-system of CW-complexes X and X , which are
defined by the aid of the sequences of Postnikov complexes {Bn}, {Bn} for X
and X respectively. For the sake of simplicity let us denote τrw(X), τrn(χ) by
TΓW, TΓw respectively.

By a homomorphism φ : £>(X) —• £>(X) we mean two sequences of
homomorphisms θn for each n §: 1 and ωw+1 for each n ^ 2, such that

θn' πn -* 7Γn

and ω n + 1 : Hn+1 (Bn; 5Fn) -> ί/w+1 (β 7 ϊ; 5Fn),

satisfying the condition ωn+ι (ln+1) = *̂ (Zw+1), where 0* : ί/n+1 ( β n ; τrn) ->Hn+1 (Bn;

7rn) is induced by θn. A homomorphism ψ between two £,-systems is called an

isomorphism if and only if all θny ωnΛΛ are isomorphisms.



SOME REMARKS ON POSTNIKOV COMPLEXES AND FIBRE SPACES 303

PROPOSITION 1.5. If X and X are CW-complexes of the same homotopy
type, then <£>(X) and L(X) are isomorphic.

PROOF. Let Bn and Bn be Postnikov complexes for X and X, by the aid
of which £>(X) and £>(X) are denned respectively. Let / : X -> X be a homo-
topy equivalence. By virtue of Proposition 1. 2, / determines F n : £ ? ι —> J3W,
which is a homotopy equivalence for each integer n ^ 2. As / and i7"71 are
homotopy equivalences, /w : τrn —> τrw and F n # : Hn+i(Bn; τrn) —> Hn+1(Bn; τrw)
are all isomorphisms onto. Define <p = {̂ n, ωn+1] by #n = / n and ωw+i = F 7 * .
In order to show that φ is an isomorphism, it is sufficient to prove Fm (ln+1)
= ft(ln+1), where/* : Hn+ί (Bn; τrn) -> Hn+1(Bn; 5Fn). Consider the diagram

5W, X )

(B..X)

Is

n I

Hn+ι{BT\ Xn) τ

By definition cn+ι = 3 7n+i /3"1 and c"+ 1 = a ί"n+i p""1. It follows from the

commutativity of the diagram that cn+1 Fg = fn cn+1. Hence FmQn+1) represented

by c n + 1 -F#is equal to ft,(ln+1) whose representative is fnc
n+1. This completes

the proof.

COROLLARY 1. 6. The ^-system of a CW-complex is uniquely determined
up to isomorphism.

PROOF. In the proof of the previous proposition let X = X, / = identity
map, then we have the corollary.

Let Bn, Bn+U Bn and Bn+ι be Postnikov complexes for X and X respec-

tively. Given a homomorphism θn\ irn —> ϊrn and a pair of maps Fn: J3W —> Bn,

Fn+1: Bn+1 -> En+1 satisfying

1) the commutative diagram

lΓn

ΊTn
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2) Fn\Xn~1 = F^IX*-1.

Then the pair (Fn, Fn+1) is called to be regularly associated with θn.

An isomorphism φ: £> (X) -> L{X), where £> = (0W, ωn+1] is called to have
a canonical realization if and only if

1) There exists a sequence of maps F": Bn —> Un for each n §r 2 such
that ωw+1 = Fm, and the diagram

is commutative, where the vertical arrows are injection isomorphisms,
2) For any integer n Ξg 2 each pair (Fn, Fn + 1) is regularly associated

with θn.

PROPOSITION 1.7. Lei X andX be CW-complexes. They are of the same
homotopy type if and only if there exists an isomorphism between their <&>-
systems which has a canonical realization.

PROOF. Suppose X and X are of the same homotopy type. By the Prop-
osition 1. 5 there exists an isomorphism φ : <&>(X) —• £>(X). We wish to show
that this isomorphism has a canonical realization. Let / : X ^ J b e a homotopy
equivalence. Then / defines a homotopy equivalence Fn : Bn —> Bn for each
integer w § 2 as was shown in the Proposition 1. 2. By the proof of the prop-
osition we have the commutative diagram

