MULTIPLIERS FOR WALSH FOURIER SERIES

CHINAMI WATARI

(Received March 6, 1964)

Introduction. In the theory of trigonometric Fourier series (abbrev. TFS), it is well known that the behavior of a TFS is "ameliorated" by integrating (even by a fractional order) the generating function. But, the process of taking the α -th integral (in the sense of H. Weyl) of a function f is to consider the convolution of f with an integrable function whose Fourier coefficients are $(i|n|)^{-\alpha}$; this fact suggests us the possibility to define a corresponding operation in the dyadic group of N. J. Fine [1]. The purpose of the present paper is to investigate a class of multiplier transformations of Walsh Fourier series. (abbrev. WFS), which shares most of properties with fractional integration.

Let G be the dyadic group, with elements $x=(x_n)$, $x_n=0$ or 1 $(n=1,2, \cdots)$, $y=(y_n)$ etc., with the "addition" +; the topology of G is defined by the neighborhoods $V_n=\{x\,;\,x_1=\cdots=x_n=0\}$ $(n=1,2,\cdots)$ of the identity element, or equivalently, by the distance $d(x,y)=\sum_{n=1}^{\infty}|x_n-y_n|2^{-n}$. The Rademacher functions $\phi_n(x)$ $(n=0,1,2,\cdots)$ are defined by $\phi_n(x)=(-1)^{x(n+1)}$ where x(n+1) stands for x_{n+1} , and the Walsh functions, the characters of G, are given by

$$\psi_0(x) = 1$$
,
 $\psi_n(x) = \phi_{n(1)}(x)\phi_{n(2)}(x)\cdots\phi_{n(r)}(x)$
for $n = 2^{n(1)} + 2^{n(2)} + \cdots + 2^{n(r)} = 1$, $n(1) > n(2) > \cdots > n(r) \ge 0$.

We refer the reader to Fine [1] for basic properties of Walsh functions.

1. Polynomials and formal series. A (Walsh) polynomial of degree n is a linear combination $\sum_{k=0}^{n-1} c_k \psi_k(x)$ with $c_{n-1} \neq 0$; the totality of polynomials of degree not exceeding n is denoted by \mathfrak{P}_n and the union of the \mathfrak{P}_n 's by \mathfrak{P} . It is clear that \mathfrak{P} (as well as each of \mathfrak{P}_n) forms a linear space.

We denote by \mathfrak{F} the set of all formal (Walsh) series with complex coefficients. It is not difficult to introduce such topologies in \mathfrak{F} and \mathfrak{F} that they are the duals with these topologies, but we do not insist on this point.

Let $f_1(x) = \sum c_k \psi_k(x)$ and $f_2(x) = \sum d_k \psi_k(x)$ be two elements of \mathfrak{F} . We call the formal series

$$f_3(x) = \sum c_k d_k \psi_k(x)$$

the convolution of $f_1(x)$ and $f_2(x)$, and denote it by $(f_1 * f_2)(x)$. If both series happen to be WFS or Walsh-Fourier-Stieltjes series, this definition agrees with the ordinary one. It is clear that \mathfrak{F} is a commutative algebra with convolution as multiplication, and \mathfrak{P} , \mathfrak{P}_n are ideals of \mathfrak{F} . \mathfrak{F} has a unit, $\delta(x) = \sum_{k=0}^{\infty} \psi_k(x)$, which is the Fourier-Stieltjes series of the Dirac measure situated at 0. Thus multiplier transformations are (restriction of) convolution transformation in \mathfrak{F} .

2. Kernel functions. We study here a special class of formal series, the kernels of our multiplier transformations. Let us write

$$I_{\alpha}(x) = 1 + \sum_{k=1}^{\infty} 2^{-k(1)\alpha} \psi_k(x)$$
 (\$\alpha\$ real),

where k(1) is the first dyadic exponent of k.

LEMMA 1. Let $1 \le p \le \infty$ and let q be its conjugate exponent, i.e., (1/p)+(1/q)=1. Then we have, for $\alpha > 1/q$, $I_{\alpha}(x) \in L^{p}=L^{p}(G)$.

