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Introduction. An odd-dimensional differentiable manifold is said to
have an almost contact structure or to be an almost contact manifold if
the structural group of its tangent bundle is reducible to the product of a
unitary group with the 1-dimensional identity group. The study of almost
contact manifolds, at the first time, has been developed by W. M. Boothby
and H. C. Wang [ l ] υ and J. W. Gray [2] using a topological method. Recently,
S. Sasaki [7] found a differential geometric method of investigation into the
almost contact manifold and using this method Y. Tashiro [12] proved that in
any orientable differentiable hypersurface in an almost complex manifold we
can naturally define an almost contact structure. Hereafter, the almost contact
structure of the hypersurface is studied by M. Kurita [4], Y. Tashiro and S.
Tachibana [13] and the present author [5].

The purpose of the paper is to discuss normal almost contact hypersurfaces
in a Kaehlerian manifold of constant holomorphic sectional curvature and to
prove some fundamental properties of the hypersurfaces.

In §1, we give first of all some preliminaries of almost contact manifold and
prove a certain condition for a Riemannian manifold to be a normal contact
manifold for the later use. In §2, we consider hypersurfaces in a Kaehlerian
manifold and give a condition for the induced almost contact structure of a
hypersurface in a Kaehlerian manifold to be normal. After proving a lemma
in §3, we show in §4 that, in a normal almost contact hypersurface of a
Kaehlerian manifold of constant holomorphic sectional curvature, the second
fundamental tensor can admit at most three distinct characteristic roots and
that they are all constants. The distributions corresponding these characteristic
roots are studied in §5 and integrability of these distributions is discussed.

In §6, the integral submanifolds of certain distributions are considered and
using the theorem in §1, we prove that the integral submanifolds admit
normal contact metric structures.

1. Almost contact structure and contact metric structure. On a (2n —
l)-dimensional real differentiable manifold M2n~ι with local coordinate systems

1) The numbers in the brackets refer to the bibliography at the end of the paper.
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{x1}, if there exist a tensor field φ/, contravariant and covariant vector fields

ξi and ηt satisfying the relations

(1.1) ? * = 1 ,

(1. 2) rank (φ/) = 2 n - 2,

(1. 3) Φ/? = 0, Φ/vt = 09

a. 4) Φ/Φ*' = - v + r^,
then the set (φ/, £\ T^ ) is called an almost contact structure and the manifold

with such a structure is called an almost contact manifold. It has been

proved by S. Sasaki [7] that this definition of the almost contact manifold is

equivalent to that used in J. W. Gray's paper [2]. It is known2) that an almost

contact manifold always admits a positive definite Riemannian metric tensor

gH satisfying

(1.5) 9*? = *,

(1. 6)

The metric with above properties is called an associated metric to the almost

contact structure and the almost contact manifold with such a Riemannian

metric is called an almost contact metric manifold. In this paper, we always

treat such a Riemannian metric tensor, so we use a notation rf in stead of f*.

The tensor NH

h defined by the following is fundamental:

(1. 7) Njt

h = φjr(Vrφih ~ Viφrh) ~ Φir(Vrφjh " Vjφr") + V* η* V, " Vrf ηt

Where and throughout the paper Vj denotes the operator of covariant dif-

ferentiation with respect to the Christoffel symbols formed from the associated

metric and put V"7 = gjr Vr.

An almost contact structure with vanishing NH

h is called a normal almost

contact structure. Totally geodesic hypersurfaces in a Kaehlerian manifold

are examples of normal almost contact manifolds20.

A differentiable manifold M2n~ι is said to have a contact structure or to

be a contact manifold if there exists a 1-form η over the manifold such that

n-1

V Λ dη Λ Λ dη Φ 0 ,

where operator Λ in the last equation means exterior multiplication. In an

2) Sasaki, S. [7], Hatakeyama, Y. [3].
3) Okumura, M. [5].
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almost contact metric manifold if there is a relation for a constant c,

(1. 8) c*φjι

then the rank of the matrix (φ^) being 2n — 2, the structure is regarded as

the one formed from a contact structure. So, we call such an almost contact

structure a contact metric structure. A contact metric structure is called a

normal contact metric structure if in the structure the tensor Njt

h vanishes

identically.

