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In a recent note [3], Kazuo Suzuki has given an interesting application
of the Tannaka duality theory for compact groups (Cf. [4]). If Gx and G2

are compact groups, let Horn (G1? G2) denote the set of homomorphisms of
Gx into G2. Let Gf (respectively Gf) denote the set of finite dimensional
representations of G1 (respectively G2). Let Horn (Gf, Gf) denote the set of
maps of Gf into Gf which preserve the representation theoretic operations
such as the direct sum and the tensor product. Then Kazuo Suzuki shows
that there is a canonical one-to-one correspondence between Horn (Gl9 G2)
and Horn (Gf, Gf). Natural topologies may be specified in Hom(Gχ, G2) and
Horn (Gf, Gf) such that this correspondence is a homeomorphism.

Recently the author has developed a theory [2] which may be looked upon
as a partial generalization of the Tannaka duality theory, to the case of
infinite dimensional representations of separable locally compact groups. The
purpose of this note is to illustrate this theory by obtaining an analogue of
K. Suzuki's theorem for non-compact groups.

The author wishes to thank Professor Shizuo Kakutani for suggesting
the general problem of generalizing the Tannaka duality theory to infinite
dimensional representations of locally compact groups. This work was supported
in part by a grant from the National Science Foundation, NSF-GP 1620.

1. Following the procedure of Kazuo Suzuki, we begin by outlining the
duality theory on which our result will be based.

Let G denote a separable locally compact group. Let ξ> denote a fixed
infinite dimensional separable Hubert space. Let Gc denote the set of all
strongly continuous unitary representations of G, with representation space §.
In this theory Gc will play the role of our "dual object" and will be called
the concrete dual of G.

(Remark: The consideration of Gc also plays a fundamental role in
decomposition theory [1]. The use of a fixed Hubert space is needed to make
the collection of representations a well defined set. An analogous procedure
should be used even in the Tannaka theory in order that G* be a well
defined set.)
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By a representation J of Gc, we shall mean a mapping J of Gc into the
invertible operators on ξ>, satisfying the following properties:

( i ) sup {|| J(L) | | : L € Gc] < + o o

(ii) If M and N are elements of Gc and if U is an isometric linear
mapping of the representation space of M @ N onto ξ>, then

J(U(M® N) U-1) = U (J(M) Θ J(N)) U-1.

(iii) If M and N are elements of Gc and if U is an isometric linear
mapping of the representation space of M ® N onto §, then

J(U(M® N)U~ι) = U(J(M) ® J\N))U~l.

In short, a representation of Gc is a bounded mapping of Gc into the
collection of invertibie operators on ξ>, which preserves direct sums and tensor
products. Let 11 = 11(G) denote the set of all such representations of Gc.
We define multiplication in 11 point-wise. Thus if J and K are two elements of
IX, then JK is defined to be that representation for which JK(L) = J(L)K(L)
for every L in Gc. U is given a topology defined as the smallest topology
such that the maps J —> J(L), where L is an element of Gc, are continuous
in the strong (equivalently weak, σ-weak or σ-strong) operator topology. The
following facts about U are proven in [2]. U is a topological group. In fact
U is isomorphic and homeomorphic to the group of all unitary operators of
some von Neumann algebra, where the topology of this unitary group is taken
to be any of the operator topologies, strong, σ-strong, weak or σ-weak.
Further G may be embedded in II in a canonical way by associating with
each x in G, the representation x oί Gc defined by x(L) = Lx for all L in
Gc. In this way G is embedded isomorphically and homeomorphically in 11.
Further every separable strongly continuous unitary representation of G has
a unique extension to 11. This correspondence between the representation
theory of G and that of 11 preserves all the usual representation theoretic
operations, such as direct sum and tensor product. Thus from an abstract
point of view, G and 11 have the same concrete dual, i.e., GC=UC. We call
the group 11 the fulfillment of G. Thus the duality procedure described here
leads back to an enlargement 11 of the original group. However a strict
duality does hold for any group 11 which is the fulfillment of a separable
locally compact group G. Indeed the group of representations of Ilc is the
same as the group of representations of Gc, which is just 11. This raises the
interesting question as to when two separable locally compact groups will
have the same fulfillment, or, what is equivalent, when two separable locally
compact groups will have isomorphic concrete duals.
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2. We next apply the duality theory described in the previous section,

to obtain an analogue of the theorem of K. Suzuki.

