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OPERATING FUNCTIONS ON SOME SUBSPACES OF /,,

YOSHIKAZU U N O

(Received September 5, 1967)

1. Let L2(0,2π) be the set of all square integrable functions denned on
(0, 2π) and continued by periodicity. We set

Γ Γ1 dt { f* \ββΛVB

ΛUf) = [f 7^M/o \Λ*+t)-Λχ-t)\*dx\ J

for / € L2(0,2τr), where 1 ̂  β ^ 2 and 3/9/2 - 1 > δ > β/2 - 1.
We define a space A^s by

Aβ,8= {/: Λ, δ (/)<oo}.

If/^A^δ and /α(j:) =f(x—a), then Aβiδ(fa) = AβtS(f), if c is a constant,
then AβίB(cf) = \c\Aβιδ(f) and if/, ^ A M , then Aβ<δ(f+g)^Aβ,δ(f) + Aβyδ(g)
by Minkowski's inequality.

We shall characterize the complex valued function φ of a complex
variable which operates in A&s i.e. φ{f)^Aβfδ for all/^A&s, where φ(f)(x)

2. Let the Fourier series of /eL2(0,2τr) be

For /S and 8 which satisfy the above conditions, we set

Be,s(f) = \Σ,n-βf2+S

U
)

Q , δ ( / ) - I Σ »- M / 1 + ϊ ( Σ k* 1 2 T /

l n l |Λ|^n



OPERATING FUNCTIONS ON SOME SUBSPACES OF lp 61

We can prove a following theorem by the same method as Prof. G. Sunouchi
in [2].

THEOREM 1. For 1 ^ β ^ 2 and / 9 / 2 - K δ < 3#/2- l , the finiteness
of Aβ)δ(f), Bβ)8(f) and Cβ>δ(f) are equivalent each other.

In the proof of Theorem 1, we use the fact that the convergency of
Bβ,d(f) and Cβ<δ(f) are equivalent to the convergency of B'βtδ(f) and C'βtδ(f)
respectively where

k*
11/0

12 ̂

Ce,s(f) =

For the sake of simplicity, we omit the proof.

I

3. THEOREM 2. Let β and δ be numbers satisfying the above
conditions.

( i ) For 1— /3 + δ > 0 , £? operates in Aβ>δ if and only if ψ satisfies
locally the Lipschitz condition.

(ii) For 1— /3 + δ = 0, //<£> operates in Aβ>δy then φ satisfies locally the
Lipschitz condition. Moreover if β = l, the condition is necessary
and sufficient.

(iii) Fur 1—/9 + δ < 0, φ operates in Aβjδ if and only if φ satisfies the
Lipschitz condition.

Dr. S. Igari [1] proved the cases of /3 = 1 and δ = 0 in (ii) and β = 2. Our
method of proof is inspired by Igari's paper.

LEMMA 1. If /<= Aβ>δ and f{x) — J2 cn^inx, then we have

PROOF. Since 2/β > 1, by Holder's inequality we have

Σ k»IΊ»lβ = Σ Σ K\e\n\δ
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oo 2 * - l

Jc=l |n |=2*-i

2*-l \/Q/2 / 2*-l \ 1-/8/2

' S, k J

( 2*-l \/Q/2 / 2*-l \ 1

Σ k.l Σ i
|n |=2*-i / \|nl=2*-i /.

/ oo \β/2

)/2+δ) V I ̂  I 2 \

k=0 \|n|=2*

where C is a constant. By Theorem 1 the proof is complete.

P R O O F O F S U F F I C I E N C Y O F T H E O R E M 2. In (i) and (ϋ), we may

show that fzAβj is bounded. If 9̂ = 1 in (i) and (ii), Σ \cn\ < °° by

Lemma 1 and hence / is bounded. If βφl in (i), we have

έk»ιa(έk,H»ι Π έ

by Holder's inequality. The right side is convergent by Lemma 1 and then
/ is bounded.

In (iii) the sufficiency of the condition is clear.

Mβ)δ, Mβ, etc. will denote constants depending on only the indices, not
always the same in each occurrence.

LEMMA 2. Let η(x) be a continuous function which is equal to 1 on
[—a, a], equal to zero outside of ( — a—8, a+8) and linear otherwise where
0<a< π/4, Q<8< 1/2. Then

ίMβδ/8{1-$+8)/β if 1-/9+8 > 0
Λβ,δ(η) g (

1 Mβ>b{log(l/8)}1/β if 1 - / 3 + 8 - 0 .

PROOF. If 0 ̂  t g 8/2, then we have

-η(x-t)\ ^

for -a-8-t^x^ -a + t and a-t ^ x <Ξ a+8+t. If 8/2 ̂  t ^ 1, then we
have
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- η{x-t)\ ^ 1

for — a—8—t^x^—a — t and a—t ^ x ^ a+8+t. And we have \η(x+t)
— η(x — t)\ — 0 otherwise. Therefore

Γ£/2 dt (/2t\2 ) β β Γ1 dt

AUv)^ T ^ δ \(jr) 2(2t + 8)\ + -Sk~+
J0 τ I ^ 7 j Jε/2 Γ

But we have - 1 < 2-(3/3/2) + δ < 1 from the conditions of β and δ. If
1— /3+δ > 0, we have easily

If l - / 3 + δ = 0, we have

LEMMA 3. Let f(x) be a function which is equal to 1 on [ — a, ά],
equal to zero outside of ( — a— 8, a+8) and allowed to take arbitrary value
otherwise, where 0 < 8 < a/2 < 7τ/8. Then

\Mβδa/8«-β+δ)/β if 1-/3+8 > 0

I [\og(a/8)}1/β if 1-5 + 8 = 0.

