A NOTE ON THE CLOSURE OF TRANSLATIONS IN L^p

MASAKITI KINUKAWA

(Received February 16, 1966)

1. In this note, we shall consider a function f(x) defined on the real axis $(-\infty, \infty)$. Suppose $p \ge 1$ and $f \in L^1 \cap L^p$, then f is said to have the Wiener closure property (C_p) , when the linear manifold spanned by the translates of f is dense in the space L^p . This property is equivalent to the following statement: if $\varphi(x) \in L^q \cap L^\infty$ and the convolution $f * \varphi(x) = 0$, then $\varphi(x) \equiv 0$, where 1/p + 1/q = 1, (Cf. Herz [3]). Pollard [6] pointed out the close connection between the closure property (C_p) and a certain uniqueness problem for trigonometric integrals. Let us denote the set of zeros of the Fourier transform $\hat{f}(t)$ of f(x) by Z(f). We say that $f(x) \in L^p \cap L^1$ has the property (U_q) if the conditions

(a)
$$\lim_{\sigma \to +0} \int_{-\infty}^{\infty} e^{-\sigma |x|} e^{ixt} \varphi(x) \, dx = 0 \quad \text{for} \quad t \notin Z(f)$$

and

$$(b) \qquad \qquad \varphi(x) \in L^q \cap L^\infty$$

can be satisfied simultaneously only by $\varphi(x) \equiv 0$.

Under the above terminology, Pollard's and Herz's result may be stated as follows:

I. For $1 \leq p < \infty$, if $f \in L^p \cap L^1$ has the property (U_q) , then f has the property (C_p) .

II. For $2 \leq p < \infty$, if $f \in L^p \cap L^1$ has the property (C_p) , then f has the property (U_q) .

It is essentially the same problems of spectral synthesis of bounded functions to ask whether the statement II for the case 1 holds. Standing on this point of view, we shall show the following result:

THEOREM 1. Suppose the following:
i)
$$f \in L^p \cap L^1$$
 $(1 ,$

M. KINUKAWA

ii) there exists a monotone decreasing function $w(x) \in L^1(0, \infty)$ such that $|f(x)|^p \leq w(|x|)$,

and

iii) f has the property (C_p) . Then f has the property (U_q) , where 1/p+1/q = 1.

(That is, if f has a L^p -monotone majorant, then the property (C_p) is equivalent to the property (U_q) .)

Considering the dual statement of Theorem 1, we see that for a proof of Theorem 1 it is sufficient to show that the following statement is true under the assumptions (i) and (ii) of Theorem 1: for $\varphi \in L^q \cap L^{\infty}$, if $\lim_{\sigma \to +0} U_{\varphi}(\sigma, t) = 0$

for $t \notin Z(f)$, then $f * \varphi = 0$, or $\int_{-\infty}^{\infty} \varphi(x) \overline{f(x)} dx = 0$, where \overline{f} is the conjugate of f and

$$U_{\varphi}(\sigma,t) = \int_{-\infty}^{\infty} e^{-\sigma|x|} e^{+ixt} \varphi(x) \, dx \, .$$

2. We need some lemmas concerning the spectral analysis of bounded functions. For a function $\varphi(x) \in L^q \cap L^{\infty}$, we shall denote its spectral set by Sp.(φ), that is,

Sp.
$$(\varphi) = \bigcap_{k} \{Z(k); k * \varphi = 0, k \in L^1\}.$$

LEMMA 1. Let F be a closed set on the real axis. If

$$\lim_{\sigma\to+0} U_{\varphi}(\sigma,t) = 0 \quad for \quad t \notin F,$$

then Sp. $(\varphi) \subset F$.

LEMMA 2. Let I be any closed interval contained in the complement of Sp.(φ), then

$$\lim_{\sigma\to+0} U_{\varphi}(\sigma,t)=0, \quad uniformly \ on \ t\in I.$$

Lemma 2 is due to Beurling ([1] and [2]).

Lemma 1 is essentially given by Pollard [6] and Herz [2]. Actually, Pollard proved the following:

LEMMA 3. Suppose $k(x) \in L^1 \cap L^p$ $(1 , <math>|x|^{1/p}k(x) \in L^1$, and $\lim_{\sigma \to +0} U_{\varphi}(\sigma, t) = 0$ for $t \notin Z(k)$, then $k * \varphi = 0$.

