SOME TRANSFORMATIONS ON K-CONTACT AND NORMAL CONTACT RIEMANNIAN MANIFOLDS

TAKASHI SAKai

(Received February 3, 1966)

1. Introduction. In [3] and [5], infinitesimal transformations on K-contact and normal contact Riemannian manifolds were studied, and global transformations on almost contact and contact Riemannian manifolds were discussed in [4]. In this note, we shall add some results concerning global transformations on K-contact and normal contact Riemannian manifolds. In §2, some preliminary notions and identities are given for later use. In §3, it will be shown that homothetic and affine transformations on K-contact Riemannian manifolds must be isometries. In §4, transformations on η-Einstein manifolds will be concerned. The author wishes to thank Professor Sasaki and Mr. Tanno for their suggestions and kind advices.
2. Preliminaries ([1], [2]). Let M be an $n(=2 m+1, m \geqq 1)$ dimensional C^{∞}-manifold with a contact structure η. We take an arbitrary point x and a local coordinate system $\left(x^{k}, U\right)$ around x. If we put $2 \phi_{j i}=\partial_{j} \boldsymbol{\eta}_{i}-\partial_{i} \eta_{j}$, there exists a Riemannian metric $g_{j i}$ in M such that $\phi_{i}^{h}=g^{h r} \phi_{i r}$ and $\xi^{i}=g^{i r} \eta_{r}$ define a (ϕ, ξ, η, g)-structure with η_{i} and $g_{j i}$. That is,

$$
\begin{align*}
& \xi^{i} \eta_{i}=1, \quad \operatorname{rank}\left(\phi_{j}^{i}\right)=n-1, \\
& \phi_{j}^{i} \xi^{j}=0, \quad \phi_{j}^{i} \phi_{k}^{j}=-\delta_{k}^{i}+\xi^{i} \eta_{k}, \tag{1.1}\\
& g_{j i} \xi^{i}=\eta_{j}, \quad g_{j i} \phi_{k}^{j} \phi_{h}^{i}=g_{k h}-\eta_{k} \eta_{h}
\end{align*}
$$

hold good. This structure is called a contact metric structure, and the manifold with this structure is called a contact Riemannian manifold. If we define,

$$
\begin{equation*}
\phi^{k h}=g^{k r} \boldsymbol{\phi}_{r}^{h}=g^{k i} g^{h r} \phi_{i r} \tag{1.2}
\end{equation*}
$$

this is a skew-symmetric contravariant tensor.
For a contact Riemannian manifold, torsion tensor fields $N_{j i}{ }^{h}$ and N_{j}^{i} can be defined. The condition $N_{j}^{i}=0$ is equivalent to the fact that ξ^{i} is a Killing
vector, and the contact Riemannian manifold which satisfies this condition is called a K-contact Riemannian manifold. In a K-contact Riemannian manifold,

$$
\begin{equation*}
\nabla_{j} \boldsymbol{\eta}_{i}=\boldsymbol{\phi}_{j i}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} \phi_{j i}+R_{i j k}^{r} \eta_{r}=0 \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
R_{k j i}{ }^{h} \xi^{k} \xi^{i}=\eta_{j} \xi^{h}-\delta_{j}^{h}, \quad R_{k j i h} \xi^{k} \xi^{h}=g_{j i}-\eta_{j} \eta_{i} \tag{1.5}
\end{equation*}
$$

hold good, where $R_{k j i}{ }^{h}$ is the curvature tensor.
On the other hand, the contact Riemannian manifold which satisfies $N_{j i}{ }^{h}=0$ is called a normal contact Riemannian manifold. It is known that a normal contact Riemannian manifold is K-contact. In this case, we have

$$
\begin{align*}
& \nabla_{k} \phi_{j i}=\eta_{j} g_{k i}-\eta_{i} g_{k j}, \tag{1.6}\\
& \xi^{k} R_{k j i}^{r}=\xi^{r} g_{j i}-\eta_{i} \delta_{j}^{r}, \quad R_{k j i}^{r} \eta_{r}=\eta_{k} g_{j i}-\eta_{j} g_{k i}, \tag{1.7}\\
& \phi_{j}^{r} R_{r}^{l}+(1 / 2) \phi^{r k} R_{r k j}^{l}=(n-2) \phi_{j}^{l}, \tag{1.8}
\end{align*}
$$