PROOF. If 8/2 ^ t ^ α, we have f(x + t) = l and f(x-t) = 0 for - α - ί
^ Λ: ̂  — α—£+£. Therefore

Jε/2 Γ l J-α-ί

Γ / 2 ^
j

But {2t-8ffl ^ ί̂ /2 when 8^t^a. Therefore we have

. f ^

LEMMA 4. L ί̂ η(x) be the same function as it in Lemma 2, Then
forfζAβ)δ we have
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Aβ)δ(vf) ^ AA β(/) + M

PROOF. By Minkowski's inequality we have

* }

β/-z i/fl

+ f(χ-t){η(x + t) - η(x-t)} \2dxj j

2 -.1/73

1 7 / n7C

/1/β say.

By the same method in Lemma 2 we have

rβ^i j \f(χ-t)

β/2

We note l-(/3/2) + δ > 0 and 1-(3/3/2)+ δ < 0, then

Therefore we have

Aβ,8(vf) ^ +

β/2

P R O O F O F NECESSITY O F T H E O R E M 2. Let ξ(x) be a continuous
function which is equal to 1 on [ —1, 1], equal to zero outside of ( — 3/2, 3/2)
and linear otherwise. For k = 1, 2, , we set

&(*) = £{(*-2"*) 2*+*}

*) Mβtδ(f) denotes a constant depending on β, δ and /.
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h = {x\tex) = 1} = [-2-Λ"4 + 2"*, 2"*-*+ 2"*].

For f^Aβ>8 and zzC (the field of complex numbers) we set

Then Φ£f) ^ A^g since >̂ operates in A^β.
Firstly we shall show the necessity of (i) and (ii). Our proof is divided

into four parts.

( I ) For every zzC, there exist two positive constants az and M2, and
an interval Iz such that Aβ)δ{Φz(f)} t^M2 if A$iS(f) ^Ξ<X2

 and the support
of f is in Iz.

PROOF. Suppose that the statement is false. Then there exists a
sequence of functions fk such that

Ae,s(fk) :g l/V , suppΛ c h

and

have

Since the supports of fk are disjoint each other, there exists f — Σf* a n ( ^ w e

But

and hence by Lemma 4

When & is large enough, the inequality contradicts the condition of

Λ,4Φ2(Λ)}

(II) φ is bounded on every compact set.
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PROOF. We can choose a > 0 and £ > 0 of a function η(x) in Lemma 1
such that supp ηdz. If Aβtδ(z'rj) ^ <xz, i.e. |z ' | ^(X2/Aβtδ(η), then by (I) we
have Mz^Aβtι{Φz(z'η)}. By supp77c/z, we have Φ2(zη)(x) = <p{z'η(x) + z]
— <ρ(z)y and hence

,-φ{z) if η(x) = 1
Φ2(zη)(x) =

I 0 if η(x) = 0 .

Therefore we can write

Φ£zη)(x) =f(x){φ(z'+z) - φ(z)}

where f{x) = 1 if η(x) = 1 and f(x) = 0 if ?/(:r) = 0. By Lemma 3

s)/β if l _ / 3 + δ > 0

3 if 1-/

Consequently <p(z+z) is bounded for \z\^<x2/Aβtδ(η)9 and hence it is
bounded on every compact set./

(Ill) For every z^C, there exist two positive constants άz and M'z
and an interval ϊz such that Aβ,δ{Φ8+β>(f)} ^ Mz if Aβtb(f) ^oc29 supp/c Ie

and I z \

PROOF. Conversely suppose that there exist two sequences of functions
fk and complex numbers zk such that

Aβ,b(fk) ^ l/V , supp/, c / b \zk\^ l/k> Aβ,δ(Vk)

and

We set / = 5ΓΛ + Σzkηk . Then
* B 1 A:=l

Σ
' A : = l

Therfore we have / € Aβ.δ. Now
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- φ(z)}

and hence by Lemma 4

|2»o-ί+ )//> if i _

«) -<p(z)I ^
I(log2* :)1//3 if 1 -

By (II) |9>(z+z,.) — <p(z)\ is bounded. This implies the contradiction.

(IV) For every zzC, <p satisfies the Lipschitz condition in a neighbour-
hood of z.