The following theorem on normal contact structure is necessary for the

later section.

THEOREM 1.1.4) Let M2n~ι be a Riemannian manifold. If M2n~l admits

a Killing vector vt of constant length satisfying

(1. 9) c2 VjViVh = v%gih - vhgH ,

then, M2n~ι is a normal contact metric manifold such that the given Rieman-

nian metric gH is the associated one.

PROOF. Let cx be the length of vt and put ηt = vt. Then, we have

(l 10) c2 v , Vi Vh = Vi gjh - vn gji >

and ^7]i—\. Transvecting (1. 10) with ηh, we get

because of ηrVjηr — 0. If we put φH = CVJVΪ, the above equation changes

its form as (1. 4). By the construction we easily see that (1. 1), (1. 3) are

satisfied and that the existence of the solutions of (1. 3) and (1. 4) shows that

the rank of (φ/) is 2n — 2. Furthermore by definition

(1. 11) Φjt = ~2~ @jVi - diVj) = cViVί,

which implies that the structure is the one induced from a contact structure.

Substituting (1. 11) into (1. 10), we have

(1. 12)

from which, together with (1. 7), we get NH

h = 0. This completes the proof.

4) Okumura, M. and Y. Ogawa [6].
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2. Induced almost contact structure of a hypersurf ace in a Kaehlerian
manifold. Let us consider a real analytic 2w-dimensional almost Hermitian

manifold M2n with local coordinate systems {Xκ} and (Fμ

λ, Gμλ) be the almost

Hermitian structure, that is, Fμ

λ be the almost complex structure defined on

M2n and Gμλ be the Riemannian metric tensor satisfying Gκλ = GμvF^Fχ. A

hypersurface M2n~ι of M2n may be represented parametrically by the equation

Xκ = XK(xl). In this paper, we assume that the function XK(xl) be real

analytic, because we discuss a complete integrability making use of the

Frobenius' existence theorem for analytic differential equations. Furthermore,

in the following, we assume that the hypersurface be orientable.

Let Bi

κ = dtX
κ, (3, = d/dxι), then they span the tangent plane of M2n~ι

at each point and induced Riemannian metric gn in M2n~ι is given by

(2. 1) gjt = GμλBfBι

λ.

Choosing the unit normal vector Cκ to the hypersurface, we put

(2. 2) φϊ = B3

λFλ*B\y

(2. 3) Vj = BfFμ

λCλ = BfFμλC
λ,

where we have put Bj

κ = GλκBt

λgJi, Cλ = GλlcC
κ and F v = GκμFλ

κ. Then

the aggregate (φ/, girηr, VJ, ga) defines an almost contact metric structure in

the hypersurface5). In the following we call an orientable hypersurface with

the induced almost contact structure an almost contact hypersurface and if

the structure is normal a normal almost contact hypersurface.

Assuming that M2n be a Kaehlerian manifold we consider an almost

contact hypersurface in M2n.

Making use of Gauss and Weingarten equations

(2. 4) VjBf^HjiO,

(2. 5) v ,C Λ = -HHB\,

where HH is the second fundamental tensor of the hypersurface, we see that
the following identities are always valid.

(2.6)

(2. 7) Vjφίh = ViHjh — Vh.HH .

Consequently the tensor NH

h can be rewritten as

(2. 8) Nkj = ηάφSHr* + φirHrk) - ηk (φ'f Hr

l + φ«Hrj) .

5) Tashiro, Y. [12].
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Contraction with respect to i and k in (2. 8) gives

(2. 9) Nr/= -v

sHrsφf,

because of HH = Htj and φH = — φiό.

Let M2n~ι be a normal almost contact hypersurface, then, transvecting
(2. 9) with φf, we have

(2.10) Hiiη> = ctηit (μ = HHV^
i),

that is, a is a characteristic root of the second fundamental tensor H} and η3

is a corresponding eigenvector of a. Furthermore, transvecting (2. 8) with
η5 and making use of (2. 10), we get

(2. 11) φSHS+.φ'Ήr^O.

