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If a Riemannian manifold M is locally symmetric, then its curvature
tensor R satisfies

( * ) R(X, Y) R = 0 for all tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M. Conversely, does this algebraic condition (•*)
on the curvature tensor field R imply that M is locally symmetric (i.e.
Vi? = 0) ? We conjecture that the answer is affirmative in the case where
M is irreducible and complete and d i m M ^ 3 . For partial and related
results, see [4], p.ll, [9], Theorem 8, and [6].

The main purpose of the present paper is to give an affirmative answer
in the case where M is a complete hypersurface in a Euclidean space.
More precisely, we prove

THEOREM. Let M be an n-dimensional, connected, complete Riemannian
manifold which is isometric ally immersed in a Euclidean space Rn+1 so
that the type number is greater than 2 at least at one point. If M satisfies
condition (*) , then it is of the form M = SkxRn~k, where Sk is a hyper-
sphere in a Euclidean subspace Rk+ι of Rn+ι and Rn~k is a Euclidean
sub space orthogonal to Rk+ι.

As a result, M is, of course, symmetric. We have also

COROLLARY. Let M be an n-dimensional, connected compact Riemann-
ian manifold which is isometrically immersed in Rn+ι, where n > 3.
If M satisfies condition (* ), it is a hypersphere.

In the appendix, we shall show that slight modifications of our proof of
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the theorem above lead to the result of Hartman-Nirenberg [2] that a
complete locally Euclidean hypersurface is actually imbedded as a cylinder
built over a plane curve.

1. Reduction of condition (* ). The following is a purely local argument.
Let U be a neighborhood of a point xQζM on which we choose a unit
vector field ξ normal to M. For any vector fields X and Y tangent to M,
we have the formulas of Gauss and Weingarten:

where Dx and \7 x denote covariant differentiations for the Euclidean con-
nection of Rn+1 and the Riemannian connection on M, respectively. A is
a field of symmetric endomorphisms which corresponds to the second
fundamental form h9 that is, h(X9 Y) = (/(AX, Y) for tangent vectors X and
Y. The equation of Gauss expresses the curvature tensor R of M by means
of A :

R(X, Y) = AX A AY ,

where, in general, X Λ ^ denotes the endomorphism which maps Z upon
g(Z9 Y) X — g(Z, X)Y, g being the Riemannian metric. The type number
k(x) 3.1 x is, by definition, the rank of A at x.

At a point xe M, let {eu , en] be an orthonormal basis of the tangent
space TX{M) such that Ae^ = λ ^ , 1 ^ i ^ n. Then the equation of Gauss
implies

R(eue}) = λiXjβi Λ ej.

By computing

(R(ei9 e3) R)(ek, et) = [R(eiy e,)9R(ek9 et)]

- R(R(eίyej) eky et) - R(ek, R(eiy e}) et),

we find that it is zero except possibly in the case where k = i and I Φ i,j
(i Φj). For this case we have

(R(ei9 βj) R)(ei9 et) = λ t λj λ A j - λ O ej Λ et.

Thus we see that condition ( * ) is equivalent to
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(**) λiλ^λίCλj —λt) = 0 for / Φ i,j, where i Φj.

Suppose that the type number k(x) is ^ 3 at a point x and assume that
λ1? , λfc are non-zero eigenvalues of A at x and λfc+1 = = λn = 0. For
any i and j such that l ^ i <j ^ k, we choose / such that 1 rg Z ^ k and
/ ^ 2,7. Then (**) implies Xt = Xj. In other words, all the non-zero
eigenvalues λx, , Xk are equal to each other.

We have

LEMMA 0. If k(x0) §: 3, then there is a neighborhood U of x0 on which
the type number k(x) is equal to a constant and the non-zero eigenvalue
\(x) of A is a differentiable function.

