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1. In this note, we shall consider a function f{x) defined on the real axis
(—o0, ). Suppose p=1 and feL'NL? then f is said to have the Wiener
closure property (C,), when the linear manifold spanned by the translates of f
is dense in the space LP. This property is equivalent to the following
statement : if @(x)e L*'NL~ and the convclution fxg@(x) =0, then ¢@(x)=0,
where 1/p+1/g=1, (Cf. Herz [3]). Pcllard [6] pointed out the close connection
between the closure property (C,) and a certain uniqueness problem for
trigonometric integrals. Let us denote the set of zeros of the Fourier transform
f(t) of flx) by Z(f). We say that f(x)e L>NL' has the property (U,) if the

conditions

00

(a) lim0 e e plx)dx =0 for t&Z(f)
and
®) pa)e LinL®

can be satisfied simultaneously only by ¢(x) = 0.
Under the above terminology, Pollard’s and Herz’s result may be stated as
follows :

I. For 1=p<oo, if feL?NnL' has the property (U,), then f has the
property (C,).

II. For 2=p< oo, if feLPNL' has the property (C,), then f has the
property (U,).

It is essentially the same problems of spectral synthesis of bounded
functions to ask whether the statement II for the case 1<<p<(2 holds.
Standing on this point of view, we shall show the following result :

THEOREM 1. Suppose the following:
i) feL*nL' 1<p<2),
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ii) there exists a monotone decreasing function w(x) <€ L0, o) such that
| f@)]|” = w(|x]),
and

iii) f has the property (C,).
Then f has the property (U,), where 1/p+1/q = 1.

(That is, if f has a LP?-monotone majorant, then the property (C,) is
equivalent to the property (U,).)

Considering the dual statement of Theorem 1, we see that for a proof of
Theorem 1 it is sufficient to show that the following statement is true under
the assumptions (i) and (ii) of Theorem 1: for @ L'NL">, if limUyo,t) =0

T>+0
for ¢t & Z(f), then fx@=0, or f @(x) f(x) dx = 0, where f is the conjugate of

f and

=3

Uyo,t) = fe“"”e”"‘ @p(x)dx.

—c0

2. We need some lemmas concerning the spectral analysis of bounded
functions. For a function @(x)€ L*'NL>, we shall denote its spectral set by
Sp.(@), that is,

Sp. (@) = [\ {Z(k); kxp=0,k < L'}.

k
LEMMA 1. Let F be a closed set on the real axis. If
IimUye,2) =0 for t<&F,
ag—>+0
then Sp.(p)CF.

LEMMA 2. Let I be any closed interval contained in the com plement
of Sp.), then

mUyo,t)=0, wuniformly on tel.

o—+0

Lemma 2 is due to Beurling ([1] and [2]).

Lemma 1 is essentially given by Pollard [6] and Herz [2]. Actually, Pollard
proved the following :
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LEMMA 3. Suppose k(x) ¢ L' N L? (1< p<2), |x|Y?k(zx) < L', and
lim U,,(o-, t) =0 for t & Z(k), then kxp = Q.

o-+0

On the other hand, ¢, & Sp.(@) if and only if there exists a function k(x)e L!
such that k¥@=0 but the Fourier transform l?(t) of k(x) does not vanish on ¢,.

Take any ¢,& F. Since F is closed, there exists an open interval I=(¢,—§&,t,+&)
which is contained in the complement of F. Of course, we have lim U,,(cr, t)

T—+0

=0 for el We can find a function k(x)e L'NL? (1< p<2) such that
|x|""k(x) € L' and I is the complement of Z(k). (For example, take k(x)=(1—

cos Et) e /(61?), then k(t)=1—|¢t—t,|/€ for ¢ < I,and =0 for &) Application
of Lemma 3 shows that kx@=0. But k(t,) # 0. Therefore, ¢, % Sp.(), that is,
Sp.(p)CF. This completes the proof of Lemma 1.

