OPERATING FUNCTIONS ON SOME SUBSPACES OF \boldsymbol{l}_{p}

Yoshikazu Uno
(Received September 5, 1967)

1. Let $L^{2}(0,2 \pi)$ be the set of all square integrable functions defined on $(0,2 \pi)$ and continued by periodicity. We set

$$
A_{\beta, \delta}(f)=\left[\int_{0}^{1} \frac{d t}{t^{2-\beta / 2+\hat{\delta}}}\left\{\int_{0}^{2 \pi}|f(x+t)-f(x-t)|^{2} d x\right\}^{\beta / 2}\right]^{1 / \beta}
$$

for $f \in L^{2}(0,2 \pi)$, where $1 \leqq \beta \leqq 2$ and $3 \beta / 2-1>\delta>\beta / 2-1$.
We define a space $A_{\beta, \delta}$ by

$$
A_{\beta, \delta}=\left\{f: A_{\beta, \delta}(f)<\infty\right\} .
$$

If $f \in A_{\beta, \delta}$ and $f_{a}(x)=f(x-a)$, then $A_{\beta, \delta}\left(f_{a}\right)=A_{\beta, \delta}(f)$, if c is a constant, then $A_{\beta, \delta}(c f)=|c| A_{\beta, \delta}(f)$ and if $f, g \in A_{\beta, \delta}$, then $A_{\beta, \delta}(f+g) \leqq A_{\beta, \delta}(f)+A_{\beta, \delta}(g)$ by Minkowski's inequality.

We shall characterize the complex valued function φ of a complex variable which operates in $A_{\beta, \delta}$ i.e. $\varphi(f) \in A_{\beta, \delta}$ for all $f \in A_{\beta, \delta}$, where $\varphi(f)(x)$ $=\varphi(f(x))$.
2. Let the Fourier series of $f \in L^{2}(0,2 \pi)$ be

$$
f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

For β and δ which satisfy the above conditions, we set

$$
\begin{aligned}
& B_{\beta, \delta}(f)=\left\{\sum_{n=1}^{\infty} n^{-\beta / 2+\delta}\left(\sum_{|k|>n}\left|c_{k}\right|^{2}\right)^{\beta / 2}\right\}^{1 / \beta} \\
& C_{\beta, \delta}(f)=\left\{\sum_{n=1}^{\infty} n^{-3 \beta / 2+\delta}\left(\sum_{|k| \leq n}\left|c_{k}\right|^{2} k^{2}\right)^{\beta / 2}\right\}^{1 / \beta} .
\end{aligned}
$$

We can prove a following theorem by the same method as Prof. G. Sunouchi in [2].

Theorem 1. For $1 \leqq \beta \leqq 2$ and $\beta / 2-1<\delta<3 \beta / 2-1$, the finiteness of $A_{\beta, \delta}(f), B_{\beta, \delta}(f)$ and $C_{\beta, \delta}(f)$ are equivalent each other.

In the proof of Theorem 1, we use the fact that the convergency of $B_{\beta, \delta}(f)$ and $C_{\beta, \delta}(f)$ are equivalent to the convergency of $B_{\beta, \delta}^{\prime}(f)$ and $C_{\beta, \delta}^{\prime}(f)$ respectively where

$$
\begin{aligned}
B_{\beta, \delta}^{\prime}(f) & =\left\{\sum_{n=1}^{\infty} 2^{n(1-\beta / 2+\delta)}\left(\sum_{|k|>2^{n}}\left|c_{k}\right|^{2}\right)^{\beta / 2}\right\}^{1 / \beta} \\
C_{\beta, \delta}^{\prime}(f) & =\left\{\sum_{n=1}^{\infty} 2^{n(1-3 \beta / 2+\delta)}\left(\sum_{|k| \leq 2^{n}}\left|c_{k}\right|^{2} k^{2}\right)^{\beta / 2}\right\}^{1 / \beta}
\end{aligned}
$$

For the sake of simplicity, we omit the proof.
3. ThEOREM 2. Let β and δ be numbers satisfying the above conditions.
(i) For $1-\beta+\delta>0$, φ operates in $A_{\beta, \delta}$ if and only if φ satisfies locally the Lipschitz condition.
(ii) For $1-\beta+\delta=0$, if φ operates in $A_{\beta, \delta}$, then φ satisfies locally the Lipschitz condition. Moreover if $\beta=1$, the condition is necessary and sufficient.
(iii) Fur $1-\beta+\delta<0, \varphi$ oprates in $A_{\beta, \delta}$ if and only if φ satisfies the Lipschitz condition.

Dr. S. Igari [1] proved the cases of $\beta=1$ and $\delta=0$ in (ii) and $\beta=2$. Our method of proof is inspired by Igari's paper.