PROOF. If k(x0) = n, then obviously k{x) is n in a neighborhood of x0.
Assume that 3 5i k(x0) < n and that λj = = Xko = λ Φ 0, λfco+1 = = λn

= 0 are the eigenvalues of A at x0. By continuity of the eigenvalues of A,
there is a neighborhood U of x0 on which k0 eigenvalues of A are of
absolute value > | λ | / 2 and n — k0 eigenvalues are of absolute value < | λ | / 2
(both counting the multiplicity). Since k(x) ^ k0 §: 3 for x^U, we know
that all the non-zero eigenvalues of A at x are equal. Hence the eigenvalues
of absolute value < | λ | /2 must be 0. Thus k(x) — k0 for every x^U. The
non-zero eigenvalue X(x) is a differentiable function on U, since X(x) = trace
A/k0 and since trace A is a differentiable function (where it is defined, that
is, in a neighborhood of x0 on which the unit normal field ξ is defined).

2. Lemmas. In this section, we shall assume that M is oriented (so that
a unit normal field ξ is defined on the whole M) and that the type number
k(x) is g: 3 everywhere on M. By the observations we made in 1, the
function k(x) is locally constant and hence is a constant function, say, k,
since M is connected. We may also speak of the differentiable function X(x)
which assings to each x € M the non-zero eigenvalue of A at x.

Thus, at each x € M, \(x) is the non-zero eigenvalue of A with
multiplicity k and 0 is the eigenvalue with multiplicity n — k. We define
two distributions on M as follows:

T0(x)= {XzTx(M); AX = 0}

Tx{x) = {Xz TX(M) AX = X(x)X} .

We have TX{M) = T0(x)Λ-T1(x) (direct sum). For any ZzTx(M), Zo and Zx

will denote the components of Z in T0(x) and Tλ(x). respectively.
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LEMMA 1. To and TΊ are dijferentiable.

PROOF. For any point JΓ0 € M, let [Xl9 , Xk] be a basis of Tλ{x0)
and let [Xk+U >^} be a basis of TQ(x0). We extend X/s to vector fields
on M and define vector fields

Yt = AX, for l^i^k

and

j for

where / denotes the identity transformation. At x0, we have Yt = \Xt for
l^i^k and Yj=-\Xj for k + l^j^n. Thus ' Y^ -, Yn are linearly
independent at x0 and hence in a neighborhood U oί x0. At each point of
U, we have

ί = O for 1 ^ ί ^ ife

i = 0 for k + l^j^n.

Hence Yl9 , Yk form a basis of Tλ and YΛ+1, , Yw form a basis of To»

LEMMA 2. To αn<i TΊ are involutive.

PROOF. We recall the Codazzi equation

Suppose that X and Y are vector fields belonging to To. Then

(\7AΛ)Y =

and

(VrA)X= -

Thus we get A(VJΓ) = A(VrX), that is,

A([X, Y]) - A( V^Y - VrX) - 0 ,

showing that [X, Y] belongs to To. Thus T o is involutive.
Suppose now that X and Y belong to 7\. Then

= Xλ Y +
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Interchanging X and Y here and using the Codazzi equation, we get

(Xλ) Y - (Yλ) X + (λ/-A)[X, Y] = 0 .

Since (Xλ)Y - (Yλ)X^ 7\ and (λ/-A)[X, Y] = λ[X, Y]0! we get

(Xλ)Y - (Yλ) X = 0 and [X, Y]o = 0.

The second identity shows that [X9Y]eTl9 proving that Tx is involutive.

The first identity will establish

LEMMA 3. If X belongs to Tx(x), then Xλ = 0.

PROOF. Since dim Tx(x) = k ̂  3, we may choose Y € T^JC) such that
X and Y are linearly independent. Extending X and Y to vector fields
belonging to Tu we have (Xλ)Y - (Yλ)X = 0 at x. Thus Xλ = Yλ=0 at x.

REMARK. The function λ is therefore constant on each maximal integral
manifold of T1. We shall later see that λ is actually a constant on M (for
this, completeness of M is essential).