On the other hand, $t_0 \notin \operatorname{Sp.}(\varphi)$ if and only if there exists a function $k(x) \in L^1$ such that $k * \varphi = 0$ but the Fourier transform $\hat{k}(t)$ of k(x) does not vanish on t_0 . Take any $t_0 \notin F$. Since F is closed, there exists an open interval $I = (t_0 - \varepsilon, t_0 + \varepsilon)$ which is contained in the complement of F. Of course, we have $\lim_{\sigma \to +0} U_{\varphi}(\sigma, t)$ = 0 for $t \in I$. We can find a function $k(x) \in L^1 \cap L^p$ (1 such that $<math>|x|^{1/p}k(x) \in L^1$ and I is the complement of Z(k). (For example, take $k(x) = (1 - \cos \varepsilon t)e^{it_0t}/(\varepsilon t^2)$, then $\hat{k}(t) = 1 - |t - t_0|/\varepsilon$ for $t \in I$, and = 0 for $t \notin I$.) Application of Lemma 3 shows that $k * \varphi = 0$. But $k(t_0) \neq 0$. Therefore, $t_0 \notin \operatorname{Sp.}(\varphi)$, that is, $\operatorname{Sp.}(\varphi) \subset F$. This completes the proof of Lemma 1.

From Lemmas 1 and 2, we have

LEMMA 4. Let F be a closed set. If $\lim_{\sigma \to +0} U_{\varphi}(\sigma, t) = 0$ for $t \notin F$, then the above limit is convergent uniformly for t on any closed interval contained in the complement of F.

3. Let A_p $(1 be the space of Fourier transforms of functions in <math>L^p$. Define a norm $\|\hat{f}\|_{A_p}$ in the space A_p by

$$\|\hat{f}\|_{A_p} = \|f\|_p = \left(\int_{-\infty}^{\infty} f(x)|^p dx\right)^{1/p},$$

where \hat{f} is the Fourier transform of f, that is,

$$\hat{f}(t) = \lim_{\omega \to \infty} (1/\sqrt{2\pi}) \int_{-\omega}^{\omega} f(x) e^{+ixt} dx$$

We say that g(t) is a normalized contraction of $\hat{f} \in A_p$, if $|g(t) - g(t')| \leq |\hat{f}(t) - \hat{f}(t')|$ for any t and t', and if

$$\lim_{\lambda\to\infty}\int_{\lambda+a}^{\lambda+b}\!\!\!|g(t)|^{\,q}\,dt=0\quad\text{for each a and b}\,.$$

Moreover, we say an element \hat{f} of A_p is contractible in the space A_p , if every normalized contraction of \hat{f} also belongs to the space A_p . And we say f is uniformly contractible in the space A_p if f is contractible in A_p and if $\lim_{t \to \infty} ||g_n||_{A_p} = 0$ for any sequence $g_n(t)$ of normalized contractions of $\hat{f}(t)$ such

M. KINUKAWA

that $\lim_{n\to\infty} g_n(t) = 0$. Using the above terms, we have the following theorem analogously to Beurling's result [2].

THEOREM 2. Suppose that (i) $f(x) \in L^1 \cap L^p$ $(1 , (ii) <math>\hat{f}(t)$ is uniformly contractible in the space A_p , and (iii) for $\varphi \in L^q \cap L^\infty$, $\lim_{\sigma \to +0} U_{\varphi}(\sigma, t) = 0$ on $t \notin Z(f)$. Then we have $\int_{-\infty}^{\infty} \varphi(x) \bar{f}(x) dx = 0$.

We shall give a proof of Theorem 2 according to Beurling's argument. Take a sequence of circular projections $T_n(z)$, that is, $T_n(z) = z$ if $|z| \leq 1/n$, and =z/(n|z|) if |z| > 1/n. Since $\hat{f}(t)$ is the Fourier transform of $f \in L^1$, $\lim_{t \to \pm\infty} \hat{f}(t) = 0$. Hence we have $\lim_{\lambda \to \infty} \int_{\lambda+a}^{\lambda+b} \hat{f}_n(t)|^q dt = 0$ for each n, a and b, where $\hat{f}_n(t) = T_n(\hat{f}(t))$. That is, $\hat{f}_n(t)$ is a normalized contraction of f(t), and so the notation $\hat{f}_n(t)$ is justified by the assumption (ii). Since $\lim_{t \to \pm\infty} \hat{f}(t) = 0$, there exists a positive number R_n such that $\hat{f}(t) - \hat{f}_n(t) = 0$ for $|t| > R_n$. Put E_n $= Z(f) \cap [-R_n, R_n]$. Note $E_n \subset Z(f)$, and that $\hat{f}(t)$ is continuous. For each point $t_0 \in E_n$, there exists a neighborhood $N(t_0)$ of t_0 such that $|\hat{f}(t)| \leq 1/n$ for $t \in N(t_0)$. Hence we have a finite number of open intervals $N(t_k)$ $(k=1\sim l)$ such that $\bigcup_{k=1}^l N(t_k) \supset E_n$ and $|f(t)| \leq 1/n$ for $t \in \bigcup_{k=1}^l N(t_k)$. Put $[-R_n, R_n]$ $- \bigcup_{k=1}^l N(t_k) = \bigcup_{j=1}^m I_j = I^{(n)}$, where each I_j is a closed interval contained in the complement of Z(f) and