From Lemmas 1 and 2, we have

LEMMA 4. Let F be a closed set. If limUya,t) =0 for t&F, then

the above limit is convergent uniformly for t on any closed interval
contained in the complement of F.

3. Let A, (1 < p<2) be the space of Fourier transforms of functions in
L». Define a norm | f |4, in the space A, by

| Fllay = 11, = (f_Tf(x)i”dx) \

where f is the Fourier transform of f, that is,
Py (g — .
@) = Lim. (1/+/27) f Ax) et do.

We say that ¢(¢) is a normalized contraction of fe A, if Jg@) — @)
= |f(t) —f(t)] for any ¢ and ¢/, and if

A+D

hm lg()|?dt =0 for each a and b.

A+a

Moreover, we say an element f of A, is contractible in the space A,, if
every normalized contraction of # also belongs to the space A4,. And we say
f is uniformly contractible in the space A, if f is (,ontractlble in A, and if
lim | g,ll4, =0 for any sequence ¢,(¢) of normalized contractions of f(t) such
nN-rc0
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that lim ¢,(t) = 0. Using the above terms, we have the following theorem
analogously to Beurling’s result [2].

THEOREM 2. Suppose that (i) flx)e L'nL? 1< p<2), (i) A¢) is
uniformly contractible in the space A,, and (iii) for ¢ € L“NL", ﬁ_{rlko(a, t)

=0 on t&Z(f). Then we have qu)(x)f(x) dx = 0.

We shall give a proof of Theorem 2 according to Beurling’s argument.
Take a sequence of circular projections 7",(z), that is, T,(2) = z if |2z| =1/n,
and =z/(n|z|) if |z| > 1/n. Since f(¢) is the Fourier transform of fe L',

M—b

tlim F(t) =0. Hence we have hm | Fu(®)|9dt=0 for each n,a and b, where

A+a

Fult) = T F(£). That is, f"(t) is a normalized contraction of f{¢), and so the
notation f,(t) is justified by the assumption (ii). Since hm f(t) =0, there

exists a positive number R, such that f(t) - f,,(t) 0 for [tl >R,. Put E,
=Z(f)N[—R,,R,]. Note E,CZ(f), and that f(t) is continuous. For each
point #, € E,, there exists a neighborhood N(%,) of £, such that | f(£)| =<1/x
for t € N(¢,). Hence we have a finite number of open intervals N(¢,) (k=1~1)

l l
such that \_JN(¢)DE, and |f(t)| =1/n for t e \_JN(t:). Put [—R,,R,]
k=1 k=1

l m
— UN(tk) = UI ; = I™, where each I, is a closed interval contained in the
k=1

complement of Z(f) and
(3.1) Ff@) — fu®) =0 for t&I™.
Moreover, by Lemma 4,

(3.2 limUy(o,t) = 0, uniformly for zelI™.
o—+0

On the other hand, the function f(z) — f,,(t) is bounded and its support is
contained in the compact set I™. Therefore f(£) — Fu(£) is a Fourier transform
of some function G(x) in L?, that is,

£®) = 1.0 = 1/ 2m)Lim. f G(z) e dux.

This is also equlal to
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@
(1/¢27)1.€;3.f{f(x) — f(2)} ettt d .

Now, applying the Fourier reciprocity, we have f(x)— f.(x) = G(x)e L
Hence we can apply the Parseval relation. That is, we have

(1/20) [+ 9(@)1 F () - Fu(@) d = [Uo.)( Fi) - Fueae.
Letting ¢ — +0, we have
(/20 [ 7~ F DNz =lim [Uso D1 Fi) - Fi0)
By (3.1) and (3.2), the right hand side is equal to
fim | Ue, {/©) = 7.0} dt = 0

Thus we can conclude
(3.3) [p@1 7@ — 7@} dz =0,
for a sufficiently large number n. By Hélder’s inequality, we have

i [ o7 dxl = Ipla 1515 = I9la | Fa -

Since f(x) is uniformly contractible, the right hand side of the above tends to
zero when n — oo, that is,

(3.4) ggfjﬂx)fn(x) dx =0.