PROOF. If $p=\infty$, then q=1 and $\alpha>1$ implies the absolute (and uniform) convergence of $I_{\alpha}(x)$, thus $I_{\alpha}(x)$ is the WFS of a continuous function, which is more than what is to be proved. On the other hand, it is well known that $D_{2^j}(x)$, the Dirichlet kernel of order 2^j , equals to 2^j or 0 according as $x \in V_j$ or not. Thus for $1 \le p < \infty$, we have $\|D_{2^j}\|_p = 2^{j(1-1/p)} = 2^{j/q}$. Now

$$I_{lpha}^{(n)}(x) \equiv (I_{lpha} * D_{2^n})(x) = 1 + \sum_{j=0}^{n-1} 2^{-jlpha} \phi_j(x) D_{2^j}(x)$$

gives for m > n,

$$\begin{split} \|I_{\alpha}^{(m)}(x) - I_{\alpha}^{(n)}(x)\|_{p} &= \|\sum_{j=n}^{m-1} 2^{-j\alpha} \phi_{j}(x) D_{2^{j}}(x)\|_{p} \\ & \leq \sum_{j=n}^{m-1} 2^{-j\alpha} \|D_{2^{j}}(x)\|_{p} = \sum_{j=n}^{m-1} 2^{-j(\alpha-1/q)} \to 0 \qquad (m, n \to \infty) \,. \end{split}$$

Thus $I_{\alpha}^{(n)}(x)$ converges in L^p -norm to a function whose WFS is $I_{\alpha}(x)$, q.e.d.

Lemma 1 may be restated as follows:

$$I_{\alpha}(x) \in L^p$$
 for $p < 1/(1-\alpha)$ $(0 < \alpha \le 1)$.

LEMMA 2. If $h \in V_n$, we have

$$\|\Delta_{\boldsymbol{h}}I_{\boldsymbol{\alpha}}\|_{\boldsymbol{p}} \equiv \|I_{\boldsymbol{\alpha}}(\boldsymbol{x} + \boldsymbol{h}) - I_{\boldsymbol{\alpha}}(\boldsymbol{x})\|_{\boldsymbol{p}} = O\left(2^{-n(\boldsymbol{\alpha} - 1/q)}\right) \quad (\boldsymbol{\alpha} > 1/q).$$

PROOF.
$$\Delta_{h} I_{\alpha} = \sum_{j=0}^{\infty} 2^{-j\alpha} \sum_{k=2^{j}}^{2^{j+1}-1} \psi_{k}(x+h) - \sum_{j=0}^{\infty} 2^{-j\alpha} \sum_{k=2^{j}}^{2^{j+1}-1} \psi_{k}(x)$$

$$= \sum_{j=0}^{\infty} 2^{-j\alpha} \sum_{k=2^{j}}^{2^{j+1}-1} (\psi_{k}(h) - 1) \psi_{k}(x)$$

$$= \sum_{j=n}^{\infty} 2^{-j\alpha} \sum_{k=2^{j}}^{2^{j+1}-1} (\psi_{k}(h) - 1) \psi_{k}(x) \quad (\because \psi_{k}(h) = 1, \ 0 \le k < 2^{n})$$

$$= \sum_{j=n}^{\infty} 2^{-j\alpha} (\phi_{j}(x+h) D_{2^{j}}(x+h) - \phi_{j}(x) D_{2^{j}}(x)).$$

Thus, by Minkowski's inequality,

$$\begin{split} \| \, \Delta_h I_\alpha \, \|_{\,p} & \leqq \sum_{j=n}^\infty \, 2^{-j\alpha} \, \| \, D_{2^j}(x \dot{+} h) \, \|_{\,p} \, + \, \sum_{j=n}^\infty \, 2^{-j\alpha} \, \| \, D_{2^j}(x) \, \|_{\,p} \\ & = 2 \sum_{j=n}^\infty \, 2^{-j\alpha} \cdot 2^{j/q} = 2 \sum_{j=n}^\infty \, 2^{-j(\alpha-1/q)} \, , \quad \text{q. e. d.} \end{split}$$

LEMMA 3. There is a positive constant B_{α} depending only on α such that

$$\|I_{-\alpha}^{(m)}\|_{n} \leq B_{\alpha} 2^{m(\alpha+1/q)} \qquad (\alpha > 0)$$

PROOF.
$$I_{-\alpha}^{(m)}(x) = 1 + \sum_{k=1}^{2^{m-1}} 2^{k(1)\alpha} \psi_k(x) = 1 + \sum_{k=0}^{m-1} 2^{j\alpha} \phi_j(x) D_{2^j}(x)$$
.

Thus

$$|| I_{-\alpha}^{(m)}(x) ||_p \le 1 + \sum_{j=0}^{m-1} 2^{j\alpha} || D_{2^j} ||_p = 1 + \sum_{j=0}^{m-1} 2^{j(\alpha+1/q)} = O(2^{m(\alpha+1/q)}), \quad \text{q. e. d.}$$

The case p=1 is of particular importance for later applications.