where we have put

$$
R_{j i}=R_{r j i}^{r} \quad \text { and } \quad R_{l}^{r}=g^{r s} R_{s l}
$$

Now, K-contact Riemannian manifold ($m>1$) in which Ricci's tensor takes the form

$$
\begin{equation*}
R_{j i}=a g_{j i}+b \eta_{j} \eta_{i} \tag{1.9}
\end{equation*}
$$

is called a K-contact η-Einstein manifold, where a and b become constants. Then,

$$
\begin{equation*}
a+b=n-1 \tag{1.10}
\end{equation*}
$$

holds good and in a normal contact η-Einstein manifold, we get

$$
\begin{equation*}
\frac{1}{2} \phi^{r k} R_{r k j}^{i}=(b-1) \phi_{j}^{i} . \tag{1.11}
\end{equation*}
$$

In the sequel we will be concerned with differentiable transformations on M. These transformations induce algebra automorphisms of algebra over real numbers of all tensor fields defined on M, and they preserve types and commute with contractions. The notation 'bar' will be used to denote the geometric objects which are transformed by the induced transformation.

By the automorphism of a contact Riemannian manifold M, we mean the transformation of M which leaves invariant $\phi_{j}^{i}, \xi^{i}, \eta_{i}$, and $g_{j i}$ of (ϕ, ξ, η, g) structure.

3. Transformations on K-contact Riemannian manifolds.

PROPOSITION 1. ([4]). In a contact Riemannian manifold M, any conformal transformation μ which is also a contact transformation is an isometry, and if $\bar{\eta}(\xi)>0$ holds, μ is an automorphism.

Proof. By definition we can write $\bar{g}_{j i}=\rho g_{j i}, \bar{g}^{j i}=(1 / \rho) g^{j i}$, and $\bar{\eta}_{j}=\sigma \eta_{j}$ for some positive scalar ρ and scalar σ. By $(1.1)_{5} \bar{\xi}^{i}=(\sigma / \rho) \xi^{i}$ holds good. Contracting both sides of $\bar{\phi}_{j i}=\sigma \phi_{j i}+(1 / 2)\left(\partial_{j} \sigma \cdot \eta_{i}-\partial_{i} \sigma \cdot \eta_{j}\right)$ with ξ^{i}, we know that $\bar{\phi}_{j i}=\sigma \phi_{j i}$ and consequently $\bar{\phi}_{j}^{i}=(\sigma / \rho) \phi_{j}^{i}$ is true. Now we have $\sigma^{2}=\rho^{2}=\rho=1$ by $(1.1)_{4}$.
Q.E.D.

Theorem 1. In a K-contact Riemannian manifold M, any homothetic transformation μ is an isometry.

Proof. We can write $\bar{g}_{j i}=\rho g_{j i}$, and $\bar{g}^{j i}=(1 / \rho) g^{j i}$ where ρ is a positive constant. Because a homothetic transformation is an affine transformation, we have

$$
\begin{equation*}
\rho R_{k j i h} \bar{\xi}^{k} \bar{\xi}^{h}=\rho g_{j i}-\bar{\eta}_{j} \bar{\eta}_{i} \tag{2.1}
\end{equation*}
$$

by (1.5). Transvecting (2.1) with $\xi^{j} \xi^{2}$, we get

$$
\begin{equation*}
\rho\left(g_{k h}-\eta_{k} \eta_{h}\right) \bar{\xi}^{k} \bar{\xi}^{h}=\rho-\bar{\eta}_{j} \bar{\eta}_{i} \xi^{j} \xi^{i} . \tag{2.2}
\end{equation*}
$$