We now let X^Tl9 YzT0 and compute the both sides of the Codazzi
equation:

- VΛAY) - A(VχY) = -

= Vz(AX) - A(VrX) = Vr(λX) -

= Yλ X + λ( VrX) ~ A( VrX)

= Yλ.X+λ(VrX)o.

Therefore we have

(VΓX)o = 0 , that is,

and

(Yλ)X= -λ(VχY)χ =

We have hence

LEMMA 4. If XeTίyYz To, ίA^n A(vaY) = -(Yλ)X
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LEMMA 5.

(i) IfYzTo, then
(ii) IfY*T09 then Vr (T 0 ) cT 0 .
(iii) IfYzT0,Xz Tx and [X, Y] = 0, then VAY € Tλ.

PROOF, (i) has been already shown above, (ii) follows from (i) and
from the fact that To and T\ are orthogonal complements to each other.
(iii) follows from \/xY = VrX + [X,Y] = VyX^T,.

LEMMA 6. If Yλ = 0 for every Y € To, then XeT, implies VJTO) c To

PROOF. Under the assumption, Lemma 4 implies A{\/XY) = 0, that is,
VxY e r 0 for Xζ 7\ and Y € Γo. Thus VA<T0)GT0 for I ζ Tx. Since 7\ is
the orthogonal complement of To, we have \/JS{T^)c.Tι as well.

LEMMA 7. Let Y and Z be vector fields belonging to To such that
\7YZ = \7zY = 0. If there is a non-vanishing vector field X belonging to

Tx such that [X, Y] = [X,Z] = 0, then (YZ)(-ί-) = 0.

PROOF. We know that R(X, Y) = AX A AY = 0 since AY = 0. On the
other hand, we have

R(X,Y) Z= Vx(VγZ) - Vr(VχZ) - Vtx.πZ = -Vr(VχZ)

in view of \JYZ = 0 and [X, Y] = 0. By Lemma 4, we have -(Zλ)X=A(V*Z).

By Lemma 5, (iii), we have A{\JXZ) — λ(VχZ). Thus we get V χ Z = — τ ~ X

X) = 0, which implies

Since [X, Y] = 0, we have VrX = V^Y and this is equal to — ^ X (in

the same way as for \JXZ = — - — X ) . Hence the equation above reduces to

(λ(7Zλ) - 2(Γλ)(Zλ)) X = 0.

Since X is non-vanishing, we get



52 K. NOMIZU

λ(7Zλ) -2(Yλ)(Zλ) = 0.

A simple computation shows

i _ n

3. Proof of the theorem in the case where k(x) ^ 3 everywhere. We
restate the assumptions explicitly. M is an w-dimεnsional, connected and
complete Riemannian manifold satisfying condition (*) . / : M-^Rn+1 is an
isometric immersion such that the type number k(x) is ^ 3 everywhere.
We wish to prove that M is the direct product Mo x Mx and that / is the
direct product of f0: M0-^Rn-k and fλ: M1-^Rk+\ where #"-* and Rk+ι

are Euclidean subspaces of Rn+1 which are orthogonal to each other, f0 is
an isometry and fx is an isometry of Mx onto a sphere Sk in i?fc+1.

Let M be the universal covering of M with projection π \M —* M. The

assumptions above are satisfied for M and its isometric immersion f — f ° 7r.

If we know that / is an isometry of M onto Rn~IcxSlc in the manner above,

then it follows that n is one-to-one, that is, M — M. Thus it will be

sufficient to prove the theorem for M.
We shall therefore assume that M is simply connected (and hence

orient able).
In 2 we have introduced involutive distributions To and Tλ. For each

x € M, we denote by MQ(x) and Λ/i(.r) the maximal integral manifolds
through x of To and T\, respectively.

PROPOSITION 1.

(i) MQ(X) is totally geodesic in M and is complete.
(ii) The restriction of f to M0(x) is an isometry of M0(x) onto a

Euclidean sub space Rn~k{x) of Rn+1.