3. Lemmas on the best approximation. A function f(x) on G is said to belong to the $\operatorname{Lip}^{(p)} \alpha(W)$ (resp. $\operatorname{lip}^{(p)} \alpha(W)$) if

$$|||f(x + h) - f(x)||_p = O((d(h, 0))^{\alpha})$$
 (resp. $o((d(h, 0))^{\alpha})$).

This definition is essentially due to G. Morgenthaler [5]. A characterization of the class $\operatorname{Lip}^{(p)}\alpha(W)$ was given by us [9], which applies with little modification also to the class $\operatorname{lip}^{(p)}\alpha(W)$, i.e., we have

LEMMA 4. The following four statements are equivalent:

(1)
$$f(x) \in \operatorname{Lip}^{(p)} \alpha(W)$$

(2)
$$\omega^{(p)}(2^{-n}; f) \equiv \sup \{ \| f(x+h) - f(x) \|_p \colon h \in V_n \} = O(2^{-n\alpha})$$

(3)
$$E_m^{(p)}(f) \equiv \inf \{ \|f - p_m\|_p : p_m \in \mathfrak{P}_m \} = O(m^{-\alpha})$$

(4)
$$||f(x) - s_{2^n}(x; f)||_n = O(2^{-n\alpha})$$

similarly for the o-case.

As a corollary of Lemma 4, we have

LEMMA 5. Let $\alpha > 0$, $\beta > 0$, $r \ge 1$, $s \ge 1$ and $1/t \ge (1/r) + (1/s) - 1$. Then $f \in \operatorname{Lip}^{(r)} \alpha(W)$ (resp. $\operatorname{lip}^{(r)} \alpha(W)$) and $g \in \operatorname{Lip}^{(s)} \beta(W)$ together imply $f * g \in \operatorname{Lip}^{(t)} (\alpha + \beta)(W)$ (resp. $\operatorname{lip}^{(t)} (\alpha + \beta)(W)$).

For the proof of these Lemmas, the reader is referred to [9] for the O-case; the o-case can be proved similarly.

4. Metric properties of multiplier transforms. Let us write

$$f_{\alpha}(x) = (I_{\alpha} * f)(x)$$
 for $f \in L^{1}$.

THEOREM 1. The operation $f \rightarrow f_{\alpha}$ has the following properties:

1°.
$$(f_{\alpha})_{\beta}(x) = f_{\alpha+\beta}(x)$$
 $f \in L^1$, $\alpha > 0$, $\beta > 0$.

- 2°. If $f \in \operatorname{Lip}^{(p)} \alpha(W)$ then $f_{\beta} \in \operatorname{Lip}^{(p)} (\alpha + \beta)(W)$ similarly for lip class $p \geq 1$, $\alpha > 0$, $\beta > 0$.
- 3°. If f is in \mathfrak{P}_n and $\alpha > 0$, then there is a constant A_{α} , depending only on α , such that $||f_{-\alpha}||_p \leq A_{\alpha} n^{\alpha} ||f||_p$.

4°. If
$$f \in L^p$$
 $(1 \le p < \infty)$ or C and $\alpha > 1/p$, then
$$f_{\alpha} \in \operatorname{lip}^{(\infty)}(\alpha - 1/p)(W),$$

PROOF. 1° is directly verified by an application of Fubini theorem. Ad 2°: Lemmas 2 and 4 imply $I_{\beta} \in \text{Lip}^{(1)} \beta(W)$, and the result follows from

Lemma 5. 3° follows from Lemma 3 upon "truncating" the formal series $I_{-\alpha}$:

$$f_{-\alpha}(x) = (I_{-\alpha} * f)(x) = (I_{-\alpha}^{(m)} * f)(x) \qquad (m = n(1) + 1).$$

Consequently

$$\|f_{-\alpha}\|_{p} \leq \|I_{-\alpha}^{(m)}\|_{1} \|f\|_{p}$$

$$\leq B_{\alpha} 2^{m\alpha} \|f\|_{p} \leq A_{\alpha} n^{\alpha} \|f\|_{p}.$$

To prove 4°, observe that $||f(x+h)-f(x)||_p = o(1)$ $(h \to 0)$. Now a combination of Lemma 2 and Lemma 5 yields the required result.

The next theorem and its proof shows that our multiplier transformation is very close to fractional integration (cf. Zygmund [13]).