Lemma 1. If $f \in A_{\beta, \delta}$ and $f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$, then we have

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{\beta}|n|^{\delta}<\infty .
$$

Proof. Since $2 / \beta>1$, by Hölder's inequality we have

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{\beta}|n|^{\delta}=\sum_{k=1}^{\infty} \sum_{|n|=2 k-1}^{2 k-1}\left|c_{n}\right|^{\beta}|n|^{\delta}
$$

$$
\begin{aligned}
& \leqq \sum_{k=1}^{\infty} 2^{k \delta} \sum_{|n|=2 k^{-1}}^{2 k-1}\left|c_{n}\right|^{\beta} \\
& \leqq \sum_{k=1}^{\infty} 2^{k \delta}\left(\sum_{|n|=2^{k-1}}^{2 k-1}\left|c_{n}\right|^{2}\right)^{\beta / 2}\left(\sum_{|n|=2^{k-1}}^{2 k-1} 1\right)^{1-\beta / 2} \\
& \leqq 2^{\delta} \sum_{k=0}^{\infty} 2^{k(1-\beta / 2+\delta)}\left(\sum_{|n|=2 k^{k}}^{\infty}\left|c_{n}\right|^{2}\right)^{\beta / 2} \\
& \leqq C\left\{B_{\beta, \delta}^{\prime}(f)\right\}^{\beta} .
\end{aligned}
$$

where C is a constant. By Theorem 1 the proof is complete.
Proof of Sufficiency of Theorem 2. In (i) and (ii), we may show that $f \in A_{\beta, \delta}$ is bounded. If $\beta=1$ in (i) and (ii), $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|<\infty$ by Lemma 1 and hence f is bounded. If $\beta \neq 1$ in (i), we have

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right| \leqq\left(\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{\beta}|n|^{\delta}\right)^{1 / \beta}\left(\sum_{n=-\infty}^{\infty}|n|^{-\delta /(\beta-1)}\right)^{1-1 / \beta}
$$

by Hölder's inequality. The right side is convergent by Lemma 1 and then f is bounded.

In (iii) the sufficiency of the condition is clear.
$M_{\beta, \delta}, M_{\beta}$, etc. will denote constants depending on only the indices, not always the same in each occurrence.

Lemma 2. Let $\eta(x)$ be a continuous function which is equal to 1 on $[-a, a]$, equal to zero outside of $(-a-\varepsilon, a+\varepsilon)$ and linear otherwise where $0<a<\pi / 4,0<\varepsilon<1 / 2$. Then

$$
A_{\beta, \delta}(\eta) \leqq \begin{cases}M_{\beta, \delta} / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } 1-\beta+\delta>0 \\ M_{\beta, \delta}\{\log (1 / \varepsilon)\}^{1 / \beta} & \text { if } 1-\beta+\delta=0 .\end{cases}
$$

Proof. If $0 \leqq t \leqq \varepsilon / 2$, then we have

$$
|\eta(x+t)-\eta(x-t)| \leqq 2 t / \varepsilon
$$

for $-a-\varepsilon-t \leqq x \leqq-a+t$ and $a-t \leqq x \leqq a+\varepsilon+t$. If $\varepsilon / 2 \leqq t \leqq 1$, then we have

$$
|\eta(x+t)-\eta(x-t)| \leqq 1
$$

for $-a-\varepsilon-t \leqq x \leqq-a-t$ and $a-t \leqq x \leqq a+\varepsilon+t$. And we have $\mid \eta(x+t)$ $-\eta(x-t) \mid=0$ otherwise. Therefore

$$
\begin{aligned}
A_{\beta, \delta}^{\beta}(\eta) & \leqq \int_{0}^{\delta / 2} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\left(\frac{2 t}{\varepsilon}\right)^{2} 2(2 t+\varepsilon)\right\}^{\beta / 2}+\int_{\varepsilon / 2}^{1} \frac{d t}{t^{2-\beta / 2+\delta}}\{2(2 t+\varepsilon)\}^{\beta / 2} \\
& \leqq M_{\beta}\left\{\frac{1}{\varepsilon^{\beta / 2}} \int_{0}^{\varepsilon / 2} \frac{d t}{t^{2-3 \beta / 2+\delta}}+\int_{\varepsilon / 2}^{1} \frac{d t}{t^{2-\beta+\delta}}\right\} .
\end{aligned}
$$

But we have $-1<2-(3 \beta / 2)+\delta<1$ from the conditions of β and δ. If $1-\beta+\delta>0$, we have easily

$$
A_{\beta, \delta}^{\beta}(\eta) \leqq M_{\beta, \delta} / \varepsilon^{1-\beta+\delta} .
$$