PROOF, (i) By Lemma 5, (ii), we know Vr(T0) c To for Y z To. This
means that M0(x) is totally geodesic in M M0(x) is complete as a maximal
integral manifold which is totally geodesic. Indeed, let y(t) be a geodesic
in M0(x). As a geodesic in M, it is infinitely extendible. Suppose to = sup{t1

y(t) € M0(x) for t < tλ]. Take local coordinates [x\ , xk, xk+\ , xn]
with origin y(t0) such that {d/3x\ , a/αx^} and {a/3^fc+1, , d/dxn]
are local bases for Tx and To. Since j (ί), ί < tQ, is a geodesic lying in the
To-direction, we have yι(t)=c\ l^i^k, for to—S < t < tθ9 where δ0 > 0.
As t -> to, we have 3;?:(ί) -> 0, hence c1 = = ck = 0. Thus the geodesic
continues to lie in M0(x).
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(ii) Consider / locally. If X and Y are vector fields tangent to M0(x),
then

We have h(X, Y) = 0 since X, Y € To. We know that V ^ is tangent to M0(x).
This means that f: M0(x) —> Rn+ί is totally geodesic (that is, a geodesic in
M0(x) is mapped upon a straight line in i?w+1). Hence f^M0(x)) is contained
in an (n — ̂ -dimensional Euclidean subspace Rn~k(x). Since M0(x) is complete,
it follows that fκM0(x)) = Rn~k(x). By a well known result (cf. Theorem
4.6 of Chapter IV, [3]), / is a covering map and hence an isometry of M0(x)
onto Rn~\x).

We now come to the crucial step of the proof.

PROPOSITION 2. For any Y z T o , we have Yλ = 0.

PROOF. For a point x e M, let {y\ ,yk,yk+1, y71} be a coordinate
system with origin x in a neighborhood U oί x such that {3/θy1, , 3/3^^}
and {3/ay+ 1, , 3/3^"} are local bases for T1 and T o (cf. Lemma, [3], p. 182).
Since MQ(x) is isometric to a Euclidean space by Proposition 1, we may
assume that the restriction of {yk+1, ,yn] to M0(x) Π U is rectangular, that is

g(d/dya, 3/3y) = Kβ for

We show that the restriction of [yk + 1, ,yn] to M0(y)ΠU for any
y € M^Λ:) Π £7 is rectangular. By setting gaβ(yι, , y1) = g(d/dya, dβyd).

^oί, β ^n, we have

| , d/dys) + g(d/dy",

But Lemma 5, (iii), implies V3/3ϊ.(3/3yα) s Γ t for 1 ̂  t ̂  k. Hence

tod, similarly, g(d/dy", VynΦ/'δf)) = ° We have thus dgaS/dyl^0, that

Now let Y = d/dy", where k + l ^ d ^ n , and X=3/9y, where ί <Ξ z ̂  >ξ.

Since {jί*11, — ,y"} is rectangular on each M0(y)Γ\U, which is totally

geodesic in M, we have \7rY = 0. Applying Lemma 7 to X, Y and Z —Y,

we have Γ2(l/λ) = 0.
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If L is a straight line in M0(x), let Y be the parallel vector field in the
direction of L on the Euclidean space M0(x). For any point of L, we may-
choose suitable local coordinates {yι

9 ,yn} and show by the argument
above that Y2(l/λ) = 0. This means that if s is the length parameter of L,

then -|L-(J-Λ = 0. Thus
d2 V λ /ds

-±- = as + b,
A

where a and b are certain constants. If a is not 0, then 1/λ will be 0 for
s——b/a, which is a contradiction. We have thus shown that λ is equal
to a constant on L. Since L can be an arbitrary straight line in M0(x)
starting from x, we conclude that λ is equal to a constant on M0(x). Thus
Yλ = 0 for any Y e T o .

REMARK. Since Xλ = 0 for any X Ