MULTIPLIERS FOR WALSH FOURIER SERIES

Chinami Watari

(Received March 6, 1964)

Introduction. In the theory of trigonometric Fourier series (abbrev. TFS), it is well known that the behavior of a TFS is "ameliorated" by integrating (even by a fractional order) the generating function. But, the process of taking the α-th integral (in the sense of H. Weyl) of a function f is to consider the convolution of f with an integrable function whose Fourier coefficients are $(i|n|)^{-\alpha}$; this fact suggests us the possibility to define a corresponding operation in the dyadic group of N. J. Fine [1]. The purpose of the present paper is to investigate a class of multiplier transformations of Walsh Fourier series. (abbrev. WFS), which shares most of properties with fractional integration.

Let G be the dyadic group, with elements $x=\left(x_{n}\right), x_{n}=0$ or $1(n=1,2, \cdot$ $\cdots), y=\left(y_{n}\right)$ etc., with the "addition" + ; the topology of G is defined by the neighborhoods $V_{n}=\left\{x ; x_{1}=\cdots=x_{n}=0\right\}(n=1,2, \cdots)$ of the identity element, or equivalently, by the distance $d(x, y)=\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right| 2^{-n}$. The Rademacher functions $\phi_{n}(x)(n=0,1,2, \cdots)$ are defined by $\phi_{n}(x)=(-1)^{x(n+1)}$ where $x(n+1)$ stands for x_{n+1}, and the Walsh functions, the characters of G, are given by

$$
\begin{aligned}
& \psi_{0}(x)=1 \\
& \psi_{n}(x)=\phi_{n(1)}(x) \phi_{n(2)}(x) \cdots \phi_{n(r)}(x) \\
& \quad \text { for } n=2^{n(1)}+2^{n(2)}+\cdots+2^{n(r)}=1, n(1)>n(2)>\cdots>n(r) \geqq 0 .
\end{aligned}
$$

We refer the reader to Fine [1] for basic properties of Walsh functions.

1. Polynomials and formal series. A (Walsh) polynomial of degree n is a linear combination $\sum_{k=0}^{n-1} c_{k} \psi_{k}(x)$ with $c_{n-1} \neq 0$; the totality of polynomials of degree not exceeding n is denoted by \mathfrak{F}_{n} and the union of the \mathfrak{F}_{n} 's by \mathfrak{F}. It is clear that \mathfrak{B} (as well as each of \mathfrak{F}_{n}) forms a linear space.

We denote by \mathfrak{F} the set of all formal (Walsh) series with complex coefficients. It is not difficult to introduce such topologies in \mathfrak{F} and \mathfrak{F} that they are the duals with these topologies, but we do not insist on this point.

Let $f_{1}(x)=\sum c_{k} \psi_{k}(x) \quad$ and $\quad f_{2}(x)=\sum d_{k} \psi_{k}(x) \quad$ be two elements of \mathfrak{F}. We call the formal series

$$
f_{3}(x)=\sum c_{k} d_{k} \psi_{k}(x)
$$

the convolution of $f_{1}(x)$ and $f_{2}(x)$, and denote it by $\left(f_{1} * f_{2}\right)(x)$. If both series happen to be WFS or Walsh-Fourier-Stieltjes series, this definition agrees with the ordinary one. It is clear that \mathfrak{F} is a commutative algebra with convolution as multiplication, and $\mathfrak{F}, \mathfrak{P}_{n}$ are ideals of \mathfrak{F}. \mathfrak{F} has a unit, $\delta(x)=\sum_{k=0}^{\infty} \psi_{k}(x)$, which is the Fourier-Stieltjes series of the Dirac measure situated at 0 . Thus multiplier transformations are (restriction of) convolution transformation in \mathfrak{F}.
2. Kernel functions. We study here a special class of formal series, the kernels of our multiplier transformations. Let us write

$$
I_{\alpha}(x)=1+\sum_{k=1}^{\infty} 2^{-k(1) \alpha} \psi_{k}(x) \quad(\alpha \text { real })
$$

where $k(1)$ is the first dyadic exponent of k.

Lemma 1. Let $1 \leqq p \leqq \infty$ and let q be its conjugate exponent, i.e., $(1 / p)+(1 / q)=1$. Then we have, for $\alpha>1 / q, I_{\alpha}(x) \in L^{p}=L^{p}(G)$.

