GENERATORS OF CERTAIN VON NEUMANN ALGEBRAS

TEISHIRÔ SAITÔ*)

(Received September 26, 1967)

1. Recently, a few results on generation of von Neumann algebras were obtained by some authors. C. Davis [1] proved that a factor of type I on a separable Hilbert space is generated by three projections and is also generated by two unitary operators. It is known [4] that every von Neumann algebra of type I on a separable Hilbert space possesses a single generator, and some examples of each type $\mathrm{I}_{1}, \mathrm{I}_{\infty}$ and III having a single generator are given [5], [6]. The purpose of this paper is to prove some results on generation of certain von Neumann algebras, parallel to the theorems in [1]. A part of this note has been published in Japanese [Sûgaku, 19(1967), 172-173].
2. In this paper, an operator means a bounded linear operator on a Hilbert space. A von Neumann algebra \boldsymbol{M} is said to be generated by a family $\{A, B, \cdots\}$ of operators, if \boldsymbol{M} is the smallest von Neumann algebra containing each member of $\{A, B, \cdots\}$, and it is denoted by $R(A, B, \cdots)$. This terminology is used for a family of von Neumann algebras. For a von Neumann algebra \boldsymbol{M} on a Hilbert space $\boldsymbol{H}, \boldsymbol{M}_{2}$ means the algebra consisting of all 2×2 matrices over \boldsymbol{M} acting on $\boldsymbol{H} \oplus \boldsymbol{H}$.

The following theorem parallels [1: Theorem 1].
Theorem 1. If a von Neumann algebra \boldsymbol{M} on a Hilbert space \boldsymbol{H} has a single generator A, then there exist three projections E_{1}, E_{2} and E_{3} on $\boldsymbol{H} \oplus$ \boldsymbol{H} such that $R\left(E_{1}, E_{2}, E_{3}\right)=\boldsymbol{M}_{2}$.

Proof. We can assume that A is invertible and $\|A\|<1$. Then, let S and T be the positive square roots of $I-A * A$ and $A * A$ respectively. Using A, S and Y we define

[^0]\[

E_{1}=\left($$
\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}
$$\right), \quad E_{2}=\left($$
\begin{array}{cc}
A A^{*} & A S \\
S A^{*} & I-A^{*} A
\end{array}
$$\right), \quad E_{3}=\left($$
\begin{array}{cc}
I-A^{*} A & S T \\
S T & A^{*} A
\end{array}
$$\right) .
\]

If we observe that S, T and $A^{*} A$ are mutually commuting, we can easily prove that E_{1}, E_{2} and E_{3} are projections. Direct computation shows that

$$
E_{2}+E_{1} E_{2} E_{1}-E_{1} E_{2}-E_{2} E_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & I-A * A
\end{array}\right) .
$$

Thus $R\left(E_{1}, E_{2}\right)$ contains all matrices of the form $\left(\begin{array}{ll}0 & 0 \\ 0 & X\end{array}\right)$ with $X \in R(I-A * A)$. In particular, $\left(\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right)$ and $\left(\begin{array}{cc}0 & 0 \\ 0 & S^{-1}\end{array}\right)$ are contained in $R\left(E_{1}, E_{2}\right)$. Now,

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & S^{-1}
\end{array}\right) E_{2}\left\{E_{1}+\left(\begin{array}{cc}
0 & 0 \\
0 & S^{-1}
\end{array}\right)\right\}=\left(\begin{array}{cc}
0 & 0 \\
A^{*} & I
\end{array}\right)
$$

and so

$$
\left(\begin{array}{rr}
0 & A \\
0 & 0
\end{array}\right)=\left\{\left(\begin{array}{cc}
0 & 0 \\
A^{*} & I
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right)\right\}^{*}
$$

belongs to $R\left(E_{1}, E_{2}\right)$. Since we have

$$
E_{1}-E_{1} E_{3} E_{1}=\left(\begin{array}{cc}
A^{*} A & 0 \\
0 & 0
\end{array}\right),
$$

$R\left(E_{1}, E_{3}\right)$ contains all matrices of the form $\left(\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right)$ with $X \in R\left(A^{*} A\right)$. Thus, in particular, $\left(\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right)$ is in $R\left(E_{1}, E_{3}\right)$. Hence $\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right) E_{3}\left(\begin{array}{cc}0 & 0 \\ 0 & S^{-1}\end{array}\right)$,

$$
\left(\begin{array}{ll}
0 & 0 \\
I & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & I \\
0 & 0
\end{array}\right)^{*} \text { are contained in } R\left(E_{1}, E_{2}, E_{3}\right) . \quad \text { As }\left(\begin{array}{rr}
0 & A \\
0 & 0
\end{array}\right) \text { is in } R\left(E_{1}, E_{2}\right),
$$

$$
\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & A \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
I & 0
\end{array}\right)
$$

is contained in $R\left(E_{1}, E_{2}, E_{3}\right)$. Hence $R\left(E_{1}, E_{2}, E_{3}\right)$ contains every matrix
$\left(\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right)$ with $X \in R(A)=\boldsymbol{M}$. Therefore it follows that $R\left(E_{1}, E_{2}, E_{3}\right)$ contains every matrix $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ with $A_{i j} \in \boldsymbol{M}(i, j=1,2)$, because

$$
\begin{aligned}
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)= & \left(\begin{array}{ll}
A_{11} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
A_{12} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & I \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
I & 0
\end{array}\right)\left(\begin{array}{ll}
A_{21} & 0 \\
0 & 0
\end{array}\right) \\
& +\left(\begin{array}{ll}
0 & 0 \\
I & 0
\end{array}\right)\left(\begin{array}{ll}
A_{22} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & I \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

REMARK 1. The number three in Theorem 1 cannot be reduced in general. In fact, the ring of all operators on a separable Hilbert space has a single generator and in this case the number three cannot be reduced [1: Theorem 1].