1Γn(Bn+1)

fn
> 7Γn

for n §: 1. Moreover, from the construction of Fn: Bn —• Bn we have Fn+ι\Xn

= Fn I Xn. This proves the first half of the theorem.
Assume that φ : «£>(X) -> (&>(X) is an isomorphism which has a canonical

realization determined by a sequence of maps Fn: Bn —> Ήn for w ̂  2. Let
us define/: X-> X by f\Xn = Fn+1\Xn. T h e n / is well defined because
Fn\Xn~1 = Fn+1\Xn-\ Consider the diagram
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7Γn(Bn+1) * 7Γn(Bn+ι)

where the vertical arrows are injection isomorphisms. The upper half of the
diagram is commutative by the construction of /, while the lower half is
commutative because the isomorphism φ has the canonical realization. Hence
we have fn = θn for all n^l. This completes the proof.

2. Fibrations. Let a triple (T, p, B) be a fibre space with a fibre map
p: T —> B in the sense of Serre [10]. Then, as is usual, let us call T the
(total) fibre space, B the base space, and F = p~ι (p{x0)) a fibre over b = p(x0)
with x0 £ T. We shall often use a notation

P
0 F —>- T —> £ 0

in case when we have a fibre space in the above sense. Notice that "B —> 0"
does not mean the surjection of a fibre map p.

DEFINITION 2.1. Given spaces X and Y with a map / : Y -> X A triple
(y, /*, X) is said to have a fibration of the first category, if and only if there
exists a fibre space (T, p, B) and homotopy equivalences σ: T —> Y, r : B
—> X such that the diagram

B

is homotopically commutative namely fσ is homotopic to rp.

DEFINITION 2. 2. A triple (Y, /, X) with a map / : Y -> X is said to
have a fibration of the second category if and only if there exists a fibre space
(T, p, B) such that the diagram

0 F > T — * B 0

Ί , I-
y —- x
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is homotopically commutative, where η and σ are homotopy equivalences.

DEFINITION 2.3. Let X and Y be pathwise connected spaces and let
/ : Y —> X be a map. / is called an algebraic homotopy equivalences if and
only if the induced homomorphism of homotopy groups,

is an isomorphism in all dimensions p.

It is well known that the ίibration of the second category is not always
possible for a given triple (Ύ,/, X) w i t h / : Y —• X, although any triple can
be fibrated in the first sense. For a given triple (Y,f, X), a map / : Y —> X
may be considered to be homotopically equivalent to an injection map in the
following sense. Let Mf be the mapping cylinder of / and i: Y —• Mf be the
injection map. Then we have the commutative diagram

-> X
where r is a retraction. Hence it is sufficient to consider fibrations for a triple
(Y, i, Mf) with the injection map i, so that we have fibrations for the given
triple (7, / , X).

Throughout the paper we shall use the following notations and fibrations
due to Cartan and Serre [ 2 ]. Let A and B be non-empty subspaces of a
pathwise connected space X, and let us denote by P(X; A, B) the space of
paths in X which start at A and end in B. If B consists of a single point, we
abbreviate P(X; A, B) to P(X; A), and we denote by Ω(-X) the space of all
loops in X with a base point * z X.

Let X be a pathwise connected CW-complex and let Bs be the 5-th Post-
nikov complex for X. Then a map ps: P(BS; X) —> X, defined by ps(ω) — ω(0) for
ω € P(BS; X), is a (s — 1) connective fibre map. Consider a commutative diagram

0

0 > Ω(BS+1) P(Bs+ί; X ) ^ X > 0

0 Ω(β,) P(5S; X) — X 0

I
{}

0
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with ίiberings in the rows. It is easy to see that P(BS; Bs+ι) is an Eilenberg-

MacLane space K(τrs(X), s), and that Cartan and Serre constructed a fibration

of the second category (in a weaker sense that σ and η are algebraic homotopy

equivalences in the definition 2.3) for a pair (P(β8; X), P(BS+1; X)) in case

when X is a space.

PROPOSITION 2.4. If (A,B) is a pair of spaces, then P(P(A; B); Ω(A))

is of the same homotopy type as Ω(B).