(3.1)
$$\hat{f}(t) - \hat{f}_n(t) = 0 \text{ for } t \notin I^{(n)}$$

Moreover, by Lemma 4,

(3.2)
$$\lim_{\sigma \to +0} U_{\varphi}(\sigma, t) = 0, \text{ uniformly for } t \in I^{(n)}.$$

On the other hand, the function $\hat{f}(t) - \hat{f}_n(t)$ is bounded and its support is contained in the compact set $I^{(n)}$. Therefore $\hat{f}(t) - \hat{f}_n(t)$ is a Fourier transform of some function G(x) in L^2 , that is,

$$\hat{f}(t) - \hat{f}_n(t) = (1/\sqrt{2\pi}) \lim_{\omega \to \infty} \int_{-\omega}^{\omega} G(x) e^{+ixt} dx.$$

This is also equilal to

$$(1/\sqrt{2\pi}) \lim_{\omega \to \infty}^{(q)} \int_{-\omega}^{\omega} \{f(x) - f_n(x)\} e^{+ixt} dx .$$

Now, applying the Fourier reciprocity, we have $f(x) - f_n(x) = G(x) \in L^2$. Hence we can apply the Parseval relation. That is, we have

$$(1/2\pi)\int_{-\infty}^{\infty} e^{-\sigma|x|} \varphi(x) \{ \overline{f}(x) - \overline{f}_n(x) \} dx = \int_{-\infty}^{\infty} U_{\varphi}(\sigma, t) \{ \overline{f}(t) - \overline{f}_n(t) \} dt.$$

Letting $\sigma \to +0$, we have

$$(1/2\pi)\int_{-\infty}^{\infty} \varphi(x)\{\overline{f}(x)-\overline{f}_n(x)\}dx = \lim_{\sigma\to+0}\int_{-\infty}^{\infty} U_{\varphi}(\sigma,t)\{\overline{f}(t)-\overline{f}_n(t)\}dt.$$

By (3.1) and (3.2), the right hand side is equal to

$$\lim_{\sigma\to+0}\int_{I^{(n)}}U_{\varphi}(\sigma,t)\{\,\overline{\hat{f}}(t)-\overline{\hat{f}}_{n}(t)\}\,dt=0$$

Thus we can conclude

(3.3)
$$\int_{-\infty}^{\infty} \varphi(x) \{ \bar{f}(x) - \bar{f}_n(x) \} dx = 0,$$

for a sufficiently large number n. By Hölder's inequality, we have

Since $\hat{f}(x)$ is uniformly contractible, the right hand side of the above tends to zero when $n \to \infty$, that is,

(3.4)
$$\lim_{n\to\infty}\int_{-\infty}^{\infty} f_n(x) \, dx = 0 \, .$$

Summing the results (3.3) and (3.4) up, we can conclude that

$$\int_{-\infty}^{\infty} \varphi(x) \,\bar{f}(x) \, dx = 0 \, .$$

M. KINUKAWA

4. In order to finish the proof of Theorem 1, we need the following :

THEOREM 3. Let $f(x) \in L^p$ (1 . Suppose that there exists a function <math>w(x) such that (i) w(x) is even and positive,

(ii) $x^2 w^{2/p}(x) \in L(0, \delta), \ w^{2/p}(x) \in L(\delta, \infty) \ for \ any \ \delta > 0$,

(iii)
$$\int_{0}^{\infty} x^{-3p/2} \left\{ \int_{0}^{x} u^{2} w^{2/p}(u) \, du \right\}^{p/2} dx + \int_{0}^{\infty} x^{-p/2} \left\{ \int_{x}^{\infty} w^{2/p}(u) \, du \right\}^{p/2} dx < \infty$$

and (iv) $|f(x)|^p \leq w(|x|)$. Then the Fourier transform $\hat{f}(t)$ of f(x) is uniformly contractible in the space A_p .