THEOREM 2. If
$$f \in L^p$$
 $(p > 1)$, $\alpha = \frac{1}{p} - \frac{1}{q} > 0$ then $f_{\alpha} \in L^q$ and $||f||_q \leq A_{p,\alpha} ||f||_p$.

PROOF. We begin with the special case 1 , <math>q = 2, $\alpha = \frac{2-p}{2p}$. We may and do suppose that the mean value of f(x) is 0. Our assertion is now equivalent to

$$\left(\sum_{\nu=1}^{\infty} \, 2^{-2\nu(\mathbf{1})\boldsymbol{\alpha}} \mid c_{\nu} \mid^{2}\right)^{1/2} \leqq A_{\alpha} \, \| \, f \, \|_{p} \,,$$

where c_{ν} are the Fourier coefficients of f.

The left-hand member does not exceed, by Hölder's inequality,

$$A_{\alpha} \left(\sum \nu^{-2\alpha} \mid c_{\nu} \mid^{2} \right)^{1/2} \leq \left\{ \left(\sum \mid c_{\nu} \mid^{p'} \right)^{1/p'} \left(\sum \nu^{p-2} \mid c_{\nu} \mid^{p} \right)^{1/p} \right\}^{1/2}$$

$$\leq \| f \|_{p}^{1/2} A_{\alpha} \| f \|_{p}^{1/2} = A_{\alpha} \| f \|_{p}$$

by well-known inequalities of Hausdorff-Young and Paley. (cf. [14], Chapter XII, Theorems (2. 8) and (5. 1)).

Now the Theorem is true for $\frac{1}{p} = \frac{1}{2} + \frac{\alpha}{2}$, $\frac{1}{q} = \frac{1}{2} - \frac{\alpha}{2}$.

For let g be a polynomial $g(x) = \sum d_{\nu} \psi_{\nu}(x)$, with $||g||_{p} = 1$. We have

$$\begin{split} \left| \int f_{\alpha}(x) \, \overline{g(x)} \, dx \right| &= \left| \sum 2^{-\nu(1) \, z} \, c_{\nu} \, \overline{d}_{\nu} \right| \\ &\leq A_{\alpha} \left(\sum \nu^{-\alpha} \mid c_{\nu} \mid^{2} \right)^{1/2} \left(\sum \nu^{-\alpha} \mid d_{\nu} \mid^{2} \right)^{1/2} \end{split}$$

which does not exceed $A_{\alpha} ||f||_{p}$ by the preceding case.

The proof will be complete if we prove the following Theorem:

THEOREM 3. Let $f \in L^1$, $0 < \alpha < 1$. Then the operation $f \to f_{\alpha}$ is of weak type $\left(1, \frac{1}{1-\alpha}\right)$. That is, there exists a constant A_{α} , depending on α only, such that for any y > 0,

$$m(\lbrace x; |f_{\alpha}(x)| > y\rbrace) \leq \left(\frac{A_{\alpha}}{y} \|f\|_{1}\right)^{\frac{1}{1-\alpha}}.$$

PROOF. We need the following lemmas:

LEMMA 6. Let z be a positive number greater than $||f||_1$. Then the following decomposition is possible:

(i)
$$f(x) = v(x) + w(x), \quad w(x) = \sum w_{ij}(x),$$

(ii)
$$|v(x)| \le 2z$$
 for almost every x ,

(iii)
$$||v||_1 \leq ||f||_1$$
,

(iv)
$$\sum ||w_{ij}||_1 \leq 4 ||f||_1,$$

(v) there exist $x_{ij} \in G$ and neighborhood V_i of 0, such that w_{ij} vanishes outside $V_i(x_{ij})$,

 $V_i(x_{ij})$ ane mutually disjoint,

$$\sum_{i,j} m(V_i(x_{ij})) \leq \frac{1}{z} \|f\|_1;$$

(vi)
$$\int w_{ij}(x) dx = 0 \quad \text{for every pair } (i,j).$$

This Lemma is due to S. Igari [3], and is a modification of the "decomposition lemma" of L. Hörmander [2].

LEMMA 7. With the notations of the previous lemma, we have

$$w_{\boldsymbol{\alpha}}(x) = 0$$
 for $x \notin \bigcup_{i,j} V_i(x_{ij}) \equiv E$.

PROOF. Fix a pair (i, j), and consider $u = w_{ij}$, $a = x_{ij}$. It is sufficient to prove that u(x + a) = 0 for $x \notin V = V_i$.