PROOF. Let (E2; S+, S~) be a triad which is denned by E2 = '{(xi9 x2)\

x\ + x\ ^ 1}, S+ = {(xl9 x2)\x\ + x\ = 1 and xλ g; 0}, S" = {(xl9 x*)\x\ + ^2

= 1 and x1 :g 0}. Consider a continuous map >̂: (7 X 7, 3(7 x 7)) —> (E2, 3£ 2)

such that φ ((7 x 1) U (1 X 7)) = (0, 1), φ (0,0) = ( - 1, 0), and φ is topological

elsewhere with the property φ(0 x 7) = S+, φ(I x 0) = S~. Let A be a function

space of all maps / : (£2; S+, S~) -> (A; A, B). For any path ξ € P(P(A β);

Ω(A)) there exists a map fξ: I x I -> A defined by / f (ίi, ί2) = §(ίi)(ί2) for

any (tu t2) z I x 7. Since / f (0 x 7) c A, fξ(I x 0) c B, and / f ((/ x 1) U

(1x7)) = *, there exists a map λ : P(P(A B) Ω (A)) -• Λ such that λ(|) =

fξψ~ι £ Λ. Then it is easily seen that λ is a homeomorphism. On the other

hand, it is also seen that there exists a homeomorphism μ between Λ and

P(Ω(A); Ω(A), Ω(β)). This can be proved in a similar way as before. Since

P(Ω (A) Ω (A), Ω (B)) is of the same homotopy type as Ω (B), the proof is

completed.

PROPOSITION 2. 5.x) Let (A, B) be a pair of spaces. Then a pair (Ω (A),

Ω (J3)) of loop spaces has a fibration of the second category.

PROOF. Consider the following diagram with a fibering in the row

0 - P(P(A;B);ίl(A)) - P(P(A; B); Ω (A), P(A;B)) - P(A;B) -> 0

V

Ω (B) > Ω (A)

Since η and σ are homotopy equivalences, we have a desired fibration.

3. Fibration of a pair (B,, Bs+1) of Postnikov complexes.

PROPOSITION 3.1. Given an integer n > 1. Ltfί X be an(n — 1) connected

CW-complex and let Bs be a Postnikov complex for X. If s :< 2n — 1, there

exists a CW-complex Bs such that Bs and the space of loops, Ω (7?s), in Bs

are of the same homotopy type.

1) The authors have been informed that H.Todahas the same proof of the Proposition 2. 5.
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PROOF. If s rg ?z, choose Bs as a space of a single point. Then the

theorem holds true, because Bs is cotractible to a point. Assume 2n — 1 ^ s g:

ra + 1. Let β s be the suspension of Bs (see [ 6 ], or [11]). To kill homotopy

groups 7rp(2},) for p^2n + 1, we attach to Bs cells of dimensions greater than

2n 4- 1 so that we may embed Bs in the resultant complex Bs. Then τrp(βs) = 0

for each f> ̂  2τz + 1 and the injection map ks: 5 5 —• J55 induces an isomor-

phism yfep: τrp(β5) —> τrp(2ϊβ) for each ρ^2n. Let (B,)~ b.e the reduced product

space of £ s and let Ω(Z?5) be the space of loops in Bs. Then there exist the

injection map j : Bs —• (JS^o., a canonical map <2S: (Bs)oo —> ίl (βs)>
 a n ( l t n e

natural map ί2(£ s ) : Ω(BS) -> Ω(B,) induced by ks. Let us denote by φs the

composite map Ω(£s) α s j . Consider the diagram

E,

where Ep = ί l * j p is the suspension homomorphism and

Hence we have φ\ = O"1 ks

p+ιEp. By virtue of the suspension theorem due to

James, -E2n-i is onto. Since TΓ^n^iβs) = 0 for s 5g 2/z — 1, we have τr2n(Bs) =

τr2nCBs) ̂  0, so that 7rp(β(S,)) = 7rP(βs) = 0 for each ρ^2n- 1. Since £ p is

isomorphic onto for p ^ 2n — 2 and kp+i is isomorphic onto for p ^ 2n — 1, φs

p

is also isomorphic onto for pt^2n — 2. By a theorem due to Milnor, Ω(β8)

may be considered as a CΨ-complex, so that φs is a homotopy equivalence.

The proof is completed.