This implies, together with (2. 6), that

(2. 12)

which means that the vector ηt is a Killing vector. Since ηt is a unit vector
we have from the above equation

(2. 13)

Now, we prove the following

THEOREM 2.1. Let M2n be a Kaehlerian manifold. In order that the
induced almost contact structure of a hypersurface in M271'1 be normal, it is
necessary and sufficient that the vector ηt is a Killing vector.

PROOF. We have only to prove the sufficiency of the condition. By
means of (2. 6) if ηt is a Killing vector we have the relation (2. 11). Sub-
stituting (2. 11) into (2. 8), we get Nkf = 0. This proves the sufficiency of
the condition. Q.E.D.

3. Normal almost contact hypersurfaces in a Kaehlerian manifold of
constant holomorphic sectional curvature. A Kaehlerian manifold M2n is
called a manifold of constant holomorphic sectional curvature if the holomor-
phic sectional curvature at every point is independent of two dimensional
directions at the point, and its curvature tensor is given by

(3. 1) Rυμλκ — k(GυκGμ\ — GμκGv\ + FvlcFμχ — FμκFvχ —

k being a constant.
In this section we consider an orientable hypersurface in a Kaehlerian
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manifold of constant holomorphic sectional curvature.

Substituting (3. 1) into the Gauss and Codazzi equations6)

(3. 2) RkHh = B/B/BfB^R^ + HkhHJt - HjhHki,

(3. 3)

we have

(3. 4) Rjcjih

and

(3. 5) VkHH — VjHki = k(ηkφH — η3φki —

from which we get

(3. 6) (v*H* - VjHkί) if = -kφki,

and

(3. 7) (v*HΛ - VjHkι) η* = -2kφkj.

For a normal almost contact hypersurface in a Kaehlerian manifold of
constant holomorphic sectional curvature it follows that

(3. 8) RkHh ηk = ηh(kgH + aHJt) - ηί(kgjh + aHjh),

because of (2. 10) and (3. 4).
On the other hand, in §2 we have seen that rf is a Killing vector and

consequently an infinitesimal aίnne transformation. Therefore it follows that

(3. 9) £ J£.| = V, ViVh + Rmhn* = 0,

where £, means the operator of Lie derivation with respect to the vector ηι.

Comparing (3. 8) and (3. 9), we have

-VjVtVh = ηu(kgn + aHH) - ηt(kgjh + aHjh).

Transvecting the above equation with ηh and making use of (2. 13), we get

Vόη
h ViVh = kgH + <XHH - (k + a2) ηίVj,

which implies that

(3. 10) HtrHf = aHH + k(gJt - VjVi)

6) For example, Schouten, J. A. [10].
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by virtue of (2. 6) and (2. 10).

LEMMA 3. 1. Let M2n~ι be an analytic normal almost contact hyper-

surface in a Kaehlerian manifold of constant holomorphίc sectional curvature

M2n, then one of the following two relations must be satisfied.

1) a in (2. 10) is a constant

2) The Kaehlerian manifold in consideration is a locally Euclidean manifold.

PROOF. Suppose that the scalar a is not constant. Applying the operator

Vj to (2. 10) and making use of (2. 6) we have

VjHkrη
r + φjSHk

rHsr = V,OLηk - Oίφk

rHrj ,

from which

(3. 11) VjHkrη
r + kφjk =

because of (3. 10) and (2. 11). Making similar equation to (3. 11) by inter-

changing of the indices j and k, we get

which implies, together with (3. 7), that

from which

(3. 12) VjCC = βηό , (β = ηr VrCi) ,

and therefore

V* VjCt = ΘVkVj + Vkβηs

Since ^όcί is a gradient vector and η5 is a unit Killing vector, we get

by contraction with V*V>

(3. 13) # V * ^ V V = O

The Riemannian metric being positive definite, from our assumption we

have VjVi = 0 or from (2. 6)

(3. 14) HJrφt' = 0,

which implies that H3i = oiη5ηi because of (1. 4).
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Differentiating the last equation covariantly and taking account of (3. 12),

we get ^jcHj^βηiηjηk. From which we have k = 0 because of (3. 6). This

means that M2n is a locally Euclidean manifold.

