A NOTE ON THE CLOSURE OF TRANSLATIONS IN L^{p}

Masakiti Kinukawa

(Received February 16, 1966)

1. In this note, we shall consider a function $f(x)$ defined on the real axis $(-\infty, \infty)$. Suppose $p \geqq 1$ and $f \in L^{1} \cap L^{p}$, then f is said to have the Wiener closure property $\left(C_{p}\right)$, when the linear manifold spanned by the translates of f is dense in the space L^{p}. This property is equivalent to the following statement: if $\varphi(x) \in L^{q} \cap L^{\infty}$ and the convclution $f * \varphi(x)=0$, then $\varphi(x) \equiv 0$, where $1 / p+1 / q=1$, (Cf. Herz [3]). Pcllard [6] pointed out the close connection between the closure property $\left(C_{p}\right)$ and a certain uniqueness problem for trigonometric integrals. Let us denote the set of zeros of the Fourier transform $\hat{f}(t)$ of $f(x)$ by $Z(f)$. We say that $f(x) \in L^{p} \cap L^{1}$ has the property $\left(U_{q}\right)$ if the conditions

$$
\begin{equation*}
\lim _{\sigma \rightarrow+0} \int_{-\infty}^{\infty} e^{-\sigma|x|} e^{i x t} \boldsymbol{\varphi}(x) d x=0 \quad \text { for } \quad t \notin Z(f) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\varphi}(x) \in L^{q} \cap L^{\infty} \tag{b}
\end{equation*}
$$

can be satisfied simultaneously only by $\varphi(x) \equiv 0$.
Under the above terminology, Pollard's and Herz's result may be stated as follows :
I. For $1 \leqq p<\infty$, if $f \in L^{p} \cap L^{1}$ has the property $\left(U_{q}\right)$, then f has the property $\left(C_{p}\right)$.
II. For $2 \leqq p<\infty$, if $f \in L^{p} \cap L^{1}$ has the property $\left(C_{p}\right)$, then f has the property $\left(U_{q}\right)$.

It is essentially the same problems of spectral synthesis of bounded functions to ask whether the statement II for the case $1<p<2$ holds. Standing on this point of view, we shall show the following result:

ThEOREM 1. Suppose the following:
i) $f \in L^{p} \cap L^{1} \quad(1<p<2)$,
ii) there exists a monotone decreasing function $w(x) \in L^{1}(0, \infty)$ such that $|f(x)|^{p} \leqq w(|x|)$,
and
iii) f has the property $\left(C_{p}\right)$.

Then f has the property $\left(U_{q}\right)$, where $1 / p+1 / q=1$.
(That is, if f has a L^{p}-monotone majorant, then the property $\left(C_{p}\right)$ is equivalent to the property $\left(U_{q}\right)$.)

Considering the dual statement of Theorem 1, we see that for a proof of Theorem 1 it is sufficient to show that the following statement is true under the assumptions (i) and (ii) of Theorem 1: for $\varphi \in L^{q} \cap L^{\infty}$, if $\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0$ for $t \notin Z(f)$, then $f * \varphi=0$, or $\int_{-\infty}^{\infty} \varphi(x) \bar{f}(x) d x=0$, where \bar{f} is the conjugate of f and

$$
U_{\varphi}(\sigma, t)=\int_{-\infty}^{\infty} e^{-\sigma|x|} e^{+i x t} \varphi(x) d x
$$

2. We need some lemmas concerning the spectral analysis of bounded functions. For a function $\varphi(x) \in L^{q} \cap L^{\infty}$, we shall denote its spectral set by Sp. (\boldsymbol{P}), that is,

$$
\operatorname{Sp.}(\varphi)=\bigcap_{k}\left\{Z(k) ; k * \varphi=0, k \in L^{1}\right\} .
$$

Lemma 1. Let F be a closed set on the real axis. If

$$
\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0 \quad \text { for } \quad t \notin F
$$

then $\mathrm{Sp} .(\boldsymbol{P}) \subset F$.
Lemma 2. Let I be any closed interval contained in the complement of $\mathrm{Sp} .(\boldsymbol{\varphi})$, then

$$
\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0, \quad \text { uniformly on } t \in I .
$$

Lemma 2 is due to Beurling ([1] and [2]).
Lemma 1 is essentially given by Pollard [6] and Herz [2]. Actually, Pollard proved the following :

Lemma 3. Suppose $k(x) \in L^{1} \cap L^{p} \quad(1<p<2), \quad|x|^{1 / p} k(x) \in L^{1}$, and $\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0$ for $t \notin Z(k)$, then $k * \varphi=0$.