Proof. If $p=\infty$, then $q=1$ and $\alpha>1$ implies the absolute (and uniform) convergence of $I_{\alpha}(x)$, thus $I_{\alpha}(x)$ is the WFS of a continuous function, which is more than what is to be proved. On the other hand, it is well known that $D_{2^{\prime}}(x)$, the Dirichlet kernel of order 2^{j}, equals to 2^{j} or 0 according as $x \in V_{j}$ or not. Thus for $1 \leqq p<\infty$, we have $\left\|D_{2^{\prime}}\right\|_{p}=2^{j(1-1 / p)}=2^{j / q}$. Now

$$
I_{\alpha}^{(n)}(x) \equiv\left(I_{\alpha} * D_{2^{n}}\right)(x)=1+\sum_{j=0}^{n-1} 2^{-j \alpha} \phi_{j}(x) D_{2^{\prime}}(x)
$$

gives for $m>n$,

$$
\begin{aligned}
\left\|I_{\alpha}^{(m)}(x)-I_{a}^{(n)}(x)\right\|_{p} & =\left\|\sum_{j=n}^{m-1} 2^{-j \alpha} \phi_{j}(x) D_{2^{\prime}}(x)\right\|_{p} \\
& \leqq \sum_{j=n}^{m-1} 2^{-j \alpha}\left\|D_{2^{\prime}}(x)\right\|_{p}=\sum_{j=n}^{m-1} 2^{-j(\alpha-1 /()} \rightarrow 0 \quad(m, n \rightarrow \infty)
\end{aligned}
$$

Thus $I_{\alpha}^{(n)}(x)$ converges in L^{p}-norm to a function whose WFS is $I_{\alpha}(x)$, q.e.d.

Lemma 1 may be restated as follows:

$$
I_{\alpha}(x) \in L^{p} \quad \text { for } \quad p<1 /(1-\alpha) \quad(0<\alpha \leqq 1)
$$

Lemma 2. If $h \in V_{n}$, we have

$$
\left\|\Delta_{h} I_{\alpha}\right\|_{p} \equiv\left\|I_{\alpha}(x+h)-I_{\alpha}(x)\right\|_{p}=O\left(2^{-n(\alpha-1 / q)}\right) \quad(\alpha>1 / q) .
$$

Proof.

$$
\begin{aligned}
\Delta_{h} I_{\alpha} & =\sum_{j=0}^{\infty} 2^{-j \alpha} \sum_{k=2^{j}}^{2^{++1-1}} \psi_{k}(x+h)-\sum_{j=0}^{\infty} 2^{-j \alpha} \sum_{k=2^{j}}^{2^{\prime+1-1}} \psi_{k}(x) \\
& =\sum_{j=0}^{\infty} 2^{-j \alpha} \sum_{k=2^{j}}^{2^{\prime+1-1}}\left(\psi_{k}(h)-1\right) \psi_{k}(x) \\
& =\sum_{j=n}^{\infty} 2^{-j \alpha} \sum_{k=2^{j}}^{2^{\prime+1}-1}\left(\psi_{k}(h)-1\right) \psi_{k}(x) \quad\left(\because \psi_{k}(h)=1,0 \leqq k<2^{n}\right) \\
& =\sum_{j=n}^{\infty} 2^{-j \alpha}\left(\phi_{j}(x \dot{+} h) D_{2^{\prime}}(x+h)-\phi_{j}(x) D_{2^{\prime}}(x)\right) .
\end{aligned}
$$

Thus, by Minkowski's inequality,

$$
\begin{aligned}
\left\|\Delta_{h} I_{\alpha}\right\|_{p} & \leqq \sum_{j=n}^{\infty} 2^{-j \alpha}\left\|D_{2^{\prime}}(x+h)\right\|_{p}+\sum_{j=n}^{\infty} 2^{-j \alpha}\left\|D_{2^{2}}(x)\right\|_{p} \\
& =2 \sum_{j=n}^{\infty} 2^{-j \alpha} \cdot 2^{j / q}=2 \sum_{j=n}^{\infty} 2^{-j(\alpha-1 / q)}, \quad \text { q. e. d. }
\end{aligned}
$$

Lemma 3. There is a positive constant B_{α} depending only on α such that

$$
\begin{gathered}
\left\|I_{-\alpha}^{(m)}\right\|_{p} \leqq B_{\alpha} 2^{m(\alpha+1 /())} \quad(\alpha>0) \\
\text { Proof. } \quad I_{-\alpha}^{(m)}(x)=1+\sum_{k=1}^{2^{m-1}} 2^{k(1) \alpha} \psi_{k}(x)=1+\sum_{j=0}^{m-1} 2^{j \alpha} \phi_{j}(x) D_{2^{\prime}}(x) .
\end{gathered}
$$

Thus

$$
\left\|I_{-\alpha}^{(m)}(x)\right\|_{p} \leqq 1+\sum_{j=0}^{m-1} 2^{j \alpha}\left\|D_{2^{\prime}}\right\|_{p}=1+\sum_{j=0}^{m-1} 2^{j(\alpha+1 / q)}=O\left(2^{m(\alpha+1 / q)}\right), \quad \text { q. e. d. }
$$