But since $g_{k h} \bar{\xi}^{k} \bar{\xi}^{h}=1 / \rho$ and $\eta_{k} \bar{\xi}^{k}=(1 / \rho) \xi^{k} \bar{\eta}_{k}$ hold good, we have

$$
\begin{equation*}
\rho(1-\rho)=(1-\rho)\left(\xi^{r} \bar{\eta}_{r}\right)^{2} . \tag{2.3}
\end{equation*}
$$

So we get $\rho=1$ or $\left(\xi^{r} \bar{\eta}_{r}\right)^{2}=\rho$. In the second case,

$$
\bar{\eta}_{k}=\left(\xi^{r} \bar{\eta}_{r}\right) \eta_{k}-\phi_{k}^{j} \phi_{j}^{h} \bar{\eta}_{h}
$$

is true by $(1.1)_{4}$. Since μ is a homothetic transformation, we have $\left\|\bar{\eta}_{k}\right\|^{2}$ $=g^{k j} \bar{\eta}_{k} \bar{\eta}_{j}=\rho$. On the other hand, $\left\|\left(\xi^{r} \bar{\eta}_{r}\right) \eta_{k}\right\|^{2}=\left(\xi^{r} \bar{\eta}_{r}\right)^{2}=\rho$ is true and, $\left(\xi^{r} \bar{\eta}_{r}\right) \eta_{k}$ and $\phi_{k}^{j} \phi_{j}^{n} \bar{\eta}_{h}$ are mutually orthogonal, so $\left\|\phi_{k}^{j} \phi_{j}^{n} \bar{\eta}_{h}\right\|=0$ holds good. That is, μ is a contact transformation. Then by Proposition 1 we know that μ is isometric.
Q.E.D.

THEOREM 2. In a K-contact Riemannian manifold M, any affine transformation μ is an isometry.

Proof. Since μ is an affine transformation, by Ricci's identity,

$$
0=\nabla_{l} \nabla_{m} \bar{g}_{i k}-\nabla_{m} \nabla_{l} \bar{g}_{i k}=-R_{l m i}^{a} \bar{g}_{a k}-R_{l m k}^{a} \bar{g}_{a i},
$$

that is,

$$
\begin{equation*}
R_{l m i}^{a} \bar{g}_{a k}+R_{l m k}^{a} \bar{g}_{a i}=0 \tag{2.4}
\end{equation*}
$$

holds good. Transvecting (2.4) with $\xi^{i} \xi^{k} \xi^{l}$, we have by (1.5)

$$
\begin{equation*}
\overline{\boldsymbol{g}}_{k r} \xi^{r}=\left(\xi^{a} \xi^{b} \overline{\boldsymbol{g}}_{a b}\right) \boldsymbol{\eta}_{k} \tag{2.5}
\end{equation*}
$$

Now, transvecting (2.4) with $\xi^{i} \xi^{l}$, we get

$$
\begin{equation*}
\left(\eta_{m} \xi^{a}-\delta_{m}^{a}\right) \bar{g}_{a k}+\xi^{l} R_{l m k}^{a} \xi^{i} \bar{g}_{i a}=0 . \tag{2.6}
\end{equation*}
$$

Substituting (2.5) into (2.6), we obtain

$$
\begin{equation*}
\bar{g}_{m k}=\left(\xi^{a} \xi^{b} \bar{g}_{a b}\right) g_{m k} \tag{2.7}
\end{equation*}
$$

Thus μ is a conformal transformation. But any affine transformtion which is also a conformal transformation must be homothetic. So Theorem 2 reduces to Theorem 1.
Q.E.D.

Proposition 2.*) In a K-contact Riemannian manifold M, any projective transformation μ which is at the same time a contact transformation with constant associated function σ is an isometry. Moreover, if σ is positive, μ is an automorphism.