On the other hand, $t_{0} \notin \operatorname{Sp}$. $(\boldsymbol{\varphi})$ if and only if there exists a function $k(x) \in L^{1}$ such that $k * \varphi=0$ but the Fourier transform $\widehat{k}(t)$ of $k(x)$ does not vanish on t_{0}. Take any $t_{0} \notin F$. Since F is closed, there exists an open interval $I=\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ which is contained in the complement of F. Of course, we have $\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)$ $=0$ for $t \in I$. We can find a function $k(x) \in L^{1} \cap L^{p}(1<p<2)$ such that $|x|^{1 / p} k(x) \in L^{1}$ and I is the complement of $Z(k)$. (For example, take $k(x)=(1-$ $\cos \varepsilon t) e^{i_{0} t} /\left(\varepsilon t^{2}\right)$, then $\hat{k}(t)=1-\left|t-t_{0}\right| / \varepsilon$ for $t \in I$, and $=0$ for $t \notin I$.) Application of Lemma 3 shows that $k * \boldsymbol{\Phi}=0$. But $k\left(t_{0}\right) \neq 0$. Therefore, $t_{0} \notin \mathrm{Sp}$. $(\boldsymbol{\phi})$, that is, $\mathrm{Sp} .(\boldsymbol{\varphi}) \subset F$. This completes the proof of Lemma 1.

From Lemmas 1 and 2, we have
Lemma 4. Let F be a closed set. If $\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0$ for $t \notin F$, then the above limit is convergent uniformly for t on any closed interval contained in the complement of F.
3. Let $A_{p}(1<p<2)$ be the space of Fourier transforms of functions in L^{p}. Define a norm $\|\hat{f}\|_{A_{p}}$ in the space A_{p} by

$$
\|\hat{f}\|_{A_{p}}=\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d x\right)^{1 / p}
$$

where \hat{f} is the Fourier transform of f, that is,

$$
\hat{f}(t)=\underset{\omega \rightarrow \infty}{\operatorname{li.i)} . \mathrm{m} .}(1 / \sqrt{2 \pi}) \int_{-\omega}^{\omega} f(x) e^{+i x t} d x
$$

We say that $g(t)$ is a normalized contraction of $\hat{f} \in A_{p}$, if $\left|g(t)-g\left(t^{\prime}\right)\right|$ $\leqq\left|\hat{f}(t)-\hat{f}\left(t^{\prime}\right)\right|$ for any t and t^{\prime}, and if

$$
\lim _{\lambda \rightarrow \infty} \int_{\lambda+a}^{\lambda+b}|g(t)|^{a} d t=0 \quad \text { for each } a \text { and } b .
$$

Moreover, we say an element \hat{f} of A_{p} is contractible in the space A_{p}, if every normalized contraction of \hat{f} also belongs to the space A_{p}. And we say f is uniformly contractible in the space A_{p} if f is contractible in A_{p} and if $\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{A_{\nu}}=0$ for any sequence $g_{n}(t)$ of normalized contractions of $\hat{f}(t)$ such
that $\lim _{n \rightarrow \infty} g_{n}(t)=0$. Using the above terms, we have the following theorem analogously to Beurling's result [2].

THEOREM 2. Suppose that (i) $f(x) \in L^{1} \cap L^{p}(1<p<2)$, (ii) $\hat{f}(t)$ is uniformly contractible in the space A_{p}, and (iii) for $\phi \in L^{q} \cap L^{\infty}, \lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)$ $=0$ on $t \notin Z(f)$. Then we have $\int_{-\infty}^{\infty} \boldsymbol{\varphi}(x) \bar{f}(x) d x=0$.