The case $p=1$ is of particular importance for later applications.
3. Lemmas on the best approximation. A function $f(x)$ on G is said to belong to the $\operatorname{Lip}^{(p)} \alpha(W)$ (resp. $\operatorname{lip}^{(p)} \alpha(W)$) if

$$
\|f(x+h)-f(x)\|_{p}=O\left((d(h, 0))^{\alpha}\right) \quad\left(\text { resp. } o\left((d(h, 0))^{\alpha}\right)\right)
$$

This definition is essentially due to G. Morgenthaler [5]. A characterization of the class $\operatorname{Lip}^{(p)} \alpha(W)$ was given by us [9], which applies with little modification also to the class $\operatorname{lip}^{(p)} \alpha(W)$, i.e., we have

Lemma 4. The following four statements are equivalent:

$$
\begin{align*}
& f(x) \in \operatorname{Lip}^{(p)} \alpha(W) \tag{1}\\
& \omega^{(p)}\left(2^{-n} ; f\right) \equiv \sup \left\{\|f(x+h)-f(x)\|_{p}: h \in V_{n}\right\}=O\left(2^{-n \alpha}\right) \tag{2}\\
& E_{m}{ }^{(p)}(f) \equiv \inf \left\{\left\|f-p_{m}\right\|_{p}: p_{m} \in \mathfrak{B}_{m}\right\}=O\left(m^{-\alpha}\right) \tag{3}\\
& \left\|f(x)-s_{2^{n}}(x ; f)\right\|_{p}=O\left(2^{-n a}\right) \tag{4}
\end{align*}
$$

similarly for the o-case.
As a corollary of Lemma 4, we have
Lemma 5. Let $\alpha>0, \beta>0, r \geqq 1, s \geqq 1$ and $1 / t \geqq(1 / r)+(1 / s)-1$. Then $f \in \operatorname{Lip}^{(r)} \alpha(W)\left(\right.$ resp. $\left.\operatorname{lip}^{(r)} \alpha(W)\right)$ and $g \in \operatorname{Lip}^{(s)} \beta(W)$ together imply $f * g \in \operatorname{Lip}^{(t)}(\alpha+\beta)(W)\left(\right.$ resp. $\left.\operatorname{lip}^{(t)}(\alpha+\beta)(W)\right)$.

For the proof of these Lemmas, the reader is referred to [9] for the O-case; the o-case can be proved similarly.
4. Metric properties of multiplier transforms. Let us write

$$
f_{\alpha}(x)=\left(I_{\alpha} * f\right)(x) \quad \text { for } \quad f \in L^{1} .
$$

THEOREM 1. The operation $f \rightarrow f_{\alpha}$ has the following properties:
1°.

$$
\left(f_{\alpha}\right)_{\beta}(x)=f_{\alpha+\beta}(x) \quad f \in L^{1}, \quad \alpha>0, \quad \beta>0 .
$$

2°.
If $f \in \operatorname{Lip}^{(p)} \alpha(W) \quad$ then $\quad f_{\beta} \in \operatorname{Lip}^{(p)}(\alpha+\beta)(W)$
similarly for lip class $\quad p \geqq 1, \alpha>0, \beta>0$.
3°. If f is in \mathfrak{P}_{n} and $\alpha>0$, then there is a constant A_{α}, depending only on α, such that $\quad\left\|f_{-\alpha}\right\|_{p} \leqq A_{\alpha} n^{\alpha}\|f\|_{p}$.
4°.

$$
\begin{aligned}
& \text { If } f \in L^{p}(1 \leqq p<\infty) \text { or } C \text { and } \alpha>1 / p \text {, then } \\
& f_{\alpha} \in \operatorname{lip}^{(\infty)}(\alpha-1 / p)(W)
\end{aligned}
$$

Proof. 1° is directly verified by an application of Fubini theorem. Ad 2° : Lemmas 2 and 4 imply $I_{\beta} \in \operatorname{Lip}^{(1)} \beta(W)$, and the result follows from

Lemma 5. 3° follows from Lemma 3 upon "truncating" the formal series $I_{-\alpha}$:

$$
f_{-\alpha}(x)=\left(I_{-\alpha} * f\right)(x)=\left(I_{-\alpha}^{(m)} * f\right)(x) \quad(m=n(1)+1) .
$$

Consequently

$$
\begin{aligned}
\left\|f_{-\alpha}\right\|_{p} & \leqq\left\|I_{-\alpha}^{(m)}\right\|_{1}\|f\|_{p} \\
& \leqq B_{\alpha} 2^{m \alpha}\|f\|_{p} \leqq A_{\alpha} n^{\alpha}\|f\|_{p}
\end{aligned}
$$

To prove 4°, observe that $\|f(x+h)-f(x)\|_{p}=o(1)(h \rightarrow 0)$. Now a combination of Lemma 2 and Lemma 5 yields the requied result.