4. Principal curvatures of the hypersurface. In this section we con-

sider the principal curvatures of the hypersurface M2n~ι and give some

fundamental formulas. In the following discussions we only consider the

normal almost contact hypersurfaces in non-Euclidean Kaehlerian manifold of

constant holomorphic sectional curvature, because we have already discussed

the normal almost contact hypersurfaces in Euclidean space [5].

By means of Lemma 3. 1, the scalar function in (2. 10) being constant,

we have the following identity for the second fundamental tensor.

(4. 1) HirH/ = cHi5 + k(gJt - ηόη%) ,

where c=Hόiη
jηι= const. From (2.10) c is a characteristic root of the second

fundamental tensor Hf and rf is a corresponding eigenvector to the root c.

Let λ be a characteristic root of the matrix (Hf) which is distinct to c

and vι corresponding eigenvector to the root. Then transvecting (4.1) with

vj and making use of the orthogonality of vj and ηj, we have

(λ2 -c\-k)vi = 0,

by virtue of Hj

ivj=\vi. Thus, the principal curvatures of the hypersurface

must satisfy the following algebraic equation of the third order,

(4. 2) (λ - c) (λ2 - cX - k) = 0 .

Furthermore, since k and c are both constants, the characteristic roots are

all constants. Thus we have the

THEOREM 4.1. Let M2n~ι be a normal almost contact hypersurface in

a Kaehlerian manifold of constant holomorphic sectional curvature. Then

M2n~ι has at most three distinct principal curvatures and they are all

constants.

If the hypersurface M2n~ι admits only one principal curvature λ=c, then

with respect to a suitable frame, the second fundamental tensor has the form

'< o %

= c(β/). So, M2n~ι is totally umbilical. However, we
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have known that there is no umbilical hypersurface in a non-Euclidean

Kaehlerian manifold of constant holomorphic sectional curvature7). Hence

we deduce that the hypersurface admits two or three distinct principal

curvatures.

LEMMA 4. 2. There exists no other vector than ηι which corresponds to

the characteristic root c of the matrix (Hf).

PROOF. Let vj be an eigenvector corresponding to the characteristic

root c. Transvecting (4. 1) with vj and making use of Hj

ίvj=cv\ we have

= 0,

which implies the lemma.

From Theorem 4.1 and Lemma 4. 2, it follows that the second fundamental

tensor Hf and the Riemannian metric tensor gόi have the components of

the form

r + 1 s

λ2

0

0 λ2

( 1
0

with respect to a suitable orthonormal frame which will be called in the

following an adapted frame, where λ1? λ2 are given by

(4. 3)

because of (4.2). Since the characteristic roots are constants and r+s = 2n

— 2, the multiplicities of the roots are also constants. From these facts,

H/= const. The trace of a matrix being invariant under the change of the

frame, we have

7) Tashiro, Y. and S. Tachibana [13].
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THEOREM 4. 3. The mean curvature of the normal almost contact hyper-
surface M2n~ι in a Kaehlerian manifold of constant holomorphic sectional
curvature is a constant.

Using (3. 4) and (4.1), as a corollary of the theorem we get

COROLLARY 4.4. Let M2n~ι be a normal almost contact hypersurface in
a Kaehlerian manifold of constant holomorphic sectional curvature. Then
the scalar curvature of M2n~ι with respect to the associated Riemannian
metric is a constant.

Suppose that the hypersurf ace M2n~λ admits two distinct principal
curvatures c and λ. Then with respect to the adapted frame, the second
fundamental tensor Hf has the components

(4.4)

from which we get

(if/) = λ

0 '

+ (c-λ)

oj

that is

(4.5) / = λδ/ + (c - λ) rfηj .