We shall give a proof of Theorem 2 according to Beurling's argument. Take a sequence of circular projections $T_{n}(z)$, that is, $T_{n}(z)=z$ if $|z| \leqq 1 / n$, and $=z /(n|z|)$ if $|z|>1 / n$. Since $\hat{f}(t)$ is the Fourier transform of $f \in L^{1}$, $\lim _{t \rightarrow \pm \infty} \hat{f}(t)=0$. Hence we have $\lim _{\lambda \rightarrow \infty} \int_{\lambda+a}^{\lambda+b}\left|\hat{f}_{n}(t)\right|^{q} d t=0$ for each n, a and b, where $\hat{f}_{n}(t)=T_{n}(\hat{f}(t))$. That is, $\hat{f}_{n}(t)$ is a normalized contraction of $f(t)$, and so the notation $\hat{f}_{n}(t)$ is justified by the assumption (ii). Since $\lim _{t \rightarrow \pm \infty} \hat{f}(t)=0$, there exists a positive number R_{n} such that $\hat{f}(t)-\hat{f}_{n}(t)=0$ for $|t|>R_{n}$. Put E_{n} $=Z(f) \cap\left[-R_{n}, R_{n}\right]$. Note $E_{n} \subset Z(f)$, and that $\hat{f}(t)$ is continuous. For each point $t_{0} \in E_{n}$, there exists a neighborhood $N\left(t_{0}\right)$ of t_{0} such that $|\hat{f}(t)| \leqq 1 / n$ for $t \in N\left(t_{0}\right)$. Hence we have a finite number of open intervals $N\left(t_{k}\right)(k=1 \sim l)$ such that $\bigcup_{k=1}^{l} N\left(t_{k}\right) \supset E_{n}$ and $|f(t)| \leqq 1 / n$ for $t \in \bigcup_{k=1}^{l} N\left(t_{k}\right)$. Put $\quad\left[-R_{n}, R_{n}\right]$ $-\bigcup_{k=1}^{l} N\left(t_{k}\right)=\bigcup_{j=1}^{m} I_{j}=I^{(n)}$, where each I_{j} is a closed interval contained in the complement of $Z(f)$ and

$$
\begin{equation*}
\hat{f}(t)-\hat{f}_{n}(t)=0 \quad \text { for } \quad t \notin I^{(n)} . \tag{3.1}
\end{equation*}
$$

Moreover, by Lemma 4,

$$
\begin{equation*}
\lim _{\sigma \rightarrow+0} U_{\varphi}(\sigma, t)=0, \quad \text { uniformly for } t \in I^{(n)} \tag{3.2}
\end{equation*}
$$

On the other hand, the function $\hat{f}(t)-\hat{f}_{n}(t)$ is bounded and its support is contained in the compact set $I^{(n)}$. Therefore $\hat{f}(t)-\hat{f}_{n}(t)$ is a Fourier transform of some function $G(x)$ in L^{2}, that is,

$$
\hat{f}(t)-\hat{f}_{n}(t)=(1 / \sqrt{2 \pi}) \operatorname{liih}_{\omega \rightarrow \infty}^{(2)} . \int_{-\omega}^{\omega} G(x) e^{+i x t} d x
$$

This is also equal to

$$
(1 / \sqrt{2 \pi}) \operatorname{lil}_{\omega \rightarrow \infty}^{(q)} . \int_{-\omega}^{\omega}\left\{f(x)-f_{n}(x)\right\} e^{+i x t} d x .
$$

Now, applying the Fourier reciprocity, we have $f(x)-f_{n}(x)=G(x) \in L^{2}$. Hence we can apply the Parseval relation. That is, we have

$$
(1 / 2 \pi) \int_{-\infty}^{\infty} e^{-\sigma|x|} \boldsymbol{\varphi}(x)\left\{\bar{f}(x)-\bar{f}_{n}(x)\right\} d x=\int_{-\infty}^{\infty} U_{\varphi}(\sigma, t)\left\{\overline{\hat{f}}(t)-\overline{\hat{f}}_{n}(t)\right\} d t
$$

