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1. Introduction. The entire Dirichlet series of this papers are series of
the form

where

5 = σ + it, 0 <Xn<Xn+i (n^ϊ),

which are given to be not only entire functions of s in the sense that they are
absolutely convergent for all finite s but also entire functions of order p = 0, p
being understood in the ususal sense of Ritt. A finer distinction may be
introduced among such entire functions by means of their logarithmic order
/?(£>), defined as in this paper and having implications analogous to those of p.
Among the implications of p is the relation of p to certain other orders which
are, firstly the Sugimura order denoted by ρ# in an earlier paper [4], secondly,
the order defined by the coefficients an and denoted by pc in the present paper,
and, thirdly, the order defined by the rank of the maximum term of f(s) and
denoted by pR in the present paper. The relationship between p, ρ#, pc and pR,
which is indeed quite simple, is set forth in Theorems I, II, III infra. One
object of the present paper, suggested by the relationship last mentioned, is to
investigate the relationship of the logarithmic order />(<£>) to certain other
logarithmic orders, p* (<&,), ρc(L) and pR(b), to be presently defined in analogy
with px, ρc and ρR respectively. Furthermore, corresponding to the mutually
related orders p, /%, pc and ρR, we have the mutually related lower orders λ,
λ#, λtf and XR, related (to be precise) as in Theorems I A, II A, III A, B
infra. And it is the relationship between the various lower orders, in these
theorems, which has suggested the second object of this paper, namely, to
examine the relation between the lower logarithmic orders λ#(&>), Xc(&>) and

)> corresponding to />#(£,), M<&>) a nd pR(£s>) respectively.
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2. Notation. In the usual notation, let

M(σ) = l.u.b. |/(σ + it) I, μ(σ) = max | ane^λ»\ = \av\e*
— oo<ί<oo

where v, and hence λy, is a function of σ, i.e.

145

Furthermore, let us adopt a notation indicated in Section 1 and

i m ? ? l o g lQg M(σ) = />
σ-̂ oo i n f σ λ

( 1 )

(ii) L i m * x

(iii)

. . . i SUp λw lOgλrc

^ / n^oo inf log I an \ ~1 ~~

Then the following theorems are known.

THEOREM I. ([1] Theorem). Under the condition

- 0 ,

we have

P = P*'

The result actually proved in [1] is p = pc

ι>> which combined with Theorem
III below, gives us Theorem I.

THEOREM II. ([4], Lemma 3 (a)). p* = pR.

THEOREM III. ([5], case k = 1 of Theorem 1). p* = pc.

1) This result is included in a theorem of Tanaka's [7], p. 68, Theorem 1)
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The following theorems are complementary to the above.

THEOREM I A. ([4], Theorem 1). Unde?' the condition

lim sup ° g n = D< oo ,

zve have

λ = λ-χ- .

THEOREM II A. ([4], Lemma 3(b)). λ-x- = λA>.

THOREM III A. ([6], Case k = 1 of Theorem 1 A ; [2], Theorem 1)2).

Under the condition

we have

THEOREM III B. ([6], Case k = 1 of Theorem 1 B. [2], Theorem 2)3).

Under the condition

—? \ n~1~- is monotonic decreasing and tends to — oo,

In this paper we define for entire Dirichlet series with p — 0, in analogy

with (1):

0 * * ) • « t ) s - ) •

2) Rahman ([2], Theorem 1) gives the conclusion of Theorem III A as λ ^ λc But this is
included in Theorem III A since λ ̂  λ* universally.

3) Rahman ([2], Therem 2) gives the conclusion of Theorem III B as λ^λc, assuming
additionally the condition on {\n} stated in Theorem I A supra. Rahman's result is included
in our Theorem III B on account of Theorem I A. There is a critical examination of
Rahman's arguments (loc. cit) in paper [6], Section 3.
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log(γ- logτ--
\ Λn ( a n

The condition l̂ λ#(<&>), />#(&>) :g 00 in (2)(ii), and hence the corresponding

condition in (2)(i), is derived from Theorems 1, 2, 1 A, 2 A, infra, taken in

conjunction with the condition 0^λ Λ (&), ρR(L)^ °° in (2) (Hi).

3. Theorems of the Present Paper. In the notation (2), the following

theorems will be proved analogous to the results comprised in Theorem I —

Theorem III of Section 2.

THEOREM 1. Under the condition

lim sup - ^ — = D <

we have

T H E O R E M 2. />,,(£>) = />*(&) + 1.

T H E O R E M 3. />*(£>) - ^(£0 + 1.

THEOREM 1 A. Under the condition on [Kn] in Theorem 1, we have

also

T H E O R E M 2 A. λ*(£>) = λ*(£>) + 1

THEOREM 3 A. Under the condition

THEORM 3B. Under the condition
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—.- n' n~1 is monotonic decreasing and tends to — oo,

we have

Rahman ([3], relations (2), (2.3), (2.4) in p. 109) has proved Theorems 2, 2 A.
Proofs of these theorems are given below, much shorter and simpler than his.