The next theorem and its proof shows that our multiplier transformation is very close to fractional integration (cf. Zygmund [13]).

THEOREM 2. If $f \in L^{p} \quad(p>1), \alpha=\frac{1}{p}-\frac{1}{q}>0$ then $f_{\alpha} \in L^{q}$ and $\|f\|_{q} \leqq A_{p, \alpha}\|f\|_{p}$.

Proof. We begin with the special case $1<p<2, q=2, \alpha=\frac{2-p}{2 p}$. We may and do suppose that the mean value of $f(x)$ is 0 . Our assertion is now equivalent to

$$
\left(\sum_{\nu=1}^{\infty} 2^{-2 \nu(1) \alpha}\left|c_{\nu}\right|^{2}\right)^{1 / 2} \leqq A_{\alpha}\|f\|_{p},
$$

where c_{ν} are the Fourier coefficients of f.
The left-hand member does not exceed, by Hölder's inequality,

$$
\begin{aligned}
A_{\alpha}\left(\sum \nu^{-2 \alpha}\left|c_{\nu}\right|^{2}\right)^{1 / 2} & \leqq\left\{\left(\sum\left|c_{\nu}\right|^{p^{\prime}}\right)^{1 / p^{\prime}}\left(\sum \nu^{p-2}\left|c_{\nu}\right|^{p}\right)^{1 / p}\right\}^{1 / 2} \\
& \leqq\|f\|_{p}^{1 / 2} A_{\alpha}\|f\|_{p}^{1 / 2}=A_{\alpha}\|f\|_{p}
\end{aligned}
$$

by well-known inequalities of Hausdorff-Young and Paley. (cf. [14], Chapter XII, Theorems (2.8) and (5.1)).

Now the Theorem is true for $\frac{1}{p}=\frac{1}{2}+\frac{\alpha}{2}, \frac{1}{q}=\frac{1}{2}-\frac{\alpha}{2}$.
For let g be a polynomial $g(x)=\sum d_{\nu} \psi_{\nu}(x)$, with $\|g\|_{p}=1$. We have

$$
\begin{aligned}
\left|\int f_{\alpha}(x) \overline{g(x)} d x\right| & =\left|\sum 2^{-\nu(1) x} c_{\nu} \bar{d}_{\nu}\right| \\
& \leqq A_{\alpha}\left(\sum \nu^{-\alpha}\left|c_{\nu}\right|^{2}\right)^{1 / 2}\left(\sum \nu^{-\alpha}\left|d_{\nu}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

which does not exceed $A_{\alpha}\|f\|_{p}$ by the preceding case.
The proof will be complete if we prove the following Theorem:
ThEOREM 3. Let $f \in L^{1}, \quad 0<\alpha<1$. Then the operation $f \rightarrow f_{\alpha}$ is of weak type $\left(1, \frac{1}{1-\alpha}\right)$. That is, there exists a constant A_{α}, depending on α only, such that for any $y>0$,

$$
m\left(\left\{x ;\left|f_{\alpha}(x)\right|>y\right\}\right) \leqq\left(\frac{A_{\alpha}}{y}\|f\|_{1}\right)^{\frac{1}{1-\alpha}}
$$

Proof. We need the following lemmas:
Lemma 6. Let z be a positive number greater than $\|f\|_{1}$. Then the following decomposition is possible:

$$
\begin{equation*}
f(x)=v(x)+w(x), \quad w(x)=\sum w_{i j}(x) \tag{i}
\end{equation*}
$$

(ii) $\quad|v(x)| \leqq 2 z \quad$ for almost every x,
(iii) $\quad\|v\|_{1} \leqq\|f\|_{1}$,
(iv) $\quad \sum\left\|w_{i j}\right\|_{1} \leqq 4\|f\|_{1}$,
(v) there exist $x_{i j} \in G$ and neighborhood V_{i} of 0 , such that $w_{i j}$ vanishes outside $V_{i}\left(x_{i j}\right)$,

$$
\begin{aligned}
& V_{i}\left(x_{i j}\right) \text { ane mutually disjoint, } \\
& \sum_{i, j} m\left(V_{i}\left(x_{i j}\right)\right) \leqq \frac{1}{z}\|f\|_{1}
\end{aligned}
$$

$$
\begin{equation*}
\int w_{i j}(x) d x=0 \quad \text { for every pair }(i, j) \tag{vi}
\end{equation*}
$$

This Lemma is due to S . Igari [3], and is a modification of the "decomposition lemma" of L. Hörmander [2].

Lemma 7. With the notations of the previous lemma, we have

$$
w_{a}(x)=0 \quad \text { for } \quad x \notin \bigcup_{i, j} V_{i}\left(x_{i j}\right) \equiv E .
$$

Proof. Fix a pair (i, j), and consider $u=w_{i j}, a=x_{i j}$. It is sufficient to prove that $u(x+a)=0$ for $x \notin V=V_{i}$.

Now

$$
\begin{aligned}
u_{\alpha}(x+a) & =\int u(t) I_{\alpha}(x+a+t) d t \\
& =\int_{V(a)} u(t)\left(I_{\alpha}(x+a+t)-I_{\alpha}(x)\right) d t \\
& =\int_{V} u(t+a)\left(I_{\alpha}(x+t)-I_{\alpha}(x)\right) d t
\end{aligned}
$$

Let us evaluate $I_{\alpha}(x \dot{+} t)-I_{\alpha}(x)$ for $x \notin V, t \in V$. We have seen in the proof of Lemma 2, that, for $t \in V=V_{i}$,

$$
\begin{aligned}
I_{\alpha}(x+t) & -I_{\alpha}(x) \\
& =\sum_{j=i}^{\infty} 2^{-j \alpha}\left(\phi_{j}(x+t) D_{2^{\prime}}(x+t)-\phi_{j}(x) D_{2^{\prime}}(x)\right) .
\end{aligned}
$$

But, $x \notin V_{i}, t \in V_{i}$ implies $x+t \notin V_{i}\left(V_{i}\right.$ being a subgroup of G). Since $D_{2^{j}}$ vanishes outside V_{j}, all of the summands vanish, and so does $I_{\alpha}(x \dot{+} t)-I_{\alpha}(x)$.

Proof of Theorem 3. We may suppose $\|f\|_{1}=1$. It is sufficient to prove the following two facts:
1°.

$$
\begin{aligned}
& m\left(\left\{x ;\left|v_{\alpha}(x)\right|>y\right\}\right) \leqq A_{\alpha} y^{1 /(\alpha-1)} \\
& m\left(\left\{x ;\left|w_{\alpha}(x)\right|>y\right\}\right) \leqq A_{\alpha} y^{1 /(\alpha-1)}
\end{aligned}
$$

Or, 2° is evident from Lemma 6, (v) and Lemma 7, put $z=y^{1 /(1-a)}$. To prove 1°, we use the special case of Theorem 2 already established. In fact

$$
\begin{aligned}
m\left(\left\{x ;\left|v_{\alpha}(x)\right|>y\right\}\right) & \leqq y^{-q} \int\left|v_{\alpha}(x)\right|^{q} d x \quad\left(\frac{1}{q}=\frac{1}{2}-\frac{\alpha}{2}\right) \\
& \leqq y^{-p} A_{\alpha}\left(\int|v(x)|^{p} d x\right)^{q / p} \\
& \leqq A_{\alpha} y^{-q} z^{(p-1) \alpha^{\prime} p}\|v\|_{1}^{q / p} \leqq A_{\alpha} y^{\beta}\|f\|_{1}=A_{\alpha} y^{\beta}
\end{aligned}
$$

where

$$
\beta=-q+(p-1) q / p(1-\alpha)=-1 /(1-\alpha), \quad \text { q.e.d. }
$$

The proof of Theorem 2 is completed by an application of Marcinkiewicz interpolation Theorem ([14] Chapter XII, Theorem (4.6)), since $I_{\alpha} \in L^{1}$ implies $\left\|f_{\alpha}\right\|_{\infty} \leqq A_{\alpha}\|f\|_{\infty}$.

In the theory of TFS, it is well known that a formally integrated Fourier series converges uniformly. This is not the case for $f_{1}(x)=\left(I_{1} * f\right)(x), f \in L^{1}$,
though there is a partial substitute, as indicates the following theorem.
THEOREM 4. Let $f \in L^{1}, f(x) \sim \sum c_{k} \psi_{k}(x)$. Then we have

$$
\|L(x ; f)\|_{p} \leqq A_{p}\|f\|_{1} \quad(0<p<\infty),
$$

where

$$
L(x ; f)=\sup _{n}\left|s_{n}(x ; f)\right|=\sup _{n}\left|\left(f_{1} * D_{n}\right)(x)\right|
$$

and A_{p} depends only on p.
Proof. Putting $m=n(1)$ we have

$$
\begin{aligned}
s_{n}\left(x ; f_{1}\right) & =c_{0}+\sum_{\nu=1}^{n-1} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x) \\
& =c_{0}+\sum_{\nu=1}^{2^{m-1}} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x)+\sum_{\nu=2^{m}}^{n-1} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x) \\
& =c_{0}+\sum_{j=0}^{m-1} 2^{-j} \delta_{j}(x ; f)+2^{-m} \sum_{\nu=2^{m}}^{n-1} c_{\nu} \psi_{\nu}(x)=c_{0}+S_{1}+S_{2}, \quad \text { say. }
\end{aligned}
$$

where $\quad \delta_{j}(x ; f)=s_{2^{\prime+1}}(x ; f)-s_{2^{\prime}}(x ; f)=\int f(x+t) \phi_{j}(t) D_{2^{\prime}}(t) d t$. Since $\left|c_{\nu}\right| \leqq$ $\|f\|_{1}$ for every ν, it is clear that $\left\|S_{2}\right\|_{\infty} \leqq\|f\|_{1}$. On the other hand,

$$
\left|\delta_{j}(x ; f)\right| \leqq \int|f(x+t)| D_{2^{\prime}}(t) d t
$$

implies, for $p \geqq 1$,

$$
\left\|\delta_{j}(x ; f)\right\|_{p} \leqq\|f\|_{1}\left\|D_{2^{2}}\right\|_{p} \leqq 2^{j / q} \mid f \|_{1},
$$

where $q=p^{\prime}=p /(p-1)$. This inequality, combined with

$$
\begin{aligned}
\left|s_{2^{m}}\left(x ; f_{1}\right)\right| & \leqq\left|c_{0}\right|+\sum_{j=0}^{m-1} 2^{-j}\left|\delta_{j}(x ; f)\right| \\
& \leqq\left|c_{0}\right|+\sum_{j=0}^{\infty} 2^{-j}\left|\delta_{j}(x ; f)\right|
\end{aligned}
$$

gives

$$
\begin{aligned}
\left\|\sup _{m}\left|s_{2^{m}}\left(x ; f_{1}\right)\right|\right\|_{p} & \leqq\left|c_{0}\right|+\sum_{j=0}^{\infty} 2^{-j}\left\|\delta_{j}(x ; f)\right\|_{p} \\
& \leqq\|f\|_{1}+\sum_{j=0}^{\infty} 2^{-j(1-1 / q)}\|f\|_{1}=A_{p}\|f\|_{1} .
\end{aligned}
$$

This yields the required estimate for S_{1}, and the proof of complete.
The theorem ceases to be true for $p=\infty$; in fact, consider the series $\sum_{\nu=1}^{\infty} \frac{\psi_{v}(x)}{\log (\nu+1)}$, which is the Fourier series of an integrable function $f(x)$, for which $f_{1}(x)$ is not bounded in any neighborhood of 0 (S. Yano [12]).
5. Series with random signs. Another substitute, yielding the uniform convergence of multiplier transforms, is obtained by considering series with random signs. The following theorem is the Walsh analogue of a result of Paley and Zygmund (see [14], Chapter V, Theorem (8, 34)).

Theorem 5. (i) Suppose $\sum_{v=0}^{\infty} a_{\nu}^{2}<\infty$. Then the "random Walsh series" $\sum_{\nu=0}^{\infty} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x)$ has, for almost all t, partial sums of magnitude $o\left((\log n)^{1 / 2}\right)$, uniformly in x.
(ii) If $\sum a_{\nu}^{2}(\log \nu)^{1+\varepsilon}<\infty$ for some $\varepsilon>0$, then, for almost all t, the series $\sum_{v=0}^{\infty} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x)$ converges uniformly in x.

The proof of this theorem is a repetition of that of the trigonometric case due to Salem and Zygmund, the only difference being the use of a fact that a Walsh polynomial is of constant value when it is restricted to a suitable neighborhood of a point. Thus we omit the proof, referring the reader to Zygmund [14], Chapter V, pp. 219-220. The following corollary, however, seems to be new.

Corollary. There exists a set E of Haar measure 1 such that for any $f \in L^{1}, f(x) \sim \sum a_{\nu} \psi_{\nu}(x)$ and for any $\alpha>1 / 2, t \in E$ implies the uniform convergence of the formal series

$$
f_{\alpha, t}(x)=a_{0} \phi_{0}(t)+\sum_{\nu=1}^{\infty} 2^{-\nu(1) \alpha} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x) .
$$

Proof. From Theorem 3 (ii), the series

$$
I_{\alpha, l}(x)=\phi_{0}(t)+\sum_{v=1}^{\infty} 2^{-1(1) \alpha} \phi_{\nu}(t) \psi_{v}(x)
$$