Letting $\sigma \rightarrow+0$, we have

$$
(1 / 2 \pi) \int_{-\infty}^{\infty} \varphi(x)\left\{\bar{f}(x)-\bar{f}_{n}(x)\right\} d x=\lim _{\sigma \rightarrow+0} \int_{-\infty}^{\infty} U_{\varphi}(\sigma, t)\left\{\overline{\hat{f}}(t)-\overline{\hat{f}}_{n}(t)\right\} d t
$$

By (3.1) and (3.2), the right hand side is equal to

$$
\lim _{\sigma \rightarrow+0} \int_{I^{(n)}} U_{q}(\sigma, t)\left\{\overline{\hat{f}}(t)-\overline{\hat{f}}_{n}(t)\right\} d t=0
$$

Thus we can conclude

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varphi(x)\left\{\bar{f}(x)-\bar{f}_{n}(x)\right\} d x=0 \tag{3.3}
\end{equation*}
$$

for a sufficiently large number n. By Hölder's inequality, we have

$$
\left|\int_{-\infty}^{\infty} \boldsymbol{\varphi}(x) \bar{f}_{n}(x) d x\right| \leqq\|\boldsymbol{\varphi}\|_{q}\left\|f_{n}\right\|_{p}=\|\boldsymbol{\varphi}\|_{q}\left\|\hat{f}_{n}\right\|_{A_{p}}
$$

Since $\hat{f}(x)$ is uniformly contractible, the right hand side of the above tends to zero when $n \rightarrow \infty$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\rightarrow \infty}^{\infty} \varphi(x) \bar{f}_{n}(x) d x=0 \tag{3.4}
\end{equation*}
$$

Summing the results (3.3) and (3.4) up, we can conclude that

$$
\int_{-\infty}^{\infty} \varphi(x) \bar{f}(x) d x=0
$$

4. In order to finish the proof of Theorem 1, we need the following:

TheOrem 3. Let $f(x) \in L^{p}(1<p<2)$. Suppose that there exists a function $w(x)$ such that (i) w(x) is even and positive, (ii) $x^{2} w^{2 / p}(x) \in L(0, \delta), w^{2 / p}(x) \in L(\delta, \infty)$ for any $\delta>0$,
(iii) $\int^{\infty} x^{-3 p / 2}\left\{\int_{0}^{x} u^{2} w^{2 / p}(u) d u\right\}^{p / 2} d x+\int_{0}^{\infty} x^{-p / 2}\left\{\int_{x}^{\infty} w^{2 / p}(u) d u\right\}^{p / 2} d x<\infty$
and (iv) $|f(x)|^{p} \leqq w(|x|)$. Then the Fourier transform $\hat{f}(t)$ of $f(x)$ is uniformly contractible in the space A_{p}.

A proof of Theorem 3 is a simple modification of the argument in the previous paper [5]. Let $\hat{f}_{n}(t)$ be a sequence of normalized contractions of $\hat{f}(t)$ with a property $\lim _{n \rightarrow \infty} \hat{f}_{n}(t)=0$. Under the assumption of Theorem $3, \hat{f}(t)$ is contractible in A_{p}, and so $\hat{f}_{n}(t)$ is a Fourier transform of $f_{n}(x) \in L_{p}$ (cf. [4]). Therefore, we need only to show that

$$
\lim _{n \rightarrow \infty}\left\|\hat{f}_{n}\right\|_{A_{p}}^{p}=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f_{n}(x)\right|^{p} d x=0 .
$$

Let $g(u) \in L^{p}$. By the Schwarz inequality, we have

$$
S(x)=\int_{0}^{x} u^{p}|g(u)|^{p} d x \leqq x^{1-p / 2}\left(\int_{0}^{x} u^{2}|g(u)|^{2} d u\right)^{p / 2}
$$