If $1-\beta+\delta=0$, we have

$$
A_{\beta, \delta}^{\beta}(\eta) \leqq M_{\beta, \delta} \log (1 / \varepsilon) .
$$

Lemma 3. Let $f(x)$ be a function which is equal to 1 on $[-a, a]$, equal to zero outside of $(-a-\varepsilon, a+\varepsilon)$ and allowed to take arbitrary value otherwise, where $0<\varepsilon<a / 2<\pi / 8$. Then

$$
A_{\beta, \delta}(f) \geqq \begin{cases}M_{\beta, \delta, a} / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } 1-\beta+\delta>0 \\ \{\log (a / \varepsilon)\}^{1 / \beta} & \text { if } 1-\beta+\delta=0\end{cases}
$$

Proof. If $\varepsilon / 2 \leqq t \leqq a$, we have $f(x+t)=1$ and $f(x-t)=0$ for $-a-t$ $\leqq x \leqq-a-\varepsilon+t$. Therefore

$$
A_{\beta, \delta}^{\beta}(f) \geqq \int_{\varepsilon / 2}^{a} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\int_{-a-t}^{-a-\varepsilon+t} d x\right\}^{\beta / 2} \geqq \int_{\varepsilon}^{a} \frac{(2 t-\varepsilon)^{\beta / 2}}{t^{2-\beta / 2+\delta}} d t
$$

But $(2 t-\varepsilon)^{\beta, 2} \geqq t^{\beta / 2}$ when $\varepsilon \leqq t \leqq a$. Therefore we have

$$
A_{\beta, \delta}^{\beta}(f) \geqq \int_{\varepsilon}^{a} \frac{d t}{t^{2-\beta+\delta}} \geqq \begin{cases}M_{\beta, \delta, a} / \varepsilon^{1-\beta+\delta} & \text { if } 1-\beta+\delta>0 \\ \log (a / \varepsilon) & \text { if } 1-\beta+\delta=0\end{cases}
$$

Lemma 4. Let $\eta(x)$ be the same function as it in Lemma 2. Then for $f \in A_{\beta, \delta}$ we have

$$
\left.A_{\beta, \delta}(\eta f) \leqq A_{\beta, \delta}(f)+M_{\beta, \delta}(f) / \varepsilon^{(1-\beta / 2+\delta) / \beta} . *\right)
$$

Proof. By Minkowski's inequality we have

$$
\begin{aligned}
A_{\beta, \delta}(\eta f)= & {\left[\int _ { 0 } ^ { 1 } \frac { d t } { t ^ { 2 - \beta / 2 + \delta } } \left(\int_{-\pi}^{\pi} \mid \eta(x+t)\{f(x+t)-f(x-t)\}\right.\right.} \\
& \left.\left.+\left.f(x-t)\{\eta(x+t)-\eta(x-t)\}\right|^{2} d x\right)^{\beta / 2}\right]^{1 / \beta} \\
\leqq & {\left[\int_{0}^{1} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\int_{-\pi}^{\pi}|f(x+t)-f(x-t)|^{2} d x\right\}^{\beta / 2}\right]^{1 / \beta} } \\
& +\left[\int_{0}^{1} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\int_{-\pi}^{\pi}|f(x-t)|^{2}|\eta(x+t)-\eta(x-t)|^{2} d x\right\}^{\beta / 2}\right]^{1 / \beta} \\
= & A_{\beta, \delta}(f)+I^{1 / \beta} \text { say. }
\end{aligned}
$$

By the same method in Lemma 2 we have

$$
\begin{aligned}
I & \leqq \int_{0}^{\varepsilon / 2} \frac{d t}{t^{2-\beta / 2+\hat{\phi}}}\left\{\int_{-\pi}^{\pi}|f(x-t)|^{2}\left(\frac{2 t}{\varepsilon}\right)^{2} d x\right\}^{\beta / 2}+\int_{\varepsilon / 2}^{1} \frac{d t}{t^{2-\beta / 2+\dot{o}}}\left\{\int_{-\pi}^{\pi}|f(x-t)|^{2} d x\right\}^{\beta / 2} \\
& =M_{\beta}\|f\|_{2}^{\beta}\left\{\frac{1}{\varepsilon^{\beta}} \int_{0}^{\varepsilon / 2} \frac{d t}{t^{2-3 \beta / 2+\alpha}}+\int_{\varepsilon / 2}^{1} \frac{d t}{\left.t^{2-\beta / 2+\delta}\right\} .}\right.
\end{aligned}
$$

