MOD 3 PONTRYAGIN CLASS AND INDECOMPOSABILITY OF DIFFERENTIABLE MANIFOLDS.

YASURÔ TOMONAGA

(Received March 10, 1964)

Introduction. We have already dealt with the indecomposability of differentiable manifolds twice ([1], [2]). In this paper we shall show an application of the $\bmod q$ Pontryagin class, where q denotes a prime number bigger than 2, on this problem. The mod q Pontryagin classes were systematically investigated by Hirzebruch ([3], [4]). In particular the vanishment of $\bmod 3$ dual-Pontryagin class of the highest dimension is fundamental for our purpose.

1. Let q be a prime number bigger than 2 and let X_{n} be a compact orientable differentiable n-manifold. For any cohomology class $v \in H^{n-2 r(a-1)}$ (X_{n}, Z_{q}) it holds that

$$
\begin{equation*}
\Re_{q}^{r} v=s_{q}^{r} v([3],[4]), \tag{1.1}
\end{equation*}
$$

where $\mathfrak{\Re}_{q}^{r}$ denotes the Steenrod power ([7])

$$
\begin{equation*}
\Re_{q}^{r}: H^{i}\left(X_{n}, Z_{q}\right) \longrightarrow H^{i+2 r(q-1)}\left(X_{n}, Z_{q}\right) \tag{1.2}
\end{equation*}
$$

and s_{q}^{r} denotes a mod q polynomial of Pontryagin classes such that

$$
\begin{equation*}
s_{q}^{r}=q^{r} L_{\frac{1}{2} r(q-1)}\left(p_{1}, \cdots, p_{t}\right) \quad \bmod q, \quad t=\frac{1}{2} r(q-1) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\prod_{i}\left(\sqrt{\gamma_{i}} / \operatorname{tgh} \sqrt{\gamma_{i}}\right)=\sum_{j \geq 0} L_{j}\left(p_{1}, \cdots, p_{j}\right), \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
p=\sum_{i \geqq 0} p_{i}=\prod_{i}\left(1+\gamma_{i}\right) \quad \text { and } \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
p_{i} \in H^{4 i}\left(X_{n}, Z\right) . \tag{1.6}
\end{equation*}
$$

The dimension of s_{q}^{r} is equal to $2 r(q-1)$. We put

$$
\begin{equation*}
\sum_{i \geq 0} b_{q, i}=\prod_{i}\left(1+\gamma_{i}^{l}\right), \quad b_{q, j}^{*} \in H^{4 j}\left(X_{n}, Z_{q}\right) \tag{1.7}
\end{equation*}
$$

where $*$ denotes the reduction modulo q and

$$
\begin{equation*}
l=\frac{1}{2}(q-1) . \tag{1.8}
\end{equation*}
$$

It is known that
(1. 9)

$$
b_{q, j}^{*}=\sum \Re_{q}^{i} s_{q}^{r}
$$

where the summation is extended over all i, r with

$$
\begin{equation*}
2 j=(i+r)(q-1) \cdot([4]) \tag{1.10}
\end{equation*}
$$

In the case $q=3,(1.7)$ takes the form

$$
\begin{equation*}
\sum_{j \geq 0} b_{3, j}=\prod_{i}\left(1+\gamma_{i}\right)=\sum_{i \geqq 0} p_{i} \tag{1.11}
\end{equation*}
$$

and we have from (1.9)
(1. 12)

$$
p_{j}^{*}=\sum_{j=i+r} \mathfrak{P}_{3}^{i} s_{3}^{r} .
$$

We define $\bar{b}_{q, j}$ and \bar{s}_{q}^{r} by

$$
\begin{equation*}
\left(\sum_{r \geq 0} s_{q}^{r}\right)\left(\sum_{r \geq 0} \bar{s}_{q}^{r}\right)=1, \quad \bar{s}_{q}^{r} \in H^{2 r(q-1)}\left(X_{n}, Z_{q}\right) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{j \geq 0} b_{q, j}\right)\left(\sum_{j \geq 0} \bar{b}_{q, j}\right)=1 \tag{1.14}
\end{equation*}
$$

which leads to
(1. 14) ${ }^{\prime}$

$$
\left(\sum_{j \geq 0} b_{q, j}^{*}\right)\left(\sum_{j \geqq 0} \bar{b}_{q, j}^{*}\right)=1 .
$$

It is well known that
(1. 15)

$$
\left\{\begin{array}{l}
\text { (i) } \mathfrak{F}_{q}^{0}=\text { identity }, \\
\text { (ii) } \mathfrak{P}_{q}^{i} u_{k}=0,2 i>k, \quad u_{k} \in H^{k}\left(X_{n}, Z_{q}\right), \\
\text { (iii) } \mathfrak{B}_{q}^{r}(u v)=\sum_{s=0}^{r} \mathfrak{P}_{q}^{s} u \cdot \Re_{q}^{r-s} v .([7])
\end{array}\right.
$$

We have from (1.9), (1.13), (1.14) and (1.15)
(1. 16)

$$
\bar{b}_{\bar{\alpha}, j}^{\bar{*}}=\sum_{2 j=(i+r)(q-1)} \mathfrak{S}_{q}^{i} \bar{s}_{q}^{r}
$$

because
(1. 17)

$$
\begin{aligned}
1 & =\left(\sum_{i \geqq 0} \mathfrak{P}_{q}^{i}\right)\left(\sum_{j+k \geq 0} s_{q}^{j} s_{q}^{k}\right)=\sum_{j+k \geqq 0} \sum_{i \geqq 0} \sum_{r+s=i} \mathfrak{P}_{q}^{r} s_{q}^{j} \mathfrak{B}_{q}^{s} s_{q}^{k} \\
& =\left(\sum_{r, j} \mathfrak{P}_{q}^{r} s_{q}^{s}\right)\left(\sum_{s, k} \mathfrak{B}_{q}^{s} \mathrm{~S}_{q}^{k}\right)=\left(\sum_{l \geqq 0} b_{q, l}^{*}\right)\left(\sum \mathfrak{P}_{q}^{s} \xi_{q}^{k}\right) .
\end{aligned}
$$

In particular $\bar{b}_{3, j}^{*}$ equals the mod 3 dual-Pontryagin class $\bar{p}_{j}^{*}\left(\in H^{4 j}\left(X_{n}, Z_{3}\right)\right)$, where

$$
\sum_{j \geq 0} \bar{p}_{j} \sum_{i \geqq 0} p_{i}=1 .
$$

We have from (1.16)

$$
\begin{equation*}
\bar{b}_{\bar{q}, k}^{\stackrel{\rightharpoonup}{*}}=\sum_{2 k=(i+j)(q-1)} \mathfrak{P}_{q}^{i} s_{q}^{j}=\bar{s}_{q}^{\frac{2 k}{\overline{\sigma-1}}}+\sum_{i=1}^{2 k /(q-1)} \mathfrak{S}_{q}^{i} \bar{s}_{q}^{\frac{2 k}{q-1}-i} . \tag{1.18}
\end{equation*}
$$

On the other hand (1.13) leads to

$$
\begin{equation*}
0=\bar{s}_{q}^{\frac{2 k}{q-1}}+\sum_{i=1}^{2 k /(q-1)} s_{q}^{i} \frac{2 k}{\bar{q} \sigma-i} . \tag{1.19}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\bar{b}_{q, k}^{*}=\sum_{i=1}^{2 k /(q-1)}\left(\Re_{q}^{i} \bar{s}_{q}^{\frac{2 k}{q-1}-i}-s_{q}^{i} \bar{s}_{q}^{\frac{2 k}{\sigma-1}-i}\right) . \tag{1.20}
\end{equation*}
$$

When $4 k=n$, we have from (1.1) and (1.20)
(1. 21)

$$
\bar{b}_{d, k}^{*}=0,
$$

i.e. $\bar{b}_{q, k}\left[X_{4 k}\right]$ is divisible by q. In particular

$$
\begin{equation*}
\bar{p}_{k}\left[X_{4 k}\right]=0 \quad \bmod 3 . \tag{1.22}
\end{equation*}
$$

2. If a differentiable manifold X_{n} is a product of two differentiable manifolds X_{r} and X_{s}, we say that the X_{n} is decomposable and if not we say that X_{n} is indecomposable ([1]).

