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1. In this note, we shall consider a function f(x) denned on the real axis
( —oo, oo). Suppose p^l and fz Lι Γ)LP, then / is said to have the Wiener
closure property (Cp), when the linear manifold spanned by the translates of f
is dense in the space Lv. This property is equivalent to the following
statement: if φ(x) £ LQnL°° and the convolution f*φ(x) — 0, then φ{x) = 0,
where l/p + l/q = l, (Cf. Herz [3]). Pollard [6] pointed out the close connection
between the closure property (Cp) and a certain uniqueness problem for
trigonometric integrals. Let us denote the set of zeros of the Fourier transform

f{t) of f(x) by Z(/). We say that f(x)eLpΓ)L1 has the property (Uq) if the
conditions

0) Urn f e-°w eixt φ{x) dx = 0 for t$ Z{f)
σ-»+θJ_

and

(b) <p(x)zL«nL"

can be satisfied simultaneously only by φ(x) = 0.
Under the above terminology, Pollard's and Herz's result may be stated as

follows :

I. For l ^ ^ < o o , if fzL^nL1 has the property (UQ), then / has the
property (Cp).

II. For 2^p<oo, if fzLvC\Lι has the property (Cp)9 then / has the
property (UQ).

It is essentially the same problems of spectral synthesis of bounded
functions to ask whether the statement II for the case 1 < p < 2 holds.
Standing on this point of view, we shall show the following result:

THEOREM 1. Suppose the following:
i) fzL^nL1 ( !</>< 2),
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ii) there exists a monotone decreasing function w(x) € Lιφ, oo) such that
\f{x)\*^w{\x\\
and

iii) / has the property (Cp).
Then f has the property (UQ), where 1/p + l/q = 1.

(That is, if / has a Lp-monotone majorant, then the property (Cp) is
equivalent to the property (UQ).)

Considering the dual statement of Theorem 1, we see that for a proof of
Theorem 1 it is sufficient to show that the following statement is true under
the assumptions (i) and (ii) of Theorem 1: for φ € LQ Π L°°, if lim Uφ(σ, t) — 0

σ-»-+0

for t ζ£ Z(f), then f*-φ—0, or I φ(x)f(x) dx = 0, where / is the conjugate of

/ and

UJσ, t) = e~σix[ e+ixt φ(x) dx.
— oo

2. We need some lemmas concerning the spectral analysis of bounded
functions. For a function φ{x) z LqΠ L°°, we shall denote its spectral set by
Sp.(<p), that is,

Sp (<p) = Γ\ {Z(k) k*φ = 0, kzV}.
k

LEMMA 1. Let F be a closed set on the real axis. If

lim Uφ(σ, t) = 0 for t ^F,
σ-*+0

then Sp.(φ)cF.

LEMMA 2. Let I be any closed interval contained in the complement
of Sp.(<£>), then

lim Uφ(σ, t)= 0 , uniformly on t € I.
σ->+0

Lemma 2 is due to Beurling ([1] and [2]).

Lemma 1 is essentially given by Pollard [6] and Herz [2]. Actually, Pollard
proved the following:
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LEMMA 3. Suppose k(x) € L1 Π Lp (l<p<2), \x\1/pk(x) e L\ and
lim Uφ(σ, t) = 0 for t ξ Z(k), then k*φ = 0.
σ-»+0

On the other hand, t0 ^ Sp.(<p) if and only if there exists a function k(x) e Lι

such that k*φ=0 but the Fourier transform k(t) of k(x) does not vanish on t0.
Take any to$F. Since F is closed, there exists an open interval I=(t0 — £, to+β)
which is contained in the complement of F. Of course, we have lim Uφ(σ, t)

σ->+0

= 0 for t € /. We can find a function k(x) zLlnLp (l<p<2) such that
\x\Vvk{x)zLι and I is the complement of Z(k). (For example, take k(x) = (l —
cosSt)eίht/(8t2), then £(*) = 1-l*--*ol/£ &* ί ^/, and =0 for ί^7.) Application
of Lemma 3 shows that k*φ = 0. But k(t0) Φ 0. Therefore, ίo^Sp.(^), that is,
Sp.(<p)cF. This completes the proof of Lemma 1.

From Lemmas 1 and 2, we have

LEMMA 4. Let F be a closed set. If lim Uφ(σ, t) = 0 for t$F, then

the above limit is convergent uniformly for t on any closed interval

contained in the complement of F.

3. Let Ap (1 < p < 2) be the space of Fourier transforms of functions in
ZΛ Define a norm || / \\Ap in the space Ap by

where / is the Fourier transform of /, that is,

= lίm. (1/V27Γ) f

We say that y(t) is a normalized contraction of / ^ Ap, if | g(t) — g(t') \

f(P) - /(Ol f o r a n y ^ a n d ί', and if

pλ+b

lim/ |?(ί)|
λ-oo J.

lim I \g(t)\Qdt = 0 for each α and b.

Moreover, we say an element / of Ap is contractible in the space Ap, if
every normalized contraction of / also belongs to the space Ap. And we say
/ is uniformly contractible in the space Ap if / is contractible in Ap and if
lim \\gn\\ΛP — 0 for any sequence gv(t) of normalized contractions of f(t) such
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that lim gn(t) = 0. Using the above terms, we have the following theorem
7l->oo

analogously to Beurling's result [2].

THEOREM 2. Suppose that (i) f(x)eLιΓ)Lp (l<ρ<2), (ii) f(t) is
uniformly contractϊble in the space Ap, and (in) for φ^LQΓ\L°°, ]χmUφ(σ,t)

σ->+0

= 0 on tKZ{f). Then we have \ φ(x)f(x)dx = 0.