PROOF. Since μ is a projective transformation, we have

$$
\bar{\Gamma}_{j i}^{k}=\Gamma_{j i}^{k}+p_{j} \delta_{i}^{k}+p_{i} \delta_{j}^{k}
$$

for some covariant vector field p_{i}, where $\Gamma_{j i}^{k}$ is Christoffel's symbols. Then,

$$
\begin{equation*}
\bar{\phi}_{i j}=\partial_{i} \bar{\eta}_{j}-\bar{\Gamma}_{i j}^{k} \bar{\eta}_{k}=\sigma \phi_{i j}-\sigma\left(p_{i} \eta_{j}+p_{j} \eta_{i}\right) \tag{2.8}
\end{equation*}
$$

[^0]holds good. Adding to (2.8) the identity which is obtained from (2.8) by permuting i and j, we get
\[

$$
\begin{equation*}
p_{i} \boldsymbol{\eta}_{j}+p_{j} \boldsymbol{\eta}_{i}=0 . \tag{2.9}
\end{equation*}
$$

\]

Now transvecting (2.9) with $g^{j i}$ and ξ^{i} respectively, we have $p_{i}=0$. Thus projective transformation which is also a contact transformation with constant associsted function must be an affine transformation. Then Proposition 2 reduces to Theorem 2 and Proposition 1.
Q.E.D.

4. Transformations on η-Einstein manifolds.

Proposition 3. In a K-contact η-Einstein manifold $(b \neq 0, m>1)$, an isometry μ which satisfies $\bar{\eta}(\xi)>0$ is an automorphism.

PROOF. Since $\bar{R}_{j i}=R_{j i}$ holds good, we have $\bar{\eta}_{i} \bar{\eta}_{j}=\eta_{i} \eta_{j}$. Transvecting this identity with ξ^{i}, we know that μ is a contact transformation. Thus Proposition 3 reduces to Proposition 1.
Q.E.D.

In the sequel we will be concerned with two theorems which are studied in [3] in infinitesimal case.

THEOREM 3. In a normal contact η-Einstein manifold $M(b \neq 0, m>1)$, any conformal transformation μ is an isometry, and if it satisfies $\bar{\eta}(\xi)>0, \mu$ is an automorphism.

PROOF. If we put $\bar{g}_{j i}=\rho g_{j i}$, where ρ is a positive scalar, and $\boldsymbol{\tau}=(1 / 2) \log \rho$, then we have

$$
\begin{equation*}
\bar{\Gamma}_{j k}^{i}=\Gamma_{j k}^{i}+\left(\tau_{k} \delta_{j}^{i}+\tau_{j} \delta_{k}^{i}-\tau^{i} g_{j k}\right), \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{\tau}_{k}=\partial_{k} \boldsymbol{\tau}$ and $\boldsymbol{\tau}^{k}=g^{k j} \boldsymbol{\tau}_{j} . \quad$ Next,

$$
\begin{align*}
\bar{R}_{k j i}^{h}=R_{k j i}^{h} & +\delta_{k}^{h} A_{j i}-\delta_{j}^{h} A_{k i}+A_{k}^{h} g_{j i}-A_{j}^{h} g_{k i} \tag{3.2}\\
& -\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right) \tau_{r} \tau^{r}
\end{align*}
$$

holds good, where $A_{j i}=\boldsymbol{\tau}_{j} \boldsymbol{\tau}_{i}-\nabla_{j} \boldsymbol{\tau}_{i}$ is symmetric and $A_{k}^{h}=g^{h r} A_{r k}$. In particular, we have

$$
\begin{equation*}
\bar{R}_{j k}=R_{j k}+(n-2) A_{j k}+A_{r}^{r} g_{j k}-(n-1) \tau_{r} \tau^{r} g_{j k} . \tag{3.3}
\end{equation*}
$$

Contracting (3.2) with $\bar{\eta}_{k}$ and using (1.7) we get .
(3.4) $\left(\rho+\boldsymbol{\tau}_{r} \boldsymbol{\tau}^{r}\right)\left(\overline{\boldsymbol{\eta}}_{j} g_{k i}-\overline{\boldsymbol{\eta}}_{k} g_{j i}\right)=-R_{k j i}^{r} \overline{\boldsymbol{\eta}}_{r}+\left(A_{k i} \overline{\boldsymbol{\eta}}_{j}-A_{j i} \overline{\boldsymbol{\eta}}_{k}\right)+\left(A_{j}^{r} g_{k i}-A_{k}^{r} y_{j i}\right) \overline{\boldsymbol{\eta}}_{r}$.