However, since (4.5) is a tensor equation, it does hold for any frame,
especially for natural frame. If we substitute (4. 5) into (2.6) we have φ5i

= λ Vj Vί- As ηι is a Killing vector, this means that the almost contact
structure is a normal contact metric structure. Substituting (4. 5) into Gauss
equation (3. 4), we have the curvature tensor of the hypersurface as follows:

(4. 6) Rkjίh =
khffH-gjhgki) + k(φkhφjί-φjhφkί-2φkjφίh)
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An almost contact manifold which has the curvature tensor of the above

form is called a locally C-Fubinian manifold8). Thus we have proved the

THEOREM 4. 4. If a normal almost contact hypersurface in a Kaehlerian

manifold of constant holomorphic sectional curvature has only two distinct

principal curvatures, then the almost contact structure is a normal contact

metric structure and consequently the hypersurface M2n~ι is a locally C-

Fubinian manifold.

5. Hypersurfaces which admits three distinct principal curvatures. By

means of Theorem 4.1, a normal almost contact hypersurface M2n~ι can

admit at most three distinct principal curvatures. In this section we discuss

the case that the hypersurface M2n~ι admits three distinct principal curvatures.

Let us denote by D09 A and A the distributions spanned by the vectors

corresponding to c, λx and λ2 respectively. Then the tangent bundle T(M2n~ι)

satisfies

T(M2n~ι) = D O Θ A Θ A (Whitney sum) ,

over M2n~\

Let vι be a vector belonging to Dl9 that is vi satisfies H/vj=X1v
i. Then,

owing to (2.11) we have

Hfφjv* = -φijHjkv
k = -\xφ

ikvk = X^φJvK

In exactly the same way, we get H/φk

jwk = X2φk

icwk for any wι belonging

to A This means that

(5. 1) φ A c A , φD2 C A .

Thus the following theorem is proved.

THEOREM 5.1. The distributions A and A are both invariant under
the mapping φ.

Now, making use of the adapted frame we can easily see the following

LEMMA 5.2. Let

(5. 2) O/

8) Tashiro, Y. and S. Tachibana [13]. The definition of C-Fubinian manifold does not differ
from that given in [13] except for a constant factor.
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(5 3) F> = T k
(5 4) Q» = τ
then, at each point in M2n~\ the tensors Of, Pf and Qf are projections from

Tp(M2n-χ) onto D0(β), A(/>) and D2(p) respectively.

The tensors Of, Pf and Qf satisfy the following relations.

(5.5) O/ + P/ + Q / = S / ,

and

(5. 6) Of ( V = <V, P/ P^ = P fc

έ, Q/ Q*' = Qfc*,

Next we shall prove the

THEOREM 5. 3. i>£ Do, Dx and D2 έ^ ίΛe distributions spanned by the

vectors corresponding to the characteristic roots c, Xλ and λ2 of the second

fundamental tensor (Hf) of the hyper surf ace respectively. Then distributions

>i and DoφD2 are both integrable.

PROOF. Since another case can be proved quite analogously, we shall

only prove that DQ@Dι is integrable. Denoting by uι and vι two arbitrary

vectors belonging to Du we shall calculate Qf[u,v]j.

By definition of Qf, it follows that

Qf [U, VV - — L (-H/ + (c-λ2) 8/ + λ 2 ^ ) (Ur VrVS - V*VrU3)

C —

by virtue of (2. 12) and vjηj=ujηj=0. Making use of (3.5), this can be
rewritten as

_ ^ λ g {(C - λx - λ f ) (Ur VrV1 - Vr VrU1)

k(ηr φf ~ ηό φr

l ~ 2 φrj rf) UrV j + 2 λ2 η
ι φf Hrs U

r Vj] ,
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where we have used the relations H/uj = XγU1 and H/vj = Xίv
t.

Hence we get

Q/[u,vV
C—

by virtue of (4. 3).

= 0,

In exactly the same way, we can also prove that Q/[w, η]j = 0 and
consequently, for two arbitrary vectors belonging to D o φ ΰ 1 } their bracket
also belongs to Do 0 JD1# Hence DQ 0 Dλ is integrable. This completes the
proof.