We note $1-(\beta / 2)+\delta>0$ and $1-(3 \beta / 2)+\delta<0$, then

$$
I \leqq M_{\beta, \delta}(f) / \varepsilon^{1-\beta / 2+\delta} .
$$

Therefore we have

$$
A_{\beta, \delta}(n f) \leqq A_{\beta, \delta}(f)+M_{\beta, \delta}(f) / \varepsilon^{(1-\beta / 2+\delta) / \beta} .
$$

Proof of Necessity of Theorem 2. Let $\xi(x)$ be a continuous function which is equal to 1 on $[-1,1]$, equal to zero outside of $(-3 / 2,3 / 2)$ and linear otherwise. For $k=1,2, \cdots$, we set

$$
\xi_{k}(x)=\xi\left\{\left(x-2^{-k}\right) 2^{k+4}\right\}
$$

[^0]\[

$$
\begin{aligned}
& \eta_{k}(x)=\xi\left\{\left(x-2^{-k}\right) 2^{k+3}\right\} \\
& I_{k}=\left\{x ; \xi_{k}(x)=1\right\}=\left[-2^{-k-4}+2^{-k}, 2^{-k-4}+2^{-k}\right]
\end{aligned}
$$
\]

For $f \in A_{\beta, \delta}$ and $z \in \boldsymbol{C}$ (the field of complex numbers) we set

$$
\Phi_{z}(f)(x)=\varphi\{f(x)+z\}-\phi(z) .
$$

Then $\Phi_{z}(f) \in A_{\beta, \delta}$ since φ operates in $A_{\beta, \delta}$.
Firstly we shall show the necessity of (i) and (ii). Our proof is divided into four parts.
(I) For every $z \in \boldsymbol{C}$, there exist two positive constants α_{z} and M_{z}, and an interval I_{z} such that $A_{\beta, \delta}\left\{\Phi_{z}(f)\right\} \leqq M_{z}$ if $A_{\beta, \delta}(f) \leqq \alpha_{z}$ and the support of f is in I_{z}.

Proof. Suppose that the statement is false. Then there exists a sequence of functions f_{k} such that

$$
A_{\beta, \delta}\left(f_{k}\right) \leqq 1 / k^{2}, \operatorname{supp} f_{k} \subset I_{k}
$$

and

$$
A_{\beta, \delta}\left\{\Phi_{z}\left(f_{k}\right)\right\} \geqq k 2^{k(1-\beta / 2+\delta) / \beta} .
$$

Since the supports of f_{k} are disjoint each other, there exists $f=\sum_{k=1}^{\infty} f_{k}$ and we have

$$
A_{\beta, 8}(f) \leqq \sum_{k=1}^{\infty} A_{\beta, 8}\left(f_{k}\right) \leqq \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty .
$$

But

$$
\xi_{k} \Phi_{z}(f)=\Phi_{z}\left(f_{k}\right),
$$

and hence by Lemma 4

$$
\begin{aligned}
A_{\beta, \delta}\left\{\Phi_{z}\left(f_{k}\right)\right\} & =A_{\beta, \delta}\left\{\xi_{k} \Phi_{z}(f)\right\} \\
& \leqq A_{\beta, \delta}\left\{\Phi_{z}(f)\right\}+M_{\beta, \delta}\left\{\Phi_{z}(f)\right\} 2^{k(1-\beta / 2+\delta) / \beta}
\end{aligned}
$$

When k is large enough, the inequality contradicts the condition of $A_{\beta, \delta}\left\{\Phi_{z}\left(f_{k}\right)\right\}$.
(II) φ is bounded on every compact set.

Proof. We can choose $a>0$ and $\varepsilon>0$ of a function $\eta(x)$ in Lemma 1 such that supp $\eta \subset I_{z}$. If $A_{\beta, 8}\left(z^{\prime} \eta\right) \leqq \alpha_{z}$, i.e. $\left|z^{\prime}\right| \leqq \alpha_{z} / A_{\beta, \delta}(\eta)$, then by (I) we have $M_{z} \geqq A_{\beta, \delta}\left\{\Phi_{z}\left(z^{\prime} \eta\right)\right\}$. By supp $\eta \subset I_{z}$, we have $\Phi_{z}\left(z^{\prime} \eta\right)(x)=\varphi\left\{z^{\prime} \eta(x)+z\right\}$ $-\varphi(z)$, and hence

$$
\Phi_{z}\left(z^{\prime} \eta\right)(x)=\left\{\begin{array}{ccc}
\varphi\left(z^{\prime}+z\right)-\phi(z) & \text { if } & \eta(x)=1 \\
0 & \text { if } & \eta(x)=0 .
\end{array}\right.
$$