And next (3.5) comes from (1.9) and (3.3).

$$
\begin{equation*}
(n-2) A_{k i}=\left\{a(\rho-1)+(n-1) \tau_{r} \boldsymbol{\tau}^{r}-A_{r}^{r}\right\} g_{k i}+b\left(\overline{\boldsymbol{\eta}}_{k} \overline{\boldsymbol{\eta}}_{i}-\boldsymbol{\eta}_{k} \boldsymbol{\eta}_{i}\right) . \tag{3.5}
\end{equation*}
$$

Now transvecting (3.4) with (1/2) $\phi^{k j}$, we get by (1.11)

$$
\begin{equation*}
\left(\rho-1+b+\boldsymbol{\tau}_{r} \boldsymbol{\tau}^{r}\right) \phi_{i}^{j} \bar{\eta}_{j}=\phi^{k j} A_{k i} \bar{\eta}_{j}+\phi_{i}^{j} A_{j}^{r} \bar{\eta}_{r} . \tag{3.6}
\end{equation*}
$$

Next, contracting (3.5) with $\phi^{k j} \bar{\eta}_{j}$ and $\phi_{i}^{k} g^{i r} \bar{\eta}_{r}$ respectivily, we have

$$
\begin{align*}
& (n-2) \phi^{k j} A_{k i} \bar{\eta}_{j}=\alpha \phi_{i}^{j} \bar{\eta}_{j}, \tag{3.7}\\
& (n-2) \phi_{i}^{k} A_{k}^{r} \bar{\eta}_{r}=(\alpha+b \rho) \phi_{i}^{k} \bar{\eta}_{k}, \tag{3.8}
\end{align*}
$$

by virtue of (1.1) and (1.2) where we have put

$$
\alpha=a(\rho-1)+(n-1) \boldsymbol{\tau}_{r} \boldsymbol{\tau}^{r}-A_{r}^{r} .
$$

Substituting (3.7) and (3.8) into (3.6), we obtain

$$
\begin{equation*}
\left\{(n-2)\left(\rho-1+b+\tau_{r} \tau^{r}\right)-b \rho-2 \alpha\right\} \phi_{i}^{j} \bar{\eta}_{j}=0 . \tag{3.9}
\end{equation*}
$$

On the other hand, transvecting (3.5) with $g^{j i}$,

$$
\begin{equation*}
2 A_{r}^{r}=n \tau_{r} \tau^{r}+(n-b)(\rho-1) \tag{3.10}
\end{equation*}
$$

holds good. Then using (3.10) we have

$$
(n-2)\left(\rho-1+b+\tau_{r} \tau^{r}\right)-b \rho-2 \alpha=b(n-3) \neq 0
$$

Thus, from (3.9) we know that $\phi_{i}^{j} \bar{\eta}_{j}=0$, that is, μ is a contact transformation. Then Theorem 3 reduces to Proposition 1.
Q.E.D.

THEOREM 4. In a normal contact η-Einstein manifold $M(b \neq 0, m>1)$, any projective transformation μ is an isometry. Moreover if $\bar{\eta}(\xi)>0$ holds good, μ is an automorphism.

Proof. By definition of projective transformation, we get

$$
\begin{equation*}
\bar{\Gamma}_{j i}^{k}=\Gamma_{j i}^{k}+p_{j} \delta_{i}^{k}+p_{i} \delta_{j}^{k} \tag{3.11}
\end{equation*}
$$

for some covariant vector p_{i}. If we put $A_{j i}=p_{j} p_{i}-\nabla_{j} p_{i}$,

$$
\begin{equation*}
\bar{R}_{k j i}{ }^{h}=R_{k j i}{ }^{h}+\delta_{k}^{h} A_{j i}-\delta_{j}^{h} A_{k i} \tag{3.12}
\end{equation*}
$$

and especially

$$
\begin{equation*}
\bar{R}_{k j}=R_{k j}+(n-1) A_{k j} \tag{3.13}
\end{equation*}
$$

hold good.
LEMMA 1. In a normal contact η-Einstein manifold, we have for some scalar α

$$
\begin{equation*}
\bar{g}_{k j}=\alpha\left(g_{k j}+A_{k j}\right) . \tag{3.14}
\end{equation*}
$$

Proof of Lemma 1. By Ricci's identity and (3.12) we get

$$
\begin{equation*}
R_{l k i}{ }^{a} \bar{g}_{a j}+R_{l k j}{ }^{a} \bar{g}_{a i}=A_{i \iota} \bar{g}_{k j}+A_{j l} \bar{g}_{k i}-A_{k i} \bar{g}_{j l}-A_{k j} \bar{g}_{i l} . \tag{3.15}
\end{equation*}
$$

Transvecting (3.15) with $\xi^{\prime \xi^{i}}$, we have

$$
\begin{align*}
\xi^{a} \xi^{b} \bar{g}_{a b}\left(g_{k j}+A_{k j}\right)=\left(1+\xi^{a} \xi^{b} A_{a b}\right) \bar{g}_{k j} & +\xi^{r}\left(\bar{g}_{k r} \eta_{j}-\bar{g}_{j r} \eta_{k}\right) \tag{3.16}\\
& +\xi^{a} \xi^{b}\left(A_{a j} \bar{g}_{b k}-A_{a k} \bar{g}_{b j}\right) .
\end{align*}
$$

Adding to (3.16) the identity which is obtained from (3.16) by permuting k and j, we get (3.14) unless $g_{k j}+A_{k j}=0$. Next, if $g_{k j}+A_{k j}=0$, operating ∇_{ι} to the both sides of $\nabla_{k} p_{j}=p_{k} p_{j}+g_{k j}$, and using Ricci's identity,

$$
\begin{equation*}
R_{l k j}^{r} p_{r}=g_{k j} p_{l}-g_{l j} p_{k} \tag{3.17}
\end{equation*}
$$

holds good. Transvecting (3.17) with $(1 / 2) \phi^{l k}$, we get $\phi_{j}^{r} p_{r}=0$ by virtue of $b \neq 0$. So we can write $p_{l}=\sigma \eta_{l}$. By differentiating this identity covariantly and taking notice of the shew-symmetric property of $\phi_{k l}$, we obtain

$$
\begin{equation*}
2 \boldsymbol{\sigma} \phi_{k l}=\nabla_{l} \sigma \cdot \boldsymbol{\eta}_{k}-\nabla_{k} \sigma \cdot \boldsymbol{\eta}_{l} . \tag{3.18}
\end{equation*}
$$

Contracting (3.18) with ξ^{k}, we have $\nabla_{l} \sigma=\beta \eta_{l}$. Substituting this into (3.18) we get $\sigma=0$. Thus in this case μ is an affine transformation and consequently an isometry by virtue of Theorem 2.

Lemma 2. In a normal contact η-Einstein manifold, if α of Lemma

1 is a constant, μ is an isometry.
Proof of Lemma 2. Substituting $\bar{g}_{i j}=\alpha\left(g_{i j}+A_{i j}\right)$ into

$$
\nabla_{k} \bar{g}_{i j}=2 p_{k} \bar{g}_{i j}+p_{i} \bar{g}_{k j}+p_{j} \bar{g}_{i k},
$$

we have

$$
\nabla_{k} \nabla_{i} p_{j}=2\left(p_{k} \nabla_{i} p_{j}+p_{i} \nabla_{k} p_{j}+p_{j} \nabla_{k} p_{i}\right)-4 p_{k} p_{i} p_{j}-2 p_{k} g_{i j}-p_{i} y_{k j}-p_{j} g_{i k}
$$

Then, using Ricci's identity we know that $p_{i}=\sigma \eta_{i}$ holds and that μ is an affine transformation by the same method as Lemma 1.