We shall give a proof of Theorem 2 according to Beurling's argument.
Take a sequence of circular projections Tn(z), that is, Tn(z) = z if | z \ ̂  1/n,
and =2/(71 |s:|) if \z\ > 1/n. Since /(£) is the Fourier transform of fzL\

λ->o
= 0. Hence we have lim I I fn(t)\qdt = 0 for each n, a and b, where

fn{t) = Tn(f(t)). That is, fn(t) is a normalized contraction of /(£), and so the
notation fn(t) is justified by the assumption (ii). Since lim f(t) — 0, there

t->±oo

exists a positive number i?n such that f(t) — fn(t) = 0 for | ί | > i?w. Put En

= Z(f)f)[-Rn,Rnl Note EndZ(f), and that /(ί) is continuous. ^ For each
point t0 £ En, there exists a neighborhood iV(*0) of ô such that | f(t) \ ̂  1/w
for t £ N(t0). Hence we have a finite number of open intervals N(tk) (k = l~~l)

I I

such that \jN(tk)ΌEn and |/(ί)| ^ 1/n for ί 6 \jN(tk). Put [-iί^iίj
A : = l A = l

— \^J N(tk) = \J Ij = / ( n\ where each 7; is a closed interval contained in the

complement of Z(/) and

(3.1) / ( ί ) - / » ( 0 = 0 for **/<»>.

Moreover, by Lemma 4,

(3. 2) lim C7̂ (σ, t) = 0, uniformly for t z I(n).

On the other hand, the function f(t) — fn(t) is bounded and its support is
contained in the compact set I{n\ Therefore f(t) — fn(t) is a Fourier transform
of some function G(x) in L2, that is,

(2) rω

At) -fn(t) = (1/V2F) l i m. / G(x) e-^ dx.

This is also equlal to
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(1/V27Γ ) LLm. {f{x) - fn{x)} e^ dx .
ω->oo J

— ω

Now, applying the Fourier reciprocity, we have f{x) — fn(x) = G(x) <= ZΛ
Hence we can apply the Parseval relation. That is, we have

(l/2τr) jV'I'l φ(x){f(x) - fn(x)} dx = (Ujσ, t){ J{t) - Jn(t)}dt.

Letting σ-> +0, we have

(l/2τr) \φix){fix) - fnix)}dx = Urn (ujp* dt

By (3.1) and (3. 2), the right hand side is equal to

Urn = 0

Thus we can conclude

(3. 3)

for a sufficiently large number n. By Holder's inequality, we have

I φix)fnix)dx
* —no

^\\<p\U\\fn\\P=\\<p\\<,\\fn\\A,.

Since fix) is uniformly contractible, the right hand side of the above tends to
zero when n —> oo, that is,

(3.4) lim I φix) fnix) dx = 0 .
n-*oo J

Summing the results (3. 3) and (3. 4) up, we can conclude that

Jφ(x)f(x)dx = 0.
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4. In order to finish the proof of Theorem 1, we need the following:

THEOREM 3. Let f(x) zLp (l<p< 2). Suppose that there exists a
function w(x) such that (i) w(x) is even and positive,
(ii) x2w2lp{x) £ L(0, δ), w2/p(x) e L(δ, oo) for any δ > 0 ,

Γ
f /»X \ p/2 ΛOO / ΛOO \ p/2

x ~ 3 p / 2 I u2w2/p(u)du\ dx+l χ - p / 2 \ l w2/p(u)du\ dx < oo
(Jo ) Jo [Jx j

and (iv) |/(^)\p ^w(\x\). Then the Fourier transform f(t) of f(χ) is
uniformly contractible in the space Ap.

A proof of Theorem 3 is a simple modification of the argument in the
previous paper [5]. Let fn(t) be a sequence of normalized contractions of f(t)
with a property ]χτnfn(t) = 0. Under the assumption of Theorem 3, f{t) is

7ϊ-κ»

contractible in Ap, and so fn(t) is a Fourier transform of fn(x) € Lp (cf. [4]).
Therefore, we need only to show that

Urn | | /„ ||5, = Km ί | fn(x)\ p dx = 0.
n-^oo n-*oo J _ o o

Let g(u) ^ Lp. By the Schwarz inequality, we have

up I g(u)\pdx^ xχ-p'2 Π u21 g(u) | 2 du\ .

Apply the partial integration to / | n(x)\p dx = I α: pS\x)dx, then we have
Jo J o

the following inequality:

(4.1) Jo \g(x)\"dx^pjo x-^tt u*\ g(u)\!dS' dx.

The Parseval relation and the assumptions assure the following inequalities :

ί u21 /„(«) 12 ̂ M ̂  C x ! f I /„(«) 12 sin2 «/
•'O • ' - o o

(4. 2) =Cx*J\ /„(«
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(4.3) ^ CΛ» jf I /(« + 1/x) - f(u - l/x) 12 du

[ \f(u)
J -ββ

)\*sin'u/xdu

(4. 4) - C ( / "2 w 2 / P ( M ) d u + x' i wVP^ du

From (4.1) ~ (4. 4), we have

/

oo f pX i p/2 ΛOO ^ ΛOO \ p/2

Λ:-8Λ/ί J w 2w 2 / p(w)^ dx + Cj χ-p/2\J w2/p(u)dui dx
<oo .

These inequalities assure the use of Lebesgue's theorem, and so we see that
lim || fn \\Ap = 0. This completes the proof of Theorem 3.
n—>oo

Since a monotone decreasing functions w{x) € Lι(0, oo) satisfies the con-
ditions (ii) and (iii) of Theorem 3 (cf. [4]), we finish the proof of Theorem 1
through Theorems 2 and 3.
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