A proof of Theorem 3 is a simple modification of the argument in the previous paper [5]. Let $\hat{f}_n(t)$ be a sequence of normalized contractions of $\hat{f}(t)$ with a property $\lim_{n\to\infty} \hat{f}_n(t) = 0$. Under the assumption of Theorem 3, $\hat{f}(t)$ is contractible in A_p , and so $\hat{f}_n(t)$ is a Fourier transform of $f_n(x) \in L_p$ (cf. [4]). Therefore, we need only to show that

$$\lim_{n o\infty} \| \widehat{f}_n \|_{A_p}^p = \lim_{n o\infty} \int_{-\infty}^\infty f_n(x) |^p \, dx = 0 \, .$$

Let $q(u) \in L^p$. By the Schwarz inequality, we have

$$S(x) = \int_0^x u^p |g(u)|^p dx \leq x^{1-p/2} \left(\int_0^x u^2 |g(u)|^2 du \right)^{p/2}.$$

Apply the partial integration to $\int_0^N |g(x)|^p dx = \int_0^N x^{-p} S'(x) dx$, then we have the following inequality:

(4.1)
$$\int_0^\infty |g(x)|^p dx \leq p \int_0^\infty x^{-3p/2} \left(\int_0^x u^2 |g(u)|^2 du \right)^{p/2} dx.$$

The Parseval relation and the assumptions assure the following inequalities :

(4.2)
$$\int_{0}^{x} u^{2} |f_{n}(u)|^{2} du \leq C x^{2} \int_{-\infty}^{\infty} |f_{n}(u)|^{2} \sin^{2} u/x \, du$$
$$= C x^{2} \int_{-\infty}^{\infty} |\hat{f}_{n}(u+1/x) - \hat{f}_{n}(u-1/x)|^{2} \, du$$

(4.3)

$$\leq C x^{2} \int_{-\infty}^{\infty} |\hat{f}(u+1/x) - \hat{f}(u-1/x)|^{2} du$$

$$= C x^{2} \int_{-\infty}^{\infty} |f(u)|^{2} \sin^{2} u/x du$$
(4.4)

$$\leq C \left\{ \int_{0}^{x} u^{2} w^{2/p}(u) du + x^{2} \int_{x}^{\infty} w^{2/p}(u) du \right\}$$

From $(4.1) \sim (4.4)$, we have

$$\begin{split} \|\hat{f}_{n}\|_{A_{p}}^{p} &= \int_{-\infty}^{\infty} |f_{n}(x)|^{p} dx \\ &\leq C \int_{-\infty}^{\infty} dx \left\{ \|x\|^{-1} \int_{-\infty}^{\infty} \hat{f}_{n}(u+1/x) - \hat{f}_{n}(u-1/x)\|^{2} du \right\}^{p/2} \\ &\leq C \int_{-\infty}^{\infty} dx \left\{ \|x\|^{-1} \int_{-\infty}^{\infty} \hat{f}(u+1/x) - \hat{f}(u-1/x)\|^{2} du \right\}^{p/2} \\ &\leq C \int_{0}^{\infty} x^{-3p/2} \left\{ \int_{0}^{x} u^{2} w^{2/p}(u) du \right\}^{p/2} dx + C \int_{0}^{\infty} x^{-p/2} \left\{ \int_{x}^{\infty} w^{2/p}(u) du \right\}^{p/2} dx \\ &< \infty . \end{split}$$

These inequalities assure the use of Lebesgue's theorem, and so we see that $\lim_{n \to \infty} || \hat{f}_n ||_{A_p} = 0$. This completes the proof of Theorem 3.

Since a monotone decreasing functions $w(x) \in L^1(0, \infty)$ satisfies the conditions (ii) and (iii) of Theorem 3 (cf. [4]), we finish the proof of Theorem 1 through Theorems 2 and 3.

REFERENCES

- A. BEURLING, Sur une classe des fonctions presque-periodiques, C. R. Acad. Sci. Paris, 225(1947), 326-327.
- [2] A. BEURLING, On the spectral synthesis of bounded functions, Acta Math., 81(1949), 225-238.
- [3] C. S. HERZ, A note on the span of translations in L^p, Proc. Amer. Math. Soc., 8 (1957), 724-727.
- [4] M. KINUKAWA, Contractions of Fourier coefficients and Fourier integrals, Journ. Analyse Math., 8(1960), 377-406.
- [5] M. KINUKAWA, On the spectral synthesis of bounded functions, Proc. Amer. Math. Soc., 14(1963), 468-471.
- [6] H. POLLARD, The closure of translations in L^p, Proc. Amer. Math. Soc., 2(1951), 100-104.

INTERNATIONAL CHRISTIAN UNIVERSITY, TOKYO, JAPAN.