We deal with a compact orientable differentiable $X_{4 k}$. Suppose that such an $X_{4 k}$ be decomposable, i.e.

$$
\begin{equation*}
X_{4 k}=X_{r} \times X_{s} . \tag{2.1}
\end{equation*}
$$

Then we have for any multiplicative series $\sum_{i \geqq 0} K_{i}\left(p_{1}, \cdots, p_{i}\right)$ ([6])

$$
\begin{equation*}
K_{k}\left(p_{1}, \cdots, p_{k}\right)\left[X_{4 k}\right]=K_{r}\left(p_{1}, \cdots, p_{r}\right)\left[X_{r}\right] K_{s}\left(p_{1}, \cdots, p_{s}\right)\left[X_{s}\right] \tag{2.2}
\end{equation*}
$$

provided that $r \equiv 0 \bmod 4$. If $r \neq 0 \bmod 4$, then the cobordism components of X_{r} consist only of torsions and hence the same thing holds for $X_{4 k}$. Therefore all Pontryagin numbers of $X_{4 k}$ are zero, in particular $K_{k}\left[X_{4 k}\right]$ equals zero. In the case of $\sum_{j \geq 0} \bar{b}_{q, j}$ we have from (1.21) and (2.2) the

THEOREM. Let $X_{4 k}$ be a compact orientable differentiable manifold. If $\bar{b}_{q, k}\left[X_{4 k}\right]$ is not divisible by q^{2}, then such an $X_{4 k}$ is indecomposable.

Corollary. If $\bar{p}_{k}\left[X_{4 k}\right]$ is not divisible by 9 , then such an $X_{4 k}$ is indecomposable.

We shall show some applications of above Corollary.
Example 1. In the case $W=F_{4} / \operatorname{Spin}(9)$ ([5], p. 534) the Pontryagin classes are given by

$$
\begin{equation*}
p_{1}=p_{3}=0, \quad p_{2}=6 u, \quad p_{4}=39 u^{2}, \quad u^{2}[W]=1, \quad u \in H^{8}(W, Z) . \tag{2.3}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\bar{p}_{4}=-p_{4}+2 p_{1} p_{3}-3 p_{1}^{2} p_{2}+p_{2}^{2}+p_{1}^{4}=-3 u^{2}, \text { i.e. } \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\bar{p}_{4}[W]=-3 . \tag{2.5}
\end{equation*}
$$

Thus W is indecomposable.
Example 2. Let $P_{2 m+1}(c)$ be the complex projective space of complex dimension $2 m+1$. The total Pontryagin class of $P_{2 m+1}(c)$ is given by

$$
\begin{equation*}
p=\left(1+g^{2}\right)^{2 m+2}, \quad g \in H^{2}\left(P_{2 m+1}(c), Z\right) . \tag{2.6}
\end{equation*}
$$

Let $X_{4 m}$ be a compact orientable differentiable submanifold of $P_{2 m+1}(c)$ and let λg be the cohomology class corresponding to the homology class represented by $X_{4 m}$. Then the dual-Pontryagin class of $X_{4 m}$ is given by ([6])

$$
\begin{align*}
& \bar{P}_{m}\left[X_{4 m}\right]=\left[\lambda g\left(1+\lambda^{2} g^{2}\right)\left(1+g^{2}\right)^{-(2 m+2)}\right]\left[P_{2 m+1}(c)\right] \tag{2.7}\\
& \quad=\left[\lambda g\left(1+\lambda^{2} g^{2}\right) \sum_{r \geq 0}(-1)^{r} \frac{(2 m+2) \cdots(2 m+r+1)}{r!} g^{2 r}\right]\left[P_{2 m+1}(c)\right]
\end{align*}
$$

$$
=(-1)^{m} \lambda\left\{\binom{3 m+1}{m}-\binom{3 m}{m-1} \lambda^{2}\right\}
$$

by virtue of
(2. 8)

$$
g^{2 m+1}\left[P_{2 m+1}(c)\right]=1
$$

Hence, if $\lambda\left\{\binom{3 m+1}{m}-\binom{3 m}{m-1} \lambda^{2}\right\} \equiv 0 \bmod 9$, then such an $X_{4 m}$ is indecomposable.

References

[1] Y. Tomonaga, Indecomposability of differentiable manifolds, Tôhoku Math. Journ., 14(1962), 328-331.
[2] Y. Tomonaga, A-genus and indecomposability of differentiable manifolds, to appear in the Proc. Amer. Math. Soc. .
[3] F. Hirzebruch, On Steenrod's reduced powers, the index of inertia and Todd genus, Proc. Nat. Acad. Sci. U. S. A., 39(1953), 951-956.
[4] F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math., 69(1954), 213-236.
[5] A. Borel \& F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. Journ. of Math., 80(1958), 458-538.
[6] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956, Springer.
[7] J. ADEM, The relations on Steenrod powers of cohomology classes, Algebraic geometry and topology, Princeton Univ. Press, 1957, 191-238.

Utsunomiya University.