PROOF. We can choose a > 0 of η(x) in Lemma 2 such that suppleΓt

for all £e(0, a/2). Let the function φc) denote by ηs(x). We note that
the number a depends on only z. If | z \ iΞ a't and

I Z — z"\ ^ OLg/Mβ 8 {

I [log(2/a)}1/β if 1-/8+8 = 0,

then we can choose 6 such that

0 < £ < a/2 and άz = | z — z' \Mβδ

 (

I (log(2/£)}1/β if 1 - ^ + 8 = 0.

Let ηε{x) for this £ denote by η(x). By Lemma 2 we have

A^Kz'-z")?} = \z-z"\Aβtfa)

/ if
^ \z'-z"\Mgιt{

1 { l ( l / ) } w if l-iβ+8 = 0



68 Y. UNO

and hence by (III)

Mi ^ Aβt8[Φ*+*{(z"-z)v}] = Aβι8[<p{(z"-z)

But we have

i φ(z"+z)— φ(z + z) if r/(:r) = 1
φ{(z"-z) η(x) + £ + *'} - φ(z + z) = <

I 0 if τ (^) = 0

and therefore we write

φ{(z"-z)η(x) + z + z) - φ(z + z) = f(x)[<p(z" + z) — φ(z+z')}

where f(x) = 1 if η(x) = 1 and f(x) = 0 if η(x) = 0. Therefore by Lemma 3

Mβδa/8(1-M)/β if 1-/3+8 > 0

{\og(a/S)}1/β if 1-/3+8 = 0

—z

Constants in the above inequality are independent of z and z\ and hence
φ satisfies the Lipschitz condition in a neighbourhood of z.

Thus proof of necessity of (i) and (ii) is complete.

Nextly we shall show the necessity of (iii). The proof is divided in
three steps.

( I ) For every interval Ic[ — 7t, π] and every positive number a, there
exists a finite sum E of intervals in I such that a=Aβtδ(XE) where %E is
the characteristic function of E.

PROOF. We shall first show that

sup Aβίb(XE) = oo
E

where E runs all the finite sums of "intervals in /.
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Suppose that for all finite sums E of intervals in /

where iζgιδ is a constant independent of E. If / is a step function such that

0 ^ / ^ 1, then / = ΣaiX* where a, ^ 0 and ^ Λ ^ l . Therefore we have

and hence for any bounded measurable function / such that supp/c /, we
have

Now we may set / = (—£, £). Let f(x) = ^ίΛΓx for .r € / and / ( J : ) = 0
otherwise. Then we have

";IM \ Ie iNxe tm - eiNxe~ίNt\2 dx\

^ Γ T O T {(4 sin2 M) 2(£-ί)}^2.

If 0 < i < l / i V for N>2/£, then Nt<l and hence sin Nt > cNt (c is a
constant). Therefore

'872

This contradicts 1 — (/8/2) + δ > 0, when N is sufficiently large. Therefore
we have
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and hence there exists a finite sum E of intervals in / such that a <
< oo. Now we set

i(h) = AnOW,.*,)

and then I(h) is continuous, /(— n) = 0 and I(π) > a. Consequently there
exists K such that I(fΐ) = a. EΓ)(—π, K) satisfies the condition of (I).

(II) There exist two positive constants M and a, and an interval I
such that if supp/c/ and Aβtδ(f) fg cc, then Aβiδ{φ(f)} ^ M.

PROOF. Conversely suppose that there exists a sequence of functions
fk such that

supple/* , A

and

We set / = 2Z/jk> and then
j f c = l

Aβ,s(f) ^ Σ Λ.8(Λ) =g Σ -π- < -

Therefore/^ A^s.
Without loss of generality we may assume <p(0) == 0. Then we have

ζk<p(f)=φ(fk)' Therefore by Lemma 3 we have

This contradicts Aβ)&(f) < oo when k is large enough.

(Ill) φ satisfies the Lipschitz condition,

PROOF. For fixed z, z € C, by (I) there exists a finite sum E of intervals
in / such that Aβt8(zXE) = a/2. Let J be an interval in E. Then there
exists a finite sum F of intervals J such that Aβts(z'XF) = a/2. Therefore
by (II) we have

^ Aβ>8{φ(zXE + zXF) -
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Since

+ z'XF) — φ(zXE) = {φ(z + z) - φ(z)}XF ,

we have

2M2, \φ(z+z) - <P

This shows that <p satisfies the Lipschitz condition. Thus the proof of
Theorem 2 is complete.

REMARK. For β> 1 and 1— /9+δ = 0, there exists an unbounded function
/ belonging to Aβ)δ.

We set

cos nx

where θ > 0 and l + € < /3. It is well-known that /<= L2(—TΓ, TΓ) and /(Λ:) -> oo
as x—>0. We shall show that this function is in Aβtδ. By Theorem 1, it
is sufficient to show Cβt&(f) < °°. Now by hypothesis we can write

Σ _1_Λ/2 / V~̂

n-i

Therefore we have

2{1+ε)/β

Hence, in this case, our necessary condition is not sufficient.
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