D E F I N I T I O N O F TOPOLOGY IN T H E C O N C R E T E D U A L . Let G be a

separable locally compact group and let Gc denote its concrete dual. We

define the weak topology of Gc to be the smallest topology such that the

maps L—>LX are continuous relative to the strong operator topology, for all

x in G. (Since the elements of Gc are all unitary representations, one obtains

an equivalent definition if one uses any one of the four operator topologies,

weak, strong, σ-weak, or σ-strong.) Thus a basic neighborhood of a re-

presentation M in Gc is of the form

U(M: * ! , . . . , * „ ; * ! , - • • , * „ ) = {L

where xu , xn are elements of G and ψu , ψn are elements of §.

D E F I N I T I O N O F HOMOMORPHISM BETWEEN CONCRETE D U A L S . Let

Gγ and G2 denote two separable locally compact groups and let Gx

c and G2

C

denote their concrete duals. A homomorphism of Gλ

c into G2

C is a mapping

Φ of Gic into G2

C which satisfies the following three axioms.

1. If M and N are elements of Gx

c and U is a linear isometry mapping

the representation space ξ>(M® N) of M® N, onto ξ>, then

Φ(U(M®N)U-1) = U(Φ(M) <g> Φ(N))U~ι.

2. If M and N are elements of Gγ

c and U is a linear isometry mapping

the representation space ξ>(Mθ N) of M@ N, onto ξ>, then

Φ([/(MΘ N)U~X) = U(Φ(M) θ Φ(ΛO)^"1

3. φ is continuous.

REMARK. The reader should compare the above definition with the

definition given by Kazuo Suzuki [3] in the case of finite dimensional repre-

sentations. Our axioms 1 and 2 are exact analogues of Suzuki's axioms 1

and 2. We have not assumed the analogue of Suzuki's axiom 3, as that will

appear later as a corollary. The analogue of Suzuki's axiom 4 is unnecessary

here, due to our restriction to unitary representations. We do not need the

analogue of Suzuki's axiom 5, as all our representations are acting on the

same fixed Hubert space. On the other hand, our consideration of continuous



294 J ERNEST

infinite dimensional representations has required the addition of a continuity
assumption, which is our third axiom.

THEOREM. Let Gλ and G2 denote separable locally compact groups, and
let tt2 denote the fulfillment of G2. Then there is a canonical one-to-one
correspondence between the set Hom(G1 ? tt2) of all continuous homomorphisms
of Gx into tt2, and the set Horn (G2

C, Gx

c) of all homomorphisms of G2

C into

PROOF. Suppose φ is an element of Hom(G 1 ? l l 2 ). Each representation
L in G2

C had a unique extension to IX2, by theorem 8. 3 of [2]. Thus Lφ{x)

is a well defined operator on ξ>, for each x in Gλ. Define φ\ a map of G2

C

into Gx

c by φ'(L)x=Lφ{x) for all L in G2

C and x in Gλ. A simple verifica-
tion, left to the reader, shows that φ'(L) is an element of Gx

c

9 for every L
in G2

C.
Further φ is a homomorphism of G2

C into Gx

c. We leave the simple
verification of axioms 1 and 2 to the reader. Let M be an element of G2

C.
We will show that φ is continuous at M. Let Ux denote a basic neighbor-
hood of φ'(M) in Gx

c. Thus Uλ is of the form:

xl9 , xn ψu , ψn)

where ψ t 6 ξ), Xi^Gλ9 l ^ z f g n . Then let U2 denote the neighborhood of
M in G2

C of the form:

U2(M: φ(Xi), , φ(xn) ψi, , ψn)

= {L: LzG2\ \\(LφiXi) - Mφ{Xt))ψt\\ ^ 1, 1 ^ £ ̂  n} .