P R O O F O F T H E O R E M S 1, 1 A. It is known ([8], p.68) that

μ(σ) ^ M(σ) < kμ(σ + D + S)

where £ > 0 may be as small as we please and k is a constant depending on
D and £. Hence

loglogyu(σ)^loglogM(σ) , . log log μ(σ+ £> + £) logQ

= < U + ° W J ϊ Xlogσ = logσ < U + ° W J ϊog(σ + D + a ) X logσ

as σ —> oo.

First taking upper limits asσ-»oo of all members of (3) and then lower limits,
we get

whence Theorems 1, 1 A follow immediately.

PROOF OF THEOREMS 2, 2 A. We start with the known result ([8], p. 67)
that Λ(σ) is a (positive) monotonic increasing function of σ related to μ(σ) as
follows:

( 4 ) logyu(σ) = logyu(σ0) + / A(x) dx (σ > σ0) .
J σ 0

From (4) we get in succession

log μ(σ) ^ log μ (σ0) + ( σ - σ0

^ σ Λ(σ), as σ —> oo,
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loglog/i(σ) logσ + logΛ(σ) + o(l)
log σ log σ

We then obtain, first taking upper limits of both sides as σ —> oo and then
lower limits,

Again, from (4) with σ changed to 2σ, we get successively:

log μ(2σ) ̂  log μ(σ0) + J Λ ( » dx
σ

^ log μ{σ0) + σ Λ(σ),

log logμ(2σ) Iog2σ logσ + logΛ(σ)+ o(l) , Λ
_ _ ^ I ^ > Q O 1 ̂

Iog2σ logσ ~" logσ

As before, taking first upper limits of both sides as σ —• oo and then lower
limits, we see that

(5) and (6) together establish Theorems 2, 2 A.

P R O O F OF T H E O R E M 3. We suppose, to begin with, that 0 < /><?(£>)
< oo. Then, given any small 8 > 0, we write for brevity Δ = #?(£>)— S and
use definition (2) (iv) to infer that

(7) kJ^xpC-λ1^-1) 1

1 nx < n2 < np

f n =np,p=l,29>

\n1<n2<

By the definition of μ(σ) followed by the use of (7),

μ{σ)^ \an\<h* (n = l ,2, . . )

> e x p ( - λ1/^1 + \nσ) (n = np9 p = 1,~2,.. . )

or
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(8) log/.(σ)> - λi+Δ-1 + λnσ=fl<σ,λn) (n = np, p = 1, 2, ) .

Now </(σ, .r), considered as a function of x > 0, has absolute maximum when

x = -T

And so, if {σn?} is defined as the sequence

( 9 ) Xny-

we see that

(10) gip'nγy Xny) ^ g(^n7, λnp) (any 7 § : 1 , / > = 1 , 2 , •••)•

On the other hand, (8) with σ = σnΊ gives us the inequality

log μ(σnΎ) > g(ny, λn,) (any 7 ^ 1 , p = 1, 2, •)

whose best form, with the largest possible right-hand member, occurs when

p = 7 as shown by a comparison with (10). The best form in question is

thus (8) with σ — σnΎ,n = nΎ and given by

(ID

lOg μ(σny

v l + Λ-l _l
— Λ,n -f

by (9). From the last step we get

(12) log log μ(σnΎ) > (Δ + 1) log σnΊ - A log (1 + Δ"1) - log (1 + Δ),

whence it is obvious that

lim sup
log

^ l i m s u p
7->oo log σny

^ Δ + 1 = PcG&O - 8 + 1 .

Since 6 being arbitrarily small,
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(13)

(13) is thus proved in the case 0 < pc(&>) < °o; while it is trivial in the case
pd&s>) = 0, since />#(£>) i^ 1 universally by Theorem 2. In the remaining case
pd$s>) = °°> (13) is ture in the form p*(£>) = oo, since Δ in (12) is arbitrarily
large, i. e. tending to infinity and so making the right-hand member of (12)
asymptotically equal to (Δ + l)log<τnγ for every σnj after a stage (say, greater
than e).

We proceed to establish (12) as an equality whether /oc(£>) is infinite or
not. The case of infinite #?(£>) having been disposed of, we now write Δ
= Pd&>) + £ and note that we have, besides (7):

I aJ < exp ( - λ 1 ^ 1 ) (n > no(S)).

Hence, remembering that μ(σ) = \av\ eσλv

y where v — v(σ) tends to oo with σ,
we see that

μ(σ) = \av\ eσλv < e x p ( - X1^'1 + λ* σ) = g(σ,Xv) (σ > σ0) .

In the above inequality we may replace g(σ, λy) by max g(σ, x) for x > 0 and
obtain as a result of calculations similar to those leading up to (12):

log log μ(σ) < (Δ + 1) log σ - A log (1 + Δ"1) - log (1 + Δ) .