converges, for a fixed $\alpha>1 / 2$ and for almost all t (say for $t \in E_{\alpha}$), uniformly
in x, representing consequently a continuous function $I_{a, t}(x)$. Or, it is easily seen that the sets E_{α} are increasing with respect to α. Put $E=\bigcap\left\{E_{\alpha} ; \alpha\right.$ rational, $\alpha>1 / 2\}$. Then $E \subset E_{\alpha}$ for $\alpha>1 / 2$ with α rational or irrational and E is of measure 1. It is now sufficient to observe that $f_{\alpha, t}=f * I_{\alpha, t}$ and $s_{n}\left(x ; f_{\alpha, t}\right)=\left(s_{n}\left(\cdot ; I_{\alpha, t}\right) * f\right)(x)$; the uniform convergence of $s_{n}\left(x ; I_{\alpha, t}\right)$ proves our assertion.
6. Multiplier $\left\{\nu^{-\alpha}\right\}$. The above theorems remain true if we consider $\nu^{-\alpha}$ instead of $2^{-\nu(1) \alpha}$. Let

$$
J_{\alpha}(x)=1+\sum_{\nu=1}^{\infty} \nu^{-\alpha} \psi_{\nu}(x) \quad(\alpha>0)
$$

Repeated use of Abel transformations shows that $J_{\alpha} \in L^{1}$ and Theorem 1 is re-proved easily. The special case of Theorem 2 requires no change, and Theorem 3 will be based on the fact $J_{\alpha}(x) \leqq A_{\alpha} H_{\alpha}(x)$, where $H_{\alpha}(x) \equiv 2^{n(1-\alpha)}$ $\left(x \in V_{n}-V_{n+1}\right), n=0,1,2, \cdots,(0<\alpha<1)$. Lemma 7 , with $H_{a}(x)$ in place of $J_{\alpha}(x)$, remains true and the rest is similarly carried on.

If one could prove that the formal series

$$
1+\sum_{\nu=1}^{\infty} \frac{2^{-\nu(1)}}{\nu} \psi_{\nu}(x)
$$

should be a Walsh-Fourier- Stieltjes series, one would have a unified treatment of the two classes of multipliers $2^{-\nu(1) \alpha}$ and $\nu^{-\alpha}$; but the present author has been unable to prove this statement. However, for functions belonging to $L^{p}(1<p<\infty)$, we have

THEOREM 6. Let $\lambda_{0}=1, \lambda_{\nu}=2^{\nu(1) \alpha} / \nu^{\alpha} \quad \nu=1,2, \cdots$ where α is a fixed real number, and let $f \in L^{p}, 1<p<\infty, f(x) \sim \sum c_{\nu} \psi_{\nu}(x)$. Then $\sum \lambda_{\nu} c_{\nu} \psi_{\nu}(x)$ is the Fourier series of a function Λf in L^{p} and

$$
\|\Lambda f\|_{p} \leqq A_{\alpha, p}\|f\|_{p}
$$

This theorem is a special case of the Walsh analogue of a theorem of J. Marcinkiewicz [4] (see also [14], Chapter XV, P. 232) and proved similarly. The main step (corresponding to [14], Chapter XV, Lemma (2.15)) has already been proved by G. Sunouchi ([6], Theorem 1).
7. Application to the theory of approximation. If a 2π-periodic function $f(x)$ has its TFS $\sum A_{\nu}(x)$, the formal trigonometric series $\sum \nu^{\lambda} A_{\nu}(x)$ plays an important role in the process of (trigonometric) approximation to $f(x)$ (see
e.g. [8]). A similar fact holds for WFS. Let $f(x) \in L^{1}$ and let its WFS be $\sum c_{\nu} \psi_{\nu}(x)$. If $g_{\nu}(n)(\nu=0,1,2, \cdots)$ is the sequence of Walsh-Fourier-Stieltjes coefficients of a bounded measure $\mu^{(n)}$ on G, with $g_{0}(n)=\int d \mu^{(n)}=1$, we have multiplier transforms

$$
P_{n}(x)=P_{n}(x ; f)=\left(f * \mu^{(n)}\right)(x) \sim \sum_{\nu=0}^{\infty} c_{\nu} g_{v}(n) \psi_{\nu}(x)
$$

where the parameter n need not be discrete.
If there exist a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

$$
\begin{align*}
& \left\|f-f * \mu^{(n)}\right\|_{p}=o(\varphi(n)) \quad \text { implies } \quad f(x)=\text { constant } \tag{I}\\
& \left\|f-f * \mu^{(n)}\right\|_{p}=O(\varphi(n)) \quad \text { implies } \quad f(x) \in K \tag{II}\\
& f(x) \in K \quad \text { implies } \quad\left\|f-f * \mu^{(n)}\right\|_{p}=O(\varphi(n)) \tag{III}
\end{align*}
$$

then we say that the method of approximation with multiplier transforms defined by $\mu^{(n)}$ is saturated with the order $\varphi(n)$ and with the class K.