Therefore we can write

$$
\Phi_{z}\left(z^{\prime} \eta\right)(x)=f(x)\left\{\boldsymbol{\varphi}\left(z^{\prime}+z\right)-\varphi(z)\right\}
$$

where $f(x)=1$ if $\eta(x)=1$ and $f(x)=0$ if $\eta(x)=0$. By Lemma 3

$$
A_{\beta, \delta}\left\{\Phi_{z}\left(z^{\prime} \eta\right)\right\} \geqq\left|\boldsymbol{\varphi}\left(z^{\prime}+z\right)-\boldsymbol{\varphi}(z)\right|\left\{\begin{array}{lll}
M_{\beta, \delta, a} / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\{\log (a / \varepsilon)\}^{1 / \beta} & \text { if } & 1-\beta+\delta=0 .
\end{array}\right.
$$

Consequently $\varphi\left(z+z^{\prime}\right)$ is bounded for $\left|z^{\prime}\right| \leqq \alpha_{z} / A_{\beta, \delta}(\eta)$, and hence it is bounded on every compact set.
(III) For every $z \in \boldsymbol{C}$, there exist two positive constants α_{z}^{\prime} and M_{z}^{\prime} and an interval I_{z}^{\prime} such that $A_{\beta . \delta}\left\{\Phi_{z+z^{\prime}}(f)\right\} \leqq M_{z}^{\prime}$ if $A_{\beta, \delta}(f) \leqq \alpha_{z}^{\prime}, \operatorname{supp} f \subset I_{z}$ and $\left|z^{\prime}\right| \leqq \alpha_{z}^{\prime}$.

Proof. Conversely suppose that there exist two sequences of functions f_{k} and complex numbers z_{k} such that

$$
A_{\beta, \delta}\left(f_{k}\right) \leqq 1 / k^{2}, \operatorname{supp} f_{k} \subset I_{k},\left|z_{k}\right| \leqq 1 / k^{2} A_{\beta, \delta}\left(\eta_{k}\right)
$$

and

$$
A_{\beta, \delta}\left\{\Phi_{z+z^{\prime}}\left(f_{k}\right)\right\} \geqq k 2^{k(1-\beta / 2+\delta) / \beta} .
$$

We set $f=\sum_{k=1}^{\infty} f_{k}+\sum_{k=1}^{\infty} z_{k} \eta_{k}$. Then

$$
\begin{aligned}
A_{\beta, \delta}(f) & \leqq \sum_{k=1}^{\infty} A_{\beta, \delta}\left(f_{k}\right)+\sum_{k=1}^{\infty}\left|z_{k}\right| A_{\beta, \delta}\left(\eta_{k}\right) \\
& \leqq \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty .
\end{aligned}
$$

Therfore we have $f \in A_{\beta .0}$. Now

$$
\begin{aligned}
\xi_{k} \Phi_{z}(f) & =\xi_{k} \Phi_{z}\left(f_{k}+z_{k}\right) \\
& =\xi_{k}\left\{\boldsymbol{\varphi}\left(f_{k}+z_{k}+z\right)-\boldsymbol{\varphi}(z)\right\} \\
& =\xi_{k} \Phi_{z+z_{k}}\left(f_{k}\right)+\xi_{k}\left\{\boldsymbol{\varphi}\left(z_{k}+z\right)-\boldsymbol{\varphi}(z)\right\} \\
& =\Phi_{z+z_{k}}\left(f_{k}\right)+\xi_{k}\left\{\boldsymbol{\varphi}\left(z_{k}+z\right)-\boldsymbol{\varphi}(z)\right\}
\end{aligned}
$$

and hence by Lemma 4

$$
\begin{aligned}
A_{\beta, \delta}\left\{\Phi_{z+z_{k}}\left(f_{k}\right)\right\} \leqq & A_{\beta, \delta}\left\{\xi_{k} \Phi_{z}(f)\right\}+\left|\boldsymbol{\varphi}\left(z_{k}+z\right)-\boldsymbol{\varphi}(z)\right| A_{\beta, \delta}\left(\xi_{k}\right) \\
\leqq & A_{\beta, \delta}\left\{\Phi_{z}(f)\right\}+M_{\beta, \delta}\left\{\Phi_{z}(f)\right\} 2^{k(1-\beta / 2+\delta) / \beta} \\
& +M_{\beta, \delta}\left|\boldsymbol{\varphi}\left(z_{k}+\dot{z}\right)-\boldsymbol{\varphi}(z)\right|\left\{\begin{array}{lll}
2^{k(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\left(\log 2^{k}\right)^{1 / \beta} & \text { if } & 1-\beta+\delta=0
\end{array}\right.
\end{aligned}
$$

By (II) $\left|\boldsymbol{\varphi}\left(z+z_{k}\right)-\boldsymbol{\varphi}(z)\right|$ is bounded. This implies the contradiction.
(IV) For every $z \in \boldsymbol{C}, \varphi$ satisfies the Lipschitz condition in a neighbourhood of z.