Thus clearly φ'(U2) d Uu φ is continuous and hence φ is contained in
Horn (GΛGΛ

Suppose next that Φ is an element of Horn (G2

C, Gx

c). We define Φ', a
map of Gx into IJ2, by defining, for each x in Gu Φ'(x) to be the representa-
tion of G2

C (and thus an element of U2) defined by Φ'(xXL) = [Φ(L)]X, for all
L in G2

C. We leave to the reader the simple verification that Φ'(x) is an element
of U2, for each x in Gx. We also leave to the reader the simple verification
that Φ' is a homomorphism. We next verify that Φ' is continuous.

Recall the definition of topology in IX2. It is the smallest topology such
that the maps J-+J(L) on IX2 are continuous for all L in G2

C, relative to the
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strong (equivalently the weak) operator topology. Suppose [xt] is a sequence
in Gx which converges to x in Gλ. Then for all L in G2

C, Φ\xί){V) = [Φ(L)]Xί

converges strongly to [Φ(L)]X = Φ'(x)(L). Thus Φ'(Xί) converges to Φ'(x)
and hence Φ' is continuous.

We next note that (Φ')' = Φ. Indeed, suppose L is an element of G2

C.
Then for all x in Gl9 we have

[(Φ')'(L)L = Lvw = &(x)(L) = [Φ(L)]X.

Hence (Φ')'(L) = Φ(L) for all L, or (Φ')' = Φ Thus every element of
Horn (G2

C, Gx

c) is of the form φ for some φ in Hom(G1?lX2) Thus the map-
ping φ->φ maps Hom(G!,lX2) onto Horn (G2

C, Gx

c).
We next verify that this mapping is one-to-one. Suppose φλ and φ2 are

two elements of Hom(G1,U2) such that φ[ = φ2. Then for all L in G2

C and
x in Gl9 we have φ[(L)x = φΊV)x or Lφι{x) = Lφ2ix). Considering φλ{x) and
φ2(x) as elements of Il2 we have φγ{pc){IS) = φ2(x)(L) for all x in Gx and
all L in G2°. Thus <Pi(x) = φ2(x) for all x in Gx.

COROLLARY 1. Every homomorphίsm Φ of Gf into G2 satisfies the
following property. If U is a unitary operator on ξ>, then Φ(U*LU)
=U*Φ(L)U for all L in Gx

c.

PROOF. Every Φ in Horn (G^, G2

C) is of the form Φ = φ' where φ is
an element of Horn (G2, Uj). But it is trivial to verify that φ has the stated
property.

REMARK. There are natural topologies in Horn (G1? II2) and Horn (G2

C, Gλ

c),
namely the topology of point-wise convergence. Relative to these topologies,
the correspondence of the theorem is a homeomorphism. Indeed, suppose η
is an element of Hom(G1,lX2). Let Ur denote a basic neighborhood of 7/ in
Horn (G2

C, Gλ

c). Then W is of the form t/'fo') = W Ψ € Horn (G2
C, G,c)

and \\{φ\U)Xt - η'(L%) ψΛ ^ 1, l^i^n} where xt € Gu ψt € «, L* € G2
C,

1 ^ z ̂  n. But under the correspondence of the theorem, this basic neighbor-
hood of η corresponds precisely to the basic neighborhood U of η defined by

U(η) = {φ : φ € Horn (Gl9 U,) and ||(Uφ(Xt) - Uv(Xi)) ψ t | | ^ 1, 1 ^ £ ̂  n} .

REMARK. Since, from an abstract point of view, a separable locally
compact group G and its fulfillment U have identical concrete duals, i.e.,
G° = VLC

9 we have the following identifications:

Horn (G2

C, Gx

c) = Horn (U2

C, Gx

c) = Horn (G2

C, Ux

c) = Horn (U2

C, Uic) .
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Using this identification, and proving the theorem in the same manner as
before but with IXX in place of Gu we have that H o m ^ , ! ^ ) is in one-to-
one correspondence with Horn (U2

C, llic) = Horn (G2

C, Gx

c). This result, along
with our original theorem, gives us the following corollary.

COROLLARY 2. Y{om(GuX\,^) is in one-to-one correspondence with Horn
(Hi, tt2). Every continuous homomorphism of Gx into U2 has a unique ex-
tension to a continuous homomorphism of Ux into U2
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