Summing the results (3.3) and (3.4) up, we can conclude that

f;(x)f(x)dx =0.
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4. In order to finish the proof of Theorem 1, we need the following :

THEOREM 3. Let flx)e L» (1< p<2). Suppose that there exists a
function w(x) such that (i) w(x) is even and positive,
(i) xw¥?(x)e L(0,8), w*?(x)< L(8, o) for any 8§ >0,

oo x »/2 0o 00 /2
(iii) f x7302 {fuzww(u) du} dx + f x P {f w*?(u) du} dx < oo
0 0 z

and (iv) |flx)|? =w(|x|). Then the Fourier transform f©® of f(x) is
uniformly contractible in the space A,.

A proof of Theorem 3 is a simple modification of the argument in the

previous paper [5]. Let F®) be a sequence of normalized contractions of f(t)
with a property lim f,(¢) =0. Under the assumption of Theorem 3, A is

contractible in A,, and so f,,(t) is a Fourier transform of f,(x)e L, (cf. [4]).
Therefore, we need only to show that

tim | £, 12, =lim [ £,(2)1" dz = 0.

Let g(u) € L?. By the Schwarz inequality, we have

7

* p/2
S = [ wlgtolr ez o [ty

N N
Apply the partial integration to f | g(x)|? dx = f x7?S(x)dx, then we have
0 0

the following inequality :

1 [ ig@irae=p] = (f 2tq(u>|2du>mdx.

The Parseval relation and the assumptions assure the following inequalities :

fz u?| fu(w) lzduészfo"(u)\Qsinzu/xdu

(4.2) =Cx? f °°| Fulu+1/2) — fFulu—1/2)|* du
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(4.3) gcx:'f] Fu+1/2) — Flu—1/2) du
—Cz? f " F) | sint ) du

(4. 4) =C { f W (u) du + x f w”"(u) du} .
0 7
From (4.1) ~ (4. 4), we have

1 Fult = [1 @)1 dx
éwadx{lxrl-[m‘fn(u_,{_l/x) ‘fn(u—l/x)\Qdu}p/2
. RN . /2
gcf_ dx{lxl“f_\f(uﬂ/x)—f(u~1/x)|2du}

oo < \or2 oo oo 1:»/2
=C f xw j{ f w " (u) du% dx +C f x"‘”{ f w’"(u) du ) dx
0 0 z

0
< oo,

These inequalities assure the use of Lebesgue’s theorem, and so we see that
lim || £, |4, = 0. This completes the proof of Theorem 3.

Since a monotone decreasing functions w(x)e L'(0, ) satisfies the con-
ditions (ii) and (iii) of Theorem 3 (cf. [4]), we finish the proof of Theorem 1
through Theorems 2 and 3.

REFERENCES

[1] A. BEURLING, Sur une classe des fonctions presque-periodiques, C. R. Acad. Sci. Paris,
225(1947), 326-327.

[2] A. BEURLING, On the spectral synthesis of bounded functions, Acta Math., 81(1949),
225-238.

[3] C.S. HERZ, A note on the span of translations in L?, Proc. Amer. Math. Soc., 8
(1957), 724-727.

[4]1 M. KINUKAWA, Contractions of Fourier coefficients and Fourier integrals, Journ. Analyse
Math., 8(1960), 377-406.

[5]1 M. KINUKAWA, On the spectral synthsis of bounded functions, Proc. Amer. Math. Soc.,
14 (1963), 468-471.

[6]1 H. POLLARD, The closure of translations in L?, Proc. Amer. Math. Soc., 2(1951),
100-104.

INTERNATIONAL CHRISTIAN UNIVERSITY,
TOKYO, JAPAN.