Proof. We can choose $a>0$ of $\eta(x)$ in Lemma 2 such that $\operatorname{supp} \eta \subset I_{z}^{\prime}$ for all $\varepsilon \in(0, a / 2)$. Let the function $\eta(x)$ denote by $\eta_{\varepsilon}(x)$. We note that the number a depends on only z. If $\left|z^{\prime}\right| \leqq \alpha_{z}^{\prime}$ and

$$
\left|z^{\prime}-z^{\prime \prime}\right| \leqq \alpha_{z}^{\prime} / M_{\beta, \delta}\left\{\begin{array}{lll}
(2 / a)^{(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\{\log (2 / a)\}^{1 / \beta} & \text { if } & 1-\beta+\delta=0
\end{array}\right.
$$

then we can choose ε such that

$$
0<\varepsilon<a / 2 \text { and } \alpha_{z}^{\prime}=\left|z^{\prime}-z^{\prime \prime}\right| M_{\beta, \delta}\left\{\begin{array}{lll}
1 / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\{\log (2 / \varepsilon)\}^{1 / \beta} & \text { if } & 1-\beta+\delta=0
\end{array}\right.
$$

Let $\eta_{\varepsilon}(x)$ for this ε denote by $\eta(x)$. By Lemma 2 we have

$$
\begin{aligned}
A_{\beta, \delta}\left\{\left(z^{\prime}-z^{\prime \prime}\right) \eta\right\} & =\left|z^{\prime}-z^{\prime \prime}\right| A_{\beta, \delta}(\eta) \\
& \leqq\left|z^{\prime}-z^{\prime \prime}\right| M_{\beta, \delta}\left\{\begin{array}{lll}
1 / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\{\log (1 / \varepsilon)\}^{1 / \beta} & \text { if } & 1-\beta+\delta=0
\end{array}\right. \\
& =\alpha_{z}^{\prime}
\end{aligned}
$$

and hence by (III)

$$
M_{z}^{\prime} \geqq A_{\beta, \delta}\left[\Phi_{z+z^{\prime}}\left\{\left(z^{\prime \prime}-z^{\prime}\right) \eta\right\}\right]=A_{\beta, \delta}\left[\varphi\left\{\left(z^{\prime \prime}-z^{\prime}\right) \eta+z+z^{\prime}\right\}-\varphi\left(z+z^{\prime}\right)\right]
$$

But we have

$$
\varphi\left\{\left(z^{\prime \prime}-z^{\prime}\right) \eta(x)+z+z^{\prime}\right\}-\varphi\left(z+z^{\prime}\right)=\left\{\begin{array}{cll}
\varphi\left(z^{\prime \prime}+z\right)-\varphi\left(z+z^{\prime}\right) & \text { if } & \eta(x)=1 \\
0 & \text { if } & \eta(x)=0
\end{array}\right.
$$

and therefore we write

$$
\boldsymbol{\phi}\left\{\left(z^{\prime \prime}-z^{\prime}\right) \eta(x)+z+z^{\prime}\right\}-\boldsymbol{\phi}\left(z+z^{\prime}\right)=f(x)\left\{\boldsymbol{\phi}\left(z^{\prime \prime}+z\right)-\boldsymbol{\varphi}\left(z+z^{\prime}\right)\right\}
$$

where $f(x)=1$ if $\eta(x)=1$ and $f(x)=0$ if $\eta(x)=0$. Therefore by Lemma 3

$$
\begin{aligned}
M_{z}^{\prime} & \geqq\left|\varphi\left(z^{\prime \prime}+z\right)-\varphi\left(z+z^{\prime}\right)\right| A_{\beta, \delta}(f) \\
& \geqq\left|\varphi\left(z^{\prime \prime}+z\right)-\varphi\left(z+z^{\prime}\right)\right|\left\{\begin{array}{lll}
M_{\beta, \delta, a} / \varepsilon^{(1-\beta+\delta) / \beta} & \text { if } & 1-\beta+\delta>0 \\
\{\log (a / \varepsilon)\}^{1 / \beta} & \text { if } & 1-\beta+\delta=0
\end{array}\right. \\
& \geqq \frac{\left|\varphi\left(z^{\prime \prime}+z\right)-\varphi\left(z+z^{\prime \prime}\right)\right|}{\left|z^{\prime}-z^{\prime \prime}\right|} M_{\beta, \delta, a} \alpha_{z}^{\prime} .
\end{aligned}
$$

Constants in the above inequality are independent of z^{\prime} and $z^{\prime \prime}$, and hence $\boldsymbol{\varphi}$ satisfies the Lipschitz condition in a neighbourhood of z.

Thus proof of necessity of (i) and (ii) is complete.