PROPOSITION 3. 2. Let X be an (n - 1) connected CW-complex and let
Bs be a Postnikov complex for X. Then there exists a sequence of CW-
complexes [Bn+ly , Bs, Bs+1, , B2n-ι} such that for 2n — 1 ^ s ^ n + 1, Bs

and Ω(BS) are of the same homotopy type and the commutative diagram

Bn+1 +-

kn+1

Bs B2n-1

k2n-l

Bn+ι •* •* Bs •* Bs + i •* •* B2n-1

holds true, where all arrows in the diagram denote injection maps.
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PROOF. Let i: JBS+1 —> Bs be the injection map. From the construction of

suspension we obtain the injection map zs+1 : Bs+1 —> Bs induced by the
injection map ϊ : Bs+1 x / —> Bs X / with the commutative diagram

ϊ
Bs+1 x / > Bsx I

Bs+1 B.,

where I denotes the unit interval and λ's are identification maps. By the

previous proposition there exists a CW-complex B2n-i such that B2n~i and ί l

(B2n-ι) are of the same homotopy type. Assume that the commutative diagram

Bs+1 +— -* B2n-1

has been established. It is sufficient to show that there exists a .Bs with the
commutative diagram

Bs+1

ks+1

Bs Bs+1.

Considering Bs+1 as its homeomorphic image under ks+1, we may attach Bs+1

to Bs by the map z's+1. Let us denote the resultant complex by Bs U Bs+1.

Then we may consider Bs and Bs+ι as subspaces of Bs U Bs+1. Since we have

(Bs U Bs+1)
2n+1 = Φs)

2n+1 from the construction of 5 S + 1 , ττp(βs u 55 + 1) ^ τrp (βs)

for p ̂  2n. Killing homotopy groups ττp{Bs VJ Bs+ι) ίor p^2n + 1 by attaching

to β 5 U Bs+i cells of dimension greater than 2;i 4- 1, we obtain Bs with the
desired properties. This completes the proof.

PROPOSITION 3.3. The diagram

β(S, + 1 )

Bs+1 Bs
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is commutative.

PROOF. From propositions 3.1 and 3.2 we have the commutative diagram

i s + 1

Ω(B.)

I /

Hence the proof is completed.

PROPOSITION 3.4. Given an integer n > 2 αn<i an integer s with

2n — 2 ^ 5. Le£ X 6e an (n — 1) connected CW-complex and let Bs and Bs+1

be Postnikov complexes for X. Then the pair (Bs, Bs+ι) has a fibration of

the second category.

PROOF. Let (g s, g,+i) be a pair of CWr-comρlexes which we constructed

in the Proposition 3. 2. By the Propositions 2. 5 and 3.1, we have a diagram

0 — F T — P(BS; Bs+1) — 0

Ω(B.)

with a fibering in the first row, where η, σ, £>s+1 and <ps are homotopy equiva-

lences. Since the diagram is homotopically commutative from propositions 2. 5

and 3. 3, we have a desired fibration.

COROLLARY 3.5. Let (Bs, Bs+ί) be a pair of Postnikov complexes for an

(n — 1) connected CW-complex, where s ig 2n — 2 and n > 2. TΛ^n ze tf Λα^^

H p ( β t , B f + 1 ) ^ Hp(τrs, 5 + 1) >/)^5 + n.

PROOF. Since we have a fibration of the second category for the pair (Bs,
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Bs+ί) and since the base space is s connected and the fibre is (n — 1) connected,
we have the desired result.

4. An exact sequence. Let X be an (n — 1) connected CW-complex and
let Bs be a Postnikov complex for X. Then we have a decreasing sequence
of Postnikov complexes

Bn+ι D Bn+2 D D Bs D Bs+1 D .

Defining the groups D9,1 = Hs+t(Bs) and Es> t = Hs+t (Bs, Bs+ί), we have the
usual exact sequence

i j k
• ^ A+i, ί-i *• - D s ί • J E # ) f • D«+i, ί-2 *"