6. Integral manifolds of Do 0 Dx and D f l φ ΰ 2 , As we have seen in
the previous section the distributions Do 0 ZΛ and Do 0 D2 are both
integrable. Therefore through each point of the hypersurface there pass
integral manifolds of DoφD1 and D0(BD2. In the following we study almost
contact strucatures of the integral manifolds of Do 0 Dλ and Do 0 D2.

First of all notice that the mapping φ restricted to the vector space which
spanned by vectors belonging to Dλ®D2 behaves just like an almost complex
structure and that the distribution Dx and D2 are both invariant under φ.
Hence the dimensions of Dx and D2 must be even9). From this fact we have

LEMMA 6.1. The integral submanifolds of both of the distributions
D0®D1 and DQ®D2 are odd dimensional.

Denoting by r and s the dimensions of the distributions Dx and D2

respectively, we take r mutually orthonormal contravariant vectors Xλ\ ,
Xr* in Dx and s mutually orthonormal contravariant vectors YJ (x = l, 2, ,
s) in D2. Moreover we put Xr+ι = ηι> Then 2n — l vectors XJ (α = l, 2,
• ,r, r+1) and Yx

ι being linearly independent, we can construct the inverse
of the matrix (XΛ Yχl) which we denote by (Xaj, Yxj). Then we have the
identities

(6. l) xjx\ = v , XJY\ = o, YSX% = o, YjY't = δ/,

(6. 2) XJXaj + Yx

tY*, = W,

from which we get Xr+1j = VJ .
If we put /ηa=XaίVι, 'ηa is a vector defined in the integral submanifold of

A) θ Du The induced Riemannian metric of the submanifold is given by

9) Schouten, J. A. and K. Yano [11].



CERTAIN ALMOST CONTACT HYPERSURFACES 283

(6.3) V». = Λ,X»JX. i.

Making use of the metric 'gha and taking account of (6. 1), (6. 2), we have

V = X\rf from which we can easily see that 'ηa is a unit vector.

Now, put

(6. 4) ΓΛ = (X»' Xck \jk) + Xb

} d, Xc') X\ ,

then the covariant derivative of '77c along the integral submanifold of Do 0 Dλ

is given by

(6. 5) \h'ηc = Xh^jηc-Yb\ηa^

From this definition, we can easily see that

(6. 6) 'Vi'ηa^Xa'Xt'Vsηt,

which implies that 'ηa is a Killing vector.

Now, we prove the

THEOREM 6. 2. Let M271'1 be a normal almost contact hypersurface in

a Kaehlerian manifold of constant holomorphic sectional curvature and Do,

Dλ and D2 be the distributions defined in the previous section. Then the

integral submanifolds of D0@Dλ and DQ@D2 are both normal contact metric

manifolds.

PROOF. By virtue of (2. 6) and (6. 6) we have

(6.7) 'V*'*α= -φtrHfXJXJ.

For any vector belonging to DQ® Du the tensor Q/ denned by (5. 4)

behaves like a zero tensor and consequently it follows that

(6. 8) (c - 2 λ2) Q/ XJ = -H/ XJ + λ! XJ + λ2 v* Vj XJ = 0

by virtue of (4. 3). From (6. 7) and (6. 8) we get

(6. 9) \b'Va= -λxφϋ-Xα'-XΛ

Differentiating covariantly (6. 9) and taking account of Theorem 5.1, we have

10) Yano, K. and E. T. Davies [15J.
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' Vc ' Vft '*la = — λi(V* ΦiJ -Xα* ̂ δ j ^c*)

from which

V/VδV = —^liViHjic — ηjHik) Xa Xb' Xc* 9

because of (2. 7). Therefore we have from (6. 8)

'Vc'Vt'va = xΛvjX^guXc'XJ - Vίxa

igkJXckxb

j)

— ^ I 2 ( 7 δ 9ca ~~ Va 9cb)

This implies that the vector 'ηa is a unit Killing vector satisfying (1. 9).
Hence, the integral submanifold of the distribution Do φ Όx has a normal
contact metric structure by virtue of Theorem 1.1. Entirely the same
way we can also prove that the integral submanifold of the distribution
Do 0 D2 admits a normal contact metric structure. This completes the proof.
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