Suppose that there exist a positive constant c and sequence $\left\{\rho^{(\nu)}\right\}, \nu=1,2, \cdots$ for which

$$
\lim _{n \rightarrow \infty} \frac{1-g_{v}(n)}{\varphi(n)}=c \rho(\nu) \quad(\nu=1,2, \cdots)
$$

then we can prove, by a standard weak compactness argument (we may take here the 2^{N}-th patial sum of the WFS of $\left(f-f * \mu^{(n)}\right)$ instead of $(C, 1)$-means, used in the case of TFS) that our method is saturated with the order $\varphi(n)$ and the class of those functions $f(x)$ for which

$$
\begin{equation*}
\left\|\sum_{\nu=1}^{2^{N}-1} c_{\nu} \rho^{(\nu)} \psi_{\nu}(x)\right\|_{p}=O(1) \tag{*}
\end{equation*}
$$

provided that the assertion (III) is verified by the properties of $\mu^{(n)}$. The relation (*) is equivalent to, respectively,
$\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the WFS of a bounded function ($p=\infty$)
$\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the WFS of a function in $L^{p} \quad(1<p<\infty)$
$\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the Walsh-Fourier-Stieltjes series of a bounded measure on $G(p=1)$.

For most of the well-known summability methods, the sequence $\rho(\nu)$ is of the form ν^{λ}, where λ is a positive number, and (III) is proved by a direct estimation. If we denote by $W^{\lambda}=W^{(p) \lambda}$ the class of all WFS for which (*) holds with $\rho(\nu)=\nu^{\lambda}$, we have the following

THEOREM 7. Let $\lambda>0$ and let $T=\left(T_{n}\right)$ be a linear approximation process with

$$
\begin{equation*}
\left\|T_{n}(f)(x)\right\|_{p} \leqq M_{1}\|f\|_{p} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f(x)-T_{n}(f)(x)\right\|_{p}=M_{2} n^{-\lambda}\left\|f^{[\lambda]}\right\|_{p} \text { for } f \in W^{\lambda} \tag{2}
\end{equation*}
$$

Then $f \in \operatorname{Lip}^{(p)} \alpha(W) \quad 0<\alpha<\lambda \quad$ implies

$$
\left\|f(x)-T_{n}(f)(x)\right\|_{p}=O\left(n^{-\alpha}\right)
$$

where $f^{[\lambda]}$ is (the function or the measure represented by) the formal series

$$
\sum_{\nu=1}^{\infty} c_{\nu} \nu^{\lambda} \psi_{\nu}(x) .
$$

This theorem was first proved by G. Sunouchi [7] in the theory of the trigonometric approximation; a different proof (with a slight generalization), which applies also for Walsh system, is found in Watari [10].

Corollary. If $f(x) \in \operatorname{Lip}^{(p)} \alpha(W) 1<p<\infty, 0<\alpha<1$, then for any $\beta>0 \quad\left\|\sigma_{n}^{\beta}(x ; f)-f(x)\right\|_{p}=O\left(n^{-\alpha}\right)$, where $\sigma_{n}^{\beta}(x ; f)$ denotes the n-th (C, β) means of the WFS of $f(x)$.

For the proof it suffices to see that the approximation by σ_{n}^{β} is saturated with the order $1 / n$ and the class $\left\{f: f^{[1]} \in L^{p}\right\}$; this fact being a consequence of Paley's decomposition theorem and multiplier theorem of Marcinkiewicz (see Theorem 6 above).

This result was proved, under an additional condition $\beta>\alpha$, by S. Yano [11]. For the trigonometric system, this is due to G. Sunouchi [7].

References

[1] N. J. Fine, On Walsh functions. Trans. Amer. Math. Soc., 65(1949), 372-414.
[2] L. HÖrmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math., 104(1960), 93-140.
[3] S. Igari, An extension of the interpolation theorem of Marcinkiewicz, Tôhoku Math. J., 15(1963), 343-358.
[4] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math., 8(1939), 78-91.
[5] G. Morgenthaler, On Walsh-Fourier series, Trans. Amer. Math. Soc., 84(1957), 472-507.
[6] G. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc., 2(1951), 5-11.
[7] , On the saturation and best approximation, Tôhoku Math. J., 14(1962), 212-216.
[8] G. Sunouchi and C. Watari, On determination of the class of saturation in the theory of approximation of functions, I. Proc. Japan Acad., 34(1958), 477-481. II. Tôhoku Math. J., 11(1959), 480-488.
[9] C. Watari, Best approximation by Walsh polynomials, Tôhoku Math. J., 15(1963), 1-5.
[10] , A note on saturation and best approximation, Tôhoku Math. J., 15(1963), 273-276.
[11] S. Yano, On approximation by Walsh functions, Proc. Amer. Soc., 2(1951), 962-967.
[12] -, On Walsh-Fourier series, Tôhoku Math. J., 3(1951), 223-242.
[13] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations, J. de Math., 35(1956), 223-248.
[14] , Trigonometric series, Cambridge, 1959.