Apply the partial integration to $\int_{0}^{N}|g(x)|^{p} d x=\int_{0}^{N} x^{-p} S^{\prime}(x) d x$, then we have the following inequality :

$$
\begin{equation*}
\int_{0}^{\infty}|g(x)|^{p} d x \leqq p \int_{0}^{\infty} x^{-3 p / 2}\left(\int_{0}^{x} u^{2}|g(u)|^{2} d u\right)^{p / 2} d x \tag{4.1}
\end{equation*}
$$

The Parseval relation and the assumptions assure the following inequalities:

$$
\begin{align*}
\int_{0}^{x} u^{2}\left|f_{n}(u)\right|^{2} d u & \leqq C x^{2} \int_{-\infty}^{\infty}\left|f_{n}(u)\right|^{2} \sin ^{2} u / x d u \\
& =C x^{2} \int_{-\infty}^{\infty}\left|\hat{f}_{n}(u+1 / x)-\hat{f}_{n}(u-1 / x)\right|^{2} d u \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& \leqq C x^{2} \int_{-\infty}^{\infty}|\hat{f}(u+1 / x)-\hat{f}(u-1 / x)|^{2} d u \tag{4.3}\\
& =C x^{2} \int_{-\infty}^{\infty}|f(u)|^{2} \sin ^{2} u / x d u \\
& \leqq C\left\{\int_{0}^{x} u^{2} w^{2 / p}(u) d u+x^{2} \int_{x}^{\infty} w^{2 / p}(u) d u\right\} \tag{4.4}
\end{align*}
$$

From (4.1) ~ (4. 4), we have

$$
\begin{aligned}
\left\|\hat{f}_{n}\right\|_{A_{p}}^{p} & =\int_{-\infty}^{\infty}\left|f_{n}(x)\right|^{p} d x \\
& \leqq C \int_{-\infty}^{\infty} d x\left\{|x|^{-1} \int_{-\infty}^{\infty}\left|\hat{f}_{n}(u+1 / x)-\hat{f}_{n}(u-1 / x)\right|^{2} d u\right\}^{p / 2} \\
& \leqq C \int_{-\infty}^{\infty} d x\left\{|x|^{-1} \int_{-\infty}^{\infty}|\hat{f}(u+1 / x)-\hat{f}(u-1 / x)|^{2} d u\right\}^{p / 2} \\
& \leqq C \int_{0}^{\infty} x^{-3 p / 2}\left\{\int_{0}^{x} u^{2} w^{2 / p}(u) d u\right\}^{p / 2} d x+C \int_{0}^{\infty} x^{-p / 2}\left\{\int_{x}^{\infty} w^{2 / p}(u) d u\right\}^{p / 2} d x \\
& <\infty .
\end{aligned}
$$

These inequalities assure the use of Lebesgue's theorem, and so we see that $\lim _{n \rightarrow \infty}\left\|\hat{f}_{n}\right\|_{A_{p}}=0$. This completes the proof of Theorem 3.

Since a monotone decreasing functions $w(x) \in L^{1}(0, \infty)$ satisfies the conditions (ii) and (iii) of Theorem 3 (cf. [4]), we finish the proof of Theorem 1 through Theorems 2 and 3.

References

[1] A. Beurling, Sur une classe des fonctions presque-periodiques, C. R. Acad. Sci. Paris, 225(1947), 326-327.
[2] A. Beurling, On the spectral synthesis of bounded functions, Acta Math., 81 (1949), 225-238.
[3] C. S. Herz, A note on the span of translations in L^{p}, Proc. Amer. Math. Soc., 8 (1957), 724-727.
[4] M. KInUKAWA, Contractions of Fourier coefficients and Fourier integrals, Journ. Analyse Math., 8(1960), 377-406.
[5] M. Kinukawa, On the spectral synthsis of bounded functions, Proc. Amer. Math. Soc., 14 (1963), 468-471.
[6] H. Pollard, The closure of translations in L^{p}, Proc. Amer. Math. Soc., 2(1951), 100-104.
International Christian University, TOKYO, JAPAN.