On the other hand, next (3.19) comes from (3.12) and (1.7).

$$
\begin{equation*}
R_{k j i}{ }^{r} \bar{\eta}_{r}+\bar{\eta}_{k} A_{j i}-\bar{\eta}_{j} A_{k i}=\bar{\eta}_{k} \bar{g}_{j i}-\bar{\eta}_{j} \bar{g}_{k i} . \tag{3.19}
\end{equation*}
$$

Now, transvecting (3.19) with (1/2) $\phi^{k j}$, we get

$$
\bar{\eta}_{j}\left\{\phi^{k j} \bar{g}_{k i}+(b-1) \phi_{i}^{j}-\phi^{k j} A_{k i}\right\}=0
$$

by virtue of (1.11). Using (3.14) this identity can be turned into

$$
\begin{equation*}
(1-\alpha)\left(\phi_{i}^{j}+\phi^{k j} A_{k i}\right) \bar{\eta}_{j}=b \phi_{i}^{j} \bar{\eta}_{j} . \tag{3.20}
\end{equation*}
$$

On the other hand, from (3.13) and (3.14) we have

$$
\begin{equation*}
a(1-\alpha)\left(g_{k i}+A_{k i}\right)=b\left(\bar{\eta}_{k} \bar{\eta}_{i}-\eta_{k} \boldsymbol{\eta}_{i}-A_{k i}\right) . \tag{3.21}
\end{equation*}
$$

Transvecting (3.21) with $\phi^{k j}$,

$$
\begin{equation*}
a(1-\alpha)\left(\phi_{i}^{j}+\phi^{k j} A_{k i}\right) \bar{\eta}_{j}=-b \phi^{k j} A_{k i} \bar{\eta}_{j} \tag{3.22}
\end{equation*}
$$

holds good. By these identities we get

$$
\begin{equation*}
\{b-(1-\alpha)(1-a)\} \phi_{i}^{j} \bar{\eta}_{j}=0 . \tag{3.23}
\end{equation*}
$$

If $b=(1-\alpha)(1-a)$, our theorem reduces to Lemma 2 and Proposition 3. If $\phi_{i}^{j} \bar{\eta}_{j}=0$, μ is a contact transformation. We can put $\bar{\eta}_{j}=\sigma \eta_{j}$. Then by (3.13) and (3.14),

$$
\overline{\boldsymbol{g}}_{j i}=c_{1} g_{j i}+c_{2} \boldsymbol{\eta}_{j} \boldsymbol{\eta}_{i}
$$

holds good, where $c_{1}=b /\{a-(n-1) / \alpha\}$ and $c_{2}=b\left(1-\sigma^{2}\right) /\{a-(n-1) / \alpha\}$. That is,

$$
\bar{g}^{j i}=\left(1 / c_{1}\right) g^{j i}-\left(c_{2} / c_{1}\left(c_{1}+c_{2}\right)\right) \xi^{j} \xi^{i}
$$

is true. If $a-(n-1) / \alpha=0$, our theorem reduces to Lemma 2. Thus, we get $\bar{\xi}^{j}=\sigma^{\prime} \xi^{j}$ and hence σ is a constant. Then by Proposition 2 we know that Theorem 4 is true.
Q.E.D.

References

[1] S. SASAKI, Lecture note on almost contact manifolds, Tôhoku Univ., (1965).
[2] M. OKUMURA, Some remarks on space with a certain contact structure, Tôhoku Math. Journ., 14(1962), 135-145.
[3] , On infinitesimal conformal and projective transformations of normal contact spaces, ibid. 14 (1962), 398-412.
[4] S. TANNO, Some transformations on manifolds with almost contact and contact metric structures, I, II, ibid. 15 (1963), 140-147, 322-331.
[5] H. Mizusawa. On infinitesimal transformations of K-contact and normal contact metric spaces, Sci. Rep. Niigata Univ., Ser. A. 1(1964), 5-18.

Ichinoseki Technical College.

[^0]: *) This result is also obtained by Mr. Tanno, and in infinitesimal case in a normal contact Riemannian manifold by Mr. Mizusawa. ([5])