Thus the exact couple C(X) = < D,E; i,j,k > is associated with X, where

D = £ Dfiί and £ = £ £M.
«,< *,ί

Let ls+1(X) ^ Hs+ι(Bs, 7rs) be a Postnikov invariant represented by a self-

P" 1

obstruction cocycle cs+1 = dip-1, where Cs+1 (Bs) = H 4 + 1 (5J+ 1, Xs) —>•

ί 3
τrs+1 (5J+ 1, Xs) * w .+i(B., X) * τrs (X). Since c5 + 1 maps the (s + 1) bounding

cocycles into 0, cs+1\Zs+ι(Bs) induces a homomorphism cs+1 : HS+1(BS) —• 7rs. In

virtue of the universal coefficient theorem there exists an isomorphism

λ: Hs+KBs,τrs) -> Uom(Hs+1(Bs); τrs) + E x t ( H s (Bs);τrs),

such that λ(Zs+1) = l{+1 + ZΓι, where Z?+1 € Horn is the homomorphism ? + 1

and Z5+1 ^ Ext. Then we have

PROPOSITION 4.1. Given an integer n>l. Then, for any s > n,

1) Ds>t = Hs+t (X), ift<09

2) £ M = 0, if ί ^ 0,

3) In the diagram

Stι — Hs+ι(Bs, Bs+ι)
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all arrows are isomorphisms onto,

4) l\+ι = σ yM, where jsχ. DSΛ -> E s,ι.

PROOF. 1) is from Xs = Bl Since TΓ* (B,, Bβ+1) = 0 if k g 5, we have

Hurewicz isomorphism* P : 7rs+1 (Bs, Bs+i) —>• Hs+ι(Bs,Bs+1) and £ S ( ί = 0 if ί g 0.

It is obvious that 3 and z4 are isomorphisms. Hence 2) and 3) are proved.

Consider the commutative diagram

ZS+1(BS) -^ Hs+1

HS+1(BS)

τr s + 1 (β s , X)

(Bs, Bs+1)

Then, for any x £ HS+1(BS) and for any representative x of x> we have

/ί+10r) = 7s+ί(x) = cs+\x)= 3 i p~l j {x)

= ύ-3 hip'1 j 00

•= z4 3 i2 p~ι j (x)

= σ p i2 p~ιj{x)

= σ zΊ y (Λ:7)

= <rjs,ιp(x')

= σ jS}l (x).

Hence the proof is completed.

COROLLARY 4. 2. Given an integer n>l and an integer s > n. Let

y^s (X) be the s dimensional spherical homology group of an (n — 1) connected

CW'Complex X. Then we have

PROOF. Consider the commutative diagram

js,\ ks,ι
Hs+ι(Bs) •= DSΛ > ESΛ *- Z>s+1>_! = HS(X)
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Let T = k8,ι σ~\ then τ(τrs) = 2Z/X). Hence the proof is obtained from the

exact row.

PROPOSITION 4. 3.2) If s ̂  2n - 2 and n>2, we have

Es,Ps - Hp(τrs, s + 1) for l ^ / > ^ s + n.

PROOF. It is obvious from the Corollary 3. 5.

COROLLARY 4. 4. If n > 2 and s^2n - 2, we have

1) JS.,2 = 0,

2) £ M = τrs/2τrs.

PROOF. It is obvious from the Prorosition 4. 3.

P R O P O S I T I O N 4.5. If n > 2 αnd 2n - 2 ^ 5 ̂  n + 1, w

where ]P s + i ώ ί/ι̂  (5 + 1) dimensional spherical homology group.

PROOF. Consider the diagram

S + 1,1

— H,.

U + 2,-\

Ds+\,o —

Since ESι2 = 0 from the Corollary 4.4 and Es+hQ = 0, is+2,-i is epimorphic and

/β+1,0 is monomorphic. It follows from the exactness that js+1 = zs+1>0 is+2,-1

induces the desired isomorphism.

PROPOSITION 4.6. Given n > 2. L^ί X έe an {n — 1) connected complex.

Then we have an exact sequence
nn
L\ J2n~l

H2n(B2n-\) ^7Γ2w-l *" H2n~l ** H2n-l(B2n~2) >7Γ2w-2 ^U-In-I •••• *-

Jn + 3 ' 7n + 2
Ll Jn+2 ll

Hn + 3(Bn+2) *- 7rn+2 *- Hn+2 * Hn + ϊ&n, n) »- 7 Γ W + 1 *- Hn+ι *• 0 ,

where js+1 — t8+lί0 is+2,-1 and l\+λ is a projection of the Postnikov invariant

Is+ι as in the Proposition 4.1.

2) K. Shiraiwa informs us of a proof of the Proposition 4. 3 without the restriction
s ^ 2n - 2.
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PROOF. This is the immediate consequence of the Corollary 4. 2, Propo-
sition 4. 5, and the exact couple which we considered.
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