According to [2], a factor \boldsymbol{M} is said to be hyperfinite if (i) \boldsymbol{M} is of type $\mathrm{I}_{n}(n<+\infty)$, or (ii) \boldsymbol{M} is of finite type and is generated by an increasing sequence of factors of type $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{4}, \cdots \mathrm{I}_{2^{n}}, \cdots$. It is well known that two hyperfinite continuous factors are isomorphic. In [6], N. Suzuki and the author proved that a hyperfinite factor on a separable Hilbert space is generated by a single operator. Thus we have

COROLLARY 1. There exist three projections which generate a hyperfinite factor on a separable Hilbert space.

PROOF. In the case of type $\mathrm{I}_{n}(n<+\infty)$, the assertion is clear by [1]. Suppose that \boldsymbol{M} is a hyperfinite continuous factor on a separable Hilbert space. Then \boldsymbol{M}_{2} is also a hyperfinite continuous factor, and so \boldsymbol{M}_{2} is isomorphic to \boldsymbol{M}. Since \boldsymbol{M} has a single generator as noted above, \boldsymbol{M}_{2} is generated by three projections and thus \boldsymbol{M} is generated by three projections.

The following theorem is parallel to [1: Theorem 2].
THEOREM 2. Under the same assumption as in Theorem 1, there exist two unitary operators which genetate M_{2}. They may be chosen so one of them is a symmetry.

Proof. As in the proof of Theorem 1, we can assume that A is invertible and is a strict contraction. Let

$$
E=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right), \quad U=\left(\begin{array}{ll}
A & Z \\
-S & A^{*}
\end{array}\right)
$$

where S and Z are the positive sequare roots of $I-A^{*} A$ and $I-A A^{*}$ respectively. Then E is a projection and U is a unitary operator (cf. [3]). Since $I-2 E$ is a symmetry, it suffices to show that $R(E, U)=\boldsymbol{M}_{2}$. From the last equality of the proof of Theorem 1 , it is also sufficient to prove that the matrices
$\left(\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)$ are contained in $R(E, U)$. Since $E U E=\left(\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right)$ belongs to $R(E, U)$. Thus all matrices $\left(\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right)$ with $X \in R(A)$ are contained in $R(E, U)$. In particular, $\left(\begin{array}{lr}A^{-1} & 0 \\ 0 & 0\end{array}\right)$ belongs to $R(E, U)$. Now we have

$$
U E U^{*}=\left(\begin{array}{cc}
A A^{*} & -A S \\
-S A^{*} & I-A^{*} A
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) U E U^{*}\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & I-A^{*} A
\end{array}\right) .
$$

Because of $\left(\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right)=U^{*} U-E,\left(\begin{array}{cc}0 & 0 \\ 0 & I-A^{*} A\end{array}\right)$ is contained in $R(E, U)$, and so $\left(\begin{array}{ll}0 & 0 \\ 0 & X\end{array}\right)$ belongs to $R(E, U)$, for each $X \in R\left(I-A^{*} A\right)$. Of course, $\left(\begin{array}{cc}0 & 0 \\ 0 & S^{-1}\end{array}\right)$ is contained in $R(E, U)$. Thus

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & S^{-1}
\end{array}\right) U E U^{*}\left\{E+\left(\begin{array}{cc}
0 & 0 \\
0 & S^{-1}
\end{array}\right)\right\}=\left(\begin{array}{cc}
0 & 0 \\
-A^{*} & I
\end{array}\right)
$$

belongs to $R(E, U)$, and hence

$$
\left(\begin{array}{rr}
0 & A \\
0 & 0
\end{array}\right)=-\left\{\left(\begin{array}{cc}
0 & 0 \\
-A^{*} & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right)\right\}^{*}
$$

is contained in $R(E, U)$. Therefore

$$
\left(\begin{array}{ll}
A^{-1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{lr}
0 & A \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & I \\
0 & 0
\end{array}\right)
$$

is in $R(E, U)$ and the proof is completed.

Corresponding to Corollary 1 , we have
Corollary 2. There exist two unitary operators which generate a hyperfinite factor on a separable Hilbert space. They may be chosen so one of them is a symmetry.

REMARK 2. As proved in [5] and [6], there exists an operator which generates a von Neumann algebra of type II_{∞} (resp. III). Thus we obtain an example of von Neumann algebra of type I_{∞} (resp. III) which is generated by three projections and is also generated by two unitary operators.

Added in Proof. Recently, C. Pearcy and D. Topping obtained in the paper [Sums of small numbers of certain operators, Michigan Math. Journ., 14 (1967), 453-465] results similar to Theorem 1 above.

References

[1] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc., 6(1955), 970-972.
[2] J. DIXMIER, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
[3] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil, 2(1950), 125134.
[4] C. Pearcy, W^{*}-algebras with a single generator, Proc. Amer. Math. Soc., 13(1962), 831832.
[5] C. Pearcy, On certain von Neumann algebras which are generated by partial isometries, Proc. Amer. Math. Soc., 15 (1964), 393-395.
[6] N. Suzuki and T. Saitô, On the operators which generate continuous von Neumann algebras, Tôhoku Math. Journ., 15 (1963), 277-280.

The College of General Education
TôHoku University
Sendai, Japan

[^0]: *) This research was partially supported by Sakkokai Fund.