Hence follows, as (13) from (12),

(14)

where 0 ^ /><?(<£>) < oo. The case pc{&>) = 0 is included since then Δ = 8
arbitrarily small. Combining (13) and (14) we have the result sought.

PROOF OF THEOREM 3 A. As in the proof of Theorem 3, we first
suppose that 0 < λ̂ (&>) < oo and write H = λc(£>) — 8 where £ > 0 is arbitrarily
small. We then obtain

(15) μ(σ)^ \an\e°κ > exp(-λ^+ f f"1+ λnσ) = expA(o ,λn) (n ^ n0).

Again as in the proof of Theorem 3, max h(σ, x) for x > 0 occurs when
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so that, defining {σn} by

(16) K =

we have

(17) λ(σn, λn) ^ h(σn, λm) (any n ^ 1, all m ^ 1) .

But (15) with σ = σn gives us the inequality

(18) logμ(σn)> h(σn,Xm) (any n ^ 1, all m^n0).

In (18) we may confine ourselves to any n^ n0 and all m^: nQ, and then we

find, comparing (18) with (17), that the best form of (18), or the form with the

largest right-hand member, corresponds to m = n, and is given by

log μ(σn) > h(σn, λn) (n ^ n0).

Treating the above inequality exactly like (11) in the proof of Theorem 3, we

find that

logσw

Hence, if σn ^ σ ^ σn+1, we have

U m i n f

 l Q g l Q g ^ ) ^ l i m ί n f
σ^oo logσ n-»oo ίθgσn ίθgσn+1

= lim inf l o g l o g /x(σ^) . logλw + const.
rz->oo log σn * log λw+x + const.

by (16). Now using our hypothesis logλn — logλn +i, we get from the last two
steps, as required,

The proof given of this result is for the case 0 < λc(£>) < oo. The remaining
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cases, XC(SJ>) = 0 and λc(&>) = 00 ? may be treated as at the end of the first part

of the proof of Theorem 3.

PROOF OF THEOREM 3B. In the proof we replace the given Dirichlet

series f(s) by the following Dirichlet series F(s) having the same λ#(£>) and

(ΊQ^ F(A — Y^ \ n I pK*= \n I ̂ 18 _μ \ a I V^ ?_!
V i y J ^V6^ — Z ^ l α n I e — \a\\V ^ \a\\ 2-j ^λj-λ, ^-λ,,-λn_ι >

1 2 ' 2 * # * τn

where, by hypothesis

(20) rn =

From (20) it is plain that not all rn can be equal after a stage. In other

words, rn+1 > r w for an infinity of n and we may suppose that there is an

infinity of steadily increasing pairs of n, say (JV+ 1, N— M), where N> M

= M(N) ^ 0 such that

If σ is such that

either rN < e* < rN+1 or rN =

then μ(σ) for F(5) is given by

= 1^-χl ^ - 1 < r = lα^-jj I eλ^-^ [eσ = r^ = = r ^ ) .

Writing iV+ 1 =^p+i and N— M = npy we are thus led to a sequence of

positive integers np {p = 1,2, ) such that

1 < nλ < n2 < , np -> 00 as />-> 00,

(21) μ(σ) =\an\
 λ«* (np^n< np+19 rnp < eσ < rnj ,

(22) v(σ) = n corresponding to max | an \ eλn<x {rnp ^ eΎ < rnM)

= any n such that np^n < n p + 1 .
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Now using the definition of λΛ(&>) in (2) (iii) and supposing that 0<λΛ(£>) < oo
we find σo(£) corresponding to any small £ > 0 so that

(23)
\og\(

<τ)

- θ]logσ
i

= [λ*(£>) - 1 - fi] log σ
> σ.)

by Theorem 2 A. Recalling (21) and (22), we see that in (23) we may put v(σ)
= n (np^n< np+ι) and e" — rn. We then get from (23):

(24) log λn > [λ*(&)-1- a] log log rn

for all sufficiently large n. On the other hand, by a summation from (20),

(25) log <L\

^ log rn < K log rn.

The elimination of log rn between (24) and (25) gives us, for all sufficiently
large n,

log Xn > [λ*(&)~ 1 - ε] log —- log

Hence, £ being arbitrarily small,

λc(&) = lim inf ^ S ^ L - 1 .

This is the conlusion sought. In proving it we have supposed that 0 <
<oo, or (in virtue of Theorem 2 A) 1 < λ*(£>) < oo . When λβ(£>) = 0 or
= 1, the conclusion is trivial since Xe(£>) ̂  0 universally. And when )
= λ*(£>) =oo, the conclusion follows by an adaptation of the preceding proof.
The proof for all cases is thus complete.

In conclusion it must be said that the methods of proof employed in this
paper are similar to those in two earlier papers of the author already mentioned
([4], [5]) and that the author has received from Prof. C. T. Ra jag opal during
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the preparation of the present paper considerable help for which he is most
grateful.
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