Nextly we shall show the necessity of (iii). The proof is divided in three steps.
(I) For every interval $I \subset[-\pi, \pi]$ and every positive number a, there exists a finite sum E of intervals in I such that $a=A_{\beta, \delta}\left(\chi_{E}\right)$ where χ_{F} is the characteristic function of E.

Proof. We shall first show that

$$
\sup _{E} A_{\beta, \delta}\left(X_{E}\right)=\infty
$$

where E runs all the finite sums of ${ }_{-}$intervals in I.

Suppose that for all finite sums E of intervals in I

$$
A_{\beta, \delta}\left(\chi_{E}\right) \leqq K_{\beta, \delta}<\infty,
$$

where $K_{\beta, \delta}$ is a constant independent of E. If f is a step function such that $0 \leqq f \leqq 1$, then $f=\sum \alpha_{i} \chi_{E_{t}}$ where $\alpha_{i} \geqq 0$ and $\sum \alpha_{i} \leqq 1$. Therefore we have

$$
A_{\beta, \delta}(f) \leqq \sum \alpha_{i} A_{\beta, \delta}\left(\chi_{E_{i}}\right) \leqq K_{\beta, \delta}
$$

and hence for any bounded measurable function f such that $\operatorname{supp} f \subset I$, we have

$$
A_{\beta, \delta}(f) \leqq K_{\beta, \delta}\|f\|_{\infty} .
$$

Now we may set $I=(-\varepsilon, \varepsilon)$. Let $f(x)=e^{i N x}$ for $x \in I$ and $f(x)=0$ otherwise. Then we have

$$
\begin{aligned}
K_{\beta, \delta}^{\beta} & \geqq A_{\beta, \delta}^{\beta}(f) \\
& \geqq \int_{0}^{\varepsilon} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\int_{-\varepsilon+\iota}^{\varepsilon-t}\left|e^{i N x} e^{t N t}-e^{i N x} e^{-i N t}\right|^{2} d x\right\}^{\beta / 2} \\
& \geqq \int_{0}^{\varepsilon} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\left(4 \sin ^{2} N t\right) 2(\varepsilon-t)\right\}^{\beta / 2} .
\end{aligned}
$$

If $0<t<1 / N$ for $N>2 / \varepsilon$, then $N t<1$ and hence $\sin N t>c N t$ (c is a constant). Therefore

$$
\begin{aligned}
K_{\beta, \delta}^{\beta} & \geqq A_{\beta, \delta}^{\beta}(f) \\
& \geqq M_{\beta} \int_{0}^{1 / N} \frac{d t}{t^{2-\beta / 2+\delta}}\left\{\left(\sin ^{2} N t\right)\left(\varepsilon-\frac{1}{N}\right)\right\}^{\beta / 2} \\
& \geqq M_{\beta} \int_{0}^{1 / N} \frac{d t}{t^{2-\beta / 2+\delta}}\left(\varepsilon-\frac{\varepsilon}{2}\right)^{\beta / 2} d t \\
& =M_{\beta, \delta} \delta^{\beta / 2} N^{1-\beta / 2+\delta} .
\end{aligned}
$$

This contradicts $1-(\beta / 2)+\delta>0$, when N is sufficiently large. Therefore we have

$$
\sup _{E} A_{\beta, \delta}\left(\chi_{E}\right)=\infty,
$$

and hence there exists a finite sum E of intervals in I such that $a<A_{\beta, 8}\left(\chi_{E}\right)$ $<\infty$. Now we set

$$
I(h)=A_{\beta, \delta}\left(\chi_{E \cap(-\pi, k)}\right)
$$

and then $I(h)$ is continuous, $I(-\pi)=0$ and $I(\pi)>a$. Consequently there exists h^{\prime} such that $I\left(h^{\prime}\right)=a . \quad E \cap\left(-\pi, h^{\prime}\right)$ satisfies the condition of (I).
(II) There exist two positive constants M and α, and an interval I such that if $\operatorname{supp} f \subset I$ and $A_{\beta, \delta}(f) \leqq \alpha$, then $A_{\beta, \delta}\{\varphi(f)\} \leqq M$.