Now

$$u_{\alpha}(x \dotplus a) = \int u(t) I_{\alpha}(x \dotplus a \dotplus t) dt$$

$$= \int_{V(a)} u(t) (I_{\alpha}(x \dotplus a \dotplus t) - I_{\alpha}(x)) dt$$

$$= \int_{V} u(t \dotplus a) (I_{\alpha}(x \dotplus t) - I_{\alpha}(x)) dt.$$

Let us evaluate $I_{\alpha}(x + t) - I_{\alpha}(x)$ for $x \notin V$, $t \in V$. We have seen in the proof of Lemma 2, that, for $t \in V = V_i$,

$$egin{aligned} I_{lpha} \left(x \dotplus t
ight) - I_{lpha} (x) \ &= \sum\limits_{i=t}^{\infty} \, 2^{-jlpha} \left(\phi_{j} (x \dotplus t) \, D_{2^{j}} (x \dotplus t) - \phi_{j} (x) \, D_{2^{j}} (x)
ight). \end{aligned}$$

But, $x \notin V_i$, $t \in V_i$ implies $x \dotplus t \notin V_i$ (V_i being a subgroup of G). Since D_{2^i} vanishes outside V_j , all of the summands vanish, and so does $I_{\alpha}(x \dotplus t) - I_{\alpha}(x)$.

PROOF OF THEOREM 3. We may suppose $||f||_1 = 1$. It is sufficient to prove the following two facts:

1°.
$$m(\{x; |v_{\alpha}(x)| > y\}) \leq A_{\alpha} y^{1/(\alpha-1)}$$

2°.
$$m(\{x; | w_{\alpha}(x) | > y\}) \leq A_{\alpha} y^{1/(\alpha-1)}$$
.

Or, 2° is evident from Lemma 6, (v) and Lemma 7, put $z = y^{1/(1-\alpha)}$. To prove 1°, we use the special case of Theorem 2 already established. In fact

$$\begin{split} m\left(\{x\,;\, \mid v_{\alpha}(x)\mid >y\}\right) & \leq y^{-q} \int \mid v_{\alpha}(x)\mid^{q} dx \qquad \left(\frac{1}{q} = \frac{1}{2} - \frac{\alpha}{2}\right) \\ & \leq y^{-p} A_{\alpha} \left(\int \mid v(x)\mid^{p} dx\right)^{q/p} \\ & \leq A_{\alpha} \, y^{-q} \, z^{(p-1)q/p} \parallel v \parallel^{q/p} \leq A_{\alpha} \, y^{\beta} \parallel f \parallel_{1} = A_{\alpha} \, y^{\beta} \end{split}$$

where $\beta = -q + (p-1) q/p(1-\alpha) = -1/(1-\alpha)$, q. e. d.

The proof of Theorem 2 is completed by an application of Marcinkiewicz interpolation Theorem ([14] Chapter XII, Theorem (4.6)), since $I_{\alpha} \in L^1$ implies $\|f_{\alpha}\|_{\infty} \leq A_{\alpha} \|f\|_{\infty}$.

In the theory of TFS, it is well known that a formally integrated Fourier series converges uniformly. This is not the case for $f_1(x) = (I_1 * f)(x)$, $f \in L^1$,

though there is a partial substitute, as indicates the following theorem.

THEOREM 4. Let $f \in L^1$, $f(x) \sim \sum c_k \psi_k(x)$. Then we have

$$||L(x;f)||_p \le A_p ||f||_1 \quad (0$$

where

$$L(x; f) = \sup_{n} |s_n(x; f)| = \sup_{n} |(f_1 * D_n)(x)|$$

and A_p depends only on p.

PROOF. Putting m = n(1) we have

$$s_n(x; f_1) = c_0 + \sum_{\nu=1}^{n-1} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x)$$

$$= c_0 + \sum_{\nu=1}^{2^{m}-1} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x) + \sum_{\nu=2^{m}}^{n-1} 2^{-\nu(1)} c_{\nu} \psi_{\nu}(x)$$

$$= c_0 + \sum_{\nu=1}^{m-1} 2^{-j} \delta_j(x; f) + 2^{-m} \sum_{\nu=2^{m}}^{n-1} c_{\nu} \psi_{\nu}(x) = c_0 + S_1 + S_2, \quad \text{say.}$$

where $\delta_{j}(x;f) = s_{2^{j+1}}(x;f) - s_{2^{j}}(x;f) = \int f(x \dot{+} t) \, \phi_{j}(t) \, D_{2^{j}}(t) \, dt$. Since $|c_{\nu}| \leq \|f\|_{1}$ for every ν , it is clear that $\|S_{2}\|_{\infty} \leq \|f\|_{1}$. On the other hand,

$$|\delta_j(x;f)| \leq \int |f(x + t)| D_{2'}(t) dt$$

implies, for $p \ge 1$,

$$\|\delta_i(x;f)\|_n \leq \|f\|_1 \|D_2\|_n \leq 2^{j/q} \|f\|_1$$

where q = p' = p/(p-1). This inequality, combined with

$$|s_{2^{m}}(x;f_{1})| \leq |c_{0}| + \sum_{j=0}^{m-1} 2^{-j} |\delta_{j}(x;f)|$$

$$\leq |c_{0}| + \sum_{j=0}^{\infty} 2^{-j} |\delta_{j}(x;f)|$$

gives

$$\begin{split} \|\sup_{m} \mid s_{2^{m}}(x;f_{1})| \|_{p} & \leq \mid c_{0}\mid + \sum_{j=0}^{\infty} 2^{-j} \|\delta_{j}(x;f)\|_{p} \\ & \leq \|f\|_{1} + \sum_{j=0}^{\infty} 2^{-j(1-1/q)} \|f\|_{1} = A_{p} \|f\|_{1} \,. \end{split}$$

This yields the required estimate for S_1 , and the proof of complete.

The theorem ceases to be true for $p=\infty$; in fact, consider the series $\sum_{\nu=1}^{\infty} \frac{\psi_{\nu}(x)}{\log(\nu+1)}$, which is the Fourier series of an integrable function f(x), for which $f_1(x)$ is not bounded in any neighborhood of 0 (S. Yano [12]).

5. Series with random signs. Another substitute, yielding the uniform convergence of multiplier transforms, is obtained by considering series with random signs. The following theorem is the Walsh analogue of a result of Paley and Zygmund (see [14], Chapter V, Theorem (8, 34)).

THEOREM 5. (i) Suppose $\sum_{\nu=0}^{\infty} a_{\nu}^{2} < \infty$. Then the "random Walsh series" $\sum_{\nu=0}^{\infty} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x)$ has, for almost all t, partial sums of magnitude $o((\log n)^{1/2})$,

(ii) If $\sum a_{\nu}^{2}(\log \nu)^{1+\epsilon} < \infty$ for some $\epsilon > 0$, then, for almost all t, the series $\sum_{\nu=0}^{\infty} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x) \quad \text{converges uniformly in } x.$

The proof of this theorem is a repetition of that of the trigonometric case due to Salem and Zygmund, the only difference being the use of a fact that a Walsh polynomial is of constant value when it is restricted to a suitable neighborhood of a point. Thus we omit the proof, referring the reader to Zygmund [14], Chapter V, pp. 219-220. The following corollary, however, seems to be new.

COROLLARY. There exists a set E of Haar measure 1 such that for any $f \in L^1$, $f(x) \sim \sum a_v \psi_v(x)$ and for any $\alpha > 1/2$, $t \in E$ implies the uniform convergence of the formal series

$$f_{\alpha,\iota}(x) = a_0 \phi_0(t) + \sum_{\nu=1}^{\infty} 2^{-\nu(1)\alpha} a_{\nu} \phi_{\nu}(t) \psi_{\nu}(x)$$
.

PROOF. From Theorem 3 (ii), the series

$$I_{lpha,\iota}(x) = \phi_0(t) + \sum_{\nu=1}^{\infty} \, 2^{-1(1)\,lpha} \, \phi_{
u}(t) \, \psi_{
u}(x)$$

converges, for a fixed $\alpha > 1/2$ and for almost all t (say for $t \in E_{\alpha}$), uniformly

in x, representing consequently a continuous function $I_{\alpha,t}(x)$. Or, it is easily seen that the sets E_{α} are increasing with respect to α . Put $E = \bigcap \{E_{\alpha}; \alpha \text{ rational}, \alpha > 1/2\}$. Then $E \subset E_{\alpha}$ for $\alpha > 1/2$ with α rational or irrational and E is of measure 1. It is now sufficient to observe that $f_{\alpha,t} = f * I_{\alpha,t}$ and $s_n(x; f_{\alpha,t}) = (s_n(\cdot; I_{\alpha,t}) * f)(x)$; the uniform convergence of $s_n(x; I_{\alpha,t})$ proves our assertion.

6. **Multiplier** $\{\nu^{-\alpha}\}$. The above theorems remain true if we consider $\nu^{-\alpha}$ instead of $2^{-\nu(1)\alpha}$. Let

$$J_{\alpha}(x) = 1 + \sum_{\nu=1}^{\infty} \nu^{-\alpha} \psi_{\nu}(x) \qquad (\alpha > 0).$$

Repeated use of Abel transformations shows that $J_{\alpha} \in L^1$ and Theorem 1 is re-proved easily. The special case of Theorem 2 requires no change, and Theorem 3 will be based on the fact $J_{\alpha}(x) \leq A_{\alpha}H_{\alpha}(x)$, where $H_{\alpha}(x) \equiv 2^{n(1-\alpha)}$ $(x \in V_n - V_{n+1}), \ n = 0, 1, 2, \cdots, (0 < \alpha < 1)$. Lemma 7, with $H_{\alpha}(x)$ in place of $J_{\alpha}(x)$, remains true and the rest is similarly carried on.

If one could prove that the formal series

$$1 + \sum_{\nu=1}^{\infty} \frac{2^{-\nu(1)}}{\nu} \psi_{\nu}(x)$$

should be a Walsh-Fourier- Stieltjes series, one would have a unified treatment of the two classes of multipliers $2^{-\nu(1)\alpha}$ and $\nu^{-\alpha}$; but the present author has been unable to prove this statement. However, for functions belonging to L^p (1), we have

THEOREM 6. Let $\lambda_0 = 1$, $\lambda_{\nu} = 2^{\nu(1)\alpha}/\nu^{\alpha}$ $\nu = 1, 2, \cdots$ where α is a fixed real number, and let $f \in L^p$, $1 , <math>f(x) \sim \sum c_{\nu} \psi_{\nu}(x)$. Then $\sum \lambda_{\nu} c_{\nu} \psi_{\nu}(x)$ is the Fourier series of a function Λf in L^p and

$$\|\Lambda f\|_n \leq A_{\alpha,n} \|f\|_n$$
.

This theorem is a special case of the Walsh analogue of a theorem of J. Marcinkiewicz [4] (see also [14], Chapter XV, P. 232) and proved similarly. The main step (corresponding to [14], Chapter XV, Lemma (2. 15)) has already been proved by G. Sunouchi ([6], Theorem 1).

7. Application to the theory of approximation. If a 2π -periodic function f(x) has its TFS $\sum A_{\nu}(x)$, the formal trigonometric series $\sum \nu^{\lambda} A_{\nu}(x)$ plays an important role in the process of (trigonometric) approximation to f(x) (see

e.g. [8]). A similar fact holds for WFS. Let $f(x) \in L^1$ and let its WFS be $\sum c_{\nu} \psi_{\nu}(x)$. If $g_{\nu}(n)$ ($\nu = 0, 1, 2, \cdots$) is the sequence of Walsh-Fourier-Stieltjes coefficients of a bounded measure $\mu^{(n)}$ on G, with $g_0(n) = \int d\mu^{(n)} = 1$, we have multiplier transforms

$$P_n(x) = P_n(x;f) = (f * \mu^{(n)})(x) \sim \sum_{\nu=0}^{\infty} c_{\nu} g_{\nu}(n) \psi_{\nu}(x)$$
 ,

where the parameter n need not be discrete.

If there exist a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

(I)
$$||f - f * \mu^{(n)}||_p = o(\varphi(n)) \quad \text{implies} \quad f(x) = \text{constant};$$

(II)
$$||f - f * \mu^{(n)}||_p = O(\varphi(n))$$
 implies $f(x) \in K$;

(III)
$$f(x) \in K \quad \text{implies} \quad ||f - f * \mu^{(n)}||_n = O(\varphi(n))$$

then we say that the method of approximation with multiplier transforms defined by $\mu^{(n)}$ is saturated with the order $\varphi(n)$ and with the class K.

Suppose that there exist a positive constant c and sequence $\{\rho^{(\nu)}\}, \nu = 1, 2, \cdots$ for which

$$\lim_{n\to\infty}\frac{1-g_{\nu}(n)}{\varphi(n)}=c\,\rho(\nu)\qquad(\,\nu=1,2,\cdots)\,,$$

then we can prove, by a standard weak compactness argument (we may take here the 2^N -th patial sum of the WFS of $(f - f * \mu^{(n)})$ instead of (C,1)-means, used in the case of TFS) that our method is saturated with the order $\varphi(n)$ and the class of those functions f(x) for which

(*)
$$\left\| \sum_{\nu=1}^{2^{N}-1} c_{\nu} \rho^{(\nu)} \psi_{\nu}(x) \right\|_{p} = O(1)$$

provided that the assertion (III) is verified by the properties of $\mu^{(n)}$. The relation (*) is equivalent to, respectively,

 $\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the WFS of a bounded function $(p = \infty)$

 $\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the WFS of a function in L^{p} (1

 $\sum c_{\nu} \rho(\nu) \psi_{\nu}(x)$ is the Walsh-Fourier-Stieltjes series of a bounded measure on G(p=1).

For most of the well-known summability methods, the sequence $\rho(\nu)$ is of the form ν^{λ} , where λ is a positive number, and (III) is proved by a direct estimation. If we denote by $W^{\lambda} = W^{(p)\lambda}$ the class of all WFS for which (*) holds with $\rho(\nu) = \nu^{\lambda}$, we have the following

THEOREM 7. Let $\lambda > 0$ and let $T = (T_n)$ be a linear approximation process with

$$||T_n(f)(x)||_p \leq M_1 ||f||_p$$

(2)
$$||f(x)-T_n(f)(x)||_p = M_2 n^{-\lambda} ||f^{[\lambda]}||_p \text{ for } f \in W^{\lambda}.$$

Then
$$f \in \operatorname{Lip}^{(p)} \alpha(W)$$
 $0 < \alpha < \lambda$ implies
$$||f(x) - T_n(f)(x)||_n = O(n^{-\alpha}),$$

where $f^{[\lambda]}$ is (the function or the measure represented by) the formal series

$$\sum_{\nu=1}^{\infty} c_{\nu} \nu^{\lambda} \psi_{\nu}(x) .$$

This theorem was first proved by G. Sunouchi [7] in the theory of the trigonometric approximation; a different proof (with a slight generalization), which applies also for Walsh system, is found in Watari [10].

COROLLARY. If $f(x) \in \operatorname{Lip}^{(p)} \alpha(W) \ 1 , then for any <math>\beta > 0$ $\|\sigma_n^{\beta}(x;f) - f(x)\|_p = O(n^{-\alpha})$, where $\sigma_n^{\beta}(x;f)$ denotes the n-th (C,β) means of the WFS of f(x).

For the proof it suffices to see that the approximation by σ_n^{β} is saturated with the order 1/n and the class $\{f: f^{[1]} \in L^p\}$; this fact being a consequence of Paley's decomposition theorem and multiplier theorem of Marcinkiewicz (see Theorem 6 above).

This result was proved, under an additional condition $\beta > \alpha$, by S. Yano [11]. For the trigonometric system, this is due to G. Sunouchi [7].

REFERENCES

- [1] N. J. FINE, On Walsh functions. Trans. Amer. Math. Soc., 65(1949), 372-414.
- [2] L. HÖRMANDER, Estimates for translation invariant operators in L^p spaces, Acta Math., 104(1960), 93-140.
- [3] S. IGARI, An extension of the interpolation theorem of Marcinkiewicz, Tôhoku Math. J., 15(1963), 343-358.
- [4] J. MARCINKIEWICZ, Sur les multiplicateurs des séries de Fourier, Studia Math., 8(1939), 78-91.

- [5] G. MORGENTHALER, On Walsh-Fourier series, Trans. Amer. Math. Soc., 84(1957), 472-507.
- [6] G. SUNOUCHI, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc., 2(1951), 5-11.
- [7] —, On the saturation and best approximation, Tôhoku Math. J., 14(1962),
- [8] G. SUNOUCHI and C. WATARI, On determination of the class of saturation in the theory of approximation of functions, I. Proc. Japan Acad., 34(1958), 477-481. II. Tôhoku Math. J., 11(1959), 480-488.
- Math. J., 11(1959), 480-488.

 [9] C. WATARI, Best approximation by Walsh polynomials, Tôhoku Math. J., 15(1963),
- [10] —, A note on saturation and best approximation, Tôhoku Math. J., 15(1963), 273-276.
- [11] S. YANO, On approximation by Walsh functions, Proc. Amer. Soc., 2(1951), 962-967.
- [12] ——, On Walsh-Fourier series, Tôhoku Math. J., 3(1951), 223-242.
- [13] A. ZYGMUND, On a theorem of Marcinkiewicz concerning interpolation of operations, J. de Math., 35(1956), 223-248.
- [14] _____, Trigonometric series, Cambridge, 1959.

DEPARTMENT OF MATHEMATICS,

TÔHOKU UNIVERSITY