Proof. Conversely suppose that there exists a sequence of functions f_{k} such that

$$
\operatorname{supp} f_{k} \subset I_{k}, \quad A_{\beta, \delta}\left(f_{k}\right) \leqq 1 / k^{2}
$$

and

$$
A_{\beta, \delta}\left\{\boldsymbol{\varphi}\left(f_{k}\right)\right\} \geqq k 2^{k(1-\beta / 2+\delta) / \beta} .
$$

We set $f=\sum_{k=1}^{\infty} f_{k}$, and then

$$
A_{\beta, \delta}(f) \leqq \sum_{k=1}^{\infty} A_{\beta, \delta}\left(f_{k}\right) \leqq \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty .
$$

Therefore $f \in A_{\beta, \delta}$.
Without loss of generality we may assume $\boldsymbol{\varphi}(0)=0$. Then we have $\xi_{k} \varphi(f)=\varphi\left(f_{k}\right)$. Therefore by Lemma 3 we have

$$
A_{\beta, \delta}\left\{\boldsymbol{\varphi}\left(f_{k}\right)\right\}=A_{\beta, \delta}\left\{\xi_{k} \boldsymbol{\varphi}(f)\right\} \leqq A_{\beta, \delta}\{\boldsymbol{\varphi}(f)\}+M_{\beta, \delta}\{\boldsymbol{\varphi}(f)\} 2^{k(1-\beta / 2+\delta) / \beta} .
$$

This contradicts $A_{\beta, \delta}(f)<\infty$ when k is large enough.
(III) φ satisfies the Lipschitz condition.

Proof. For fixed $z, z^{\prime} \in \boldsymbol{C}$, by (I) there exists a finite sum E of intervals in I such that $A_{\beta, \delta}\left(z \chi_{E}\right)=\alpha / 2$. Let J be an interval in E. Then there exists a finite sum F of intervals J such that $A_{\beta, \delta}\left(z^{\prime} \chi_{F}\right)=\alpha / 2$. Therefore by (II) we have

$$
2 M \geqq A_{\beta, \delta}\left\{\boldsymbol{\varphi}\left(z \chi_{E}+z^{\prime} \chi_{F}\right)-\boldsymbol{\varphi}\left(z \chi_{E}\right)\right\}
$$

Since

$$
\varphi\left(z \chi_{E}+z^{\prime} \chi_{F}\right)-\varphi\left(z \chi_{E}\right)=\left\{\varphi\left(z+z^{\prime}\right)-\varphi(z)\right\} \chi_{F},
$$

we have

$$
2 M \geqq\left|\varphi\left(z+z^{\prime}\right)-\varphi(z)\right| A_{\beta, \delta}\left(\chi_{F}\right)=\frac{\left|\varphi\left(z+z^{\prime}\right)-\varphi(z)\right|}{\left|z^{\prime}\right|} \frac{\alpha}{2} .
$$

This shows that φ satisfies the Lipschitz condition. Thus the proof of Theorem 2 is complete.

REMARK. For $\beta>1$ and $1-\beta+\delta=0$, there exists an unbounded function f belonging to $A_{\beta, \delta}$.

We set

$$
f(x)=\sum_{n=2}^{\infty} \frac{\cos n x}{n(\log n)^{(1+\varepsilon) / \beta}}
$$

where $\varepsilon>0$ and $1+\varepsilon<\beta$. It is well-known that $f \in L^{2}(-\pi, \pi)$ and $f(x) \rightarrow \infty$ as $x \rightarrow 0$. We shall show that this function is in $A_{\beta, \delta}$. By Theorem 1, it is sufficient to show $C_{\beta, 8}(f)<\infty$. Now by hypothesis we can write

$$
C_{\beta, \delta}^{\beta}(f)=\sum_{n=1}^{\infty} n^{-1-\beta / 2}\left(\sum_{|k| \leqq n}\left|c_{k}\right|^{2} k^{2}\right)^{\beta / 2} .
$$

Therefore we have

$$
\begin{aligned}
C_{\beta, 8}^{\beta}(f) & =\sum_{n=1}^{\infty} n^{-1-\beta / 2}\left(\sum_{|k|=2}^{n} \frac{k^{2}}{k^{2}(\log k)^{2(1+\varepsilon) / \beta}}\right)^{\beta / 2} \\
& \leqq M_{\beta} \sum_{n=1}^{\infty} \frac{1}{n^{1+\beta / 2}}\left(\frac{n}{(\log n)^{2(1+\varepsilon) / \beta}}\right)^{\beta / 2} \\
& =M_{\beta} \sum_{n=1}^{\infty} \frac{1}{n(\log n)^{1+\varepsilon}}<\infty .
\end{aligned}
$$

Hence, in this case, our necessary condition is not sufficient.

References

[1] S. Igari, Sur les fouctions qui opèrent sur l'espace \hat{A}^{2}, Ann. Inst. Fourier, Grenoble, 15(1965), 525-536.
[2] G. Sunouchi, On the convolution algebra of Beurling, Tôhoku Math. Journ., 19 (1967), 303-310.

Mathematical Institute
Tôhoku University
Sendai, Japan

[^0]: $\left.{ }^{*}\right) M_{\beta, \delta}(f)$ denotes a constant depending on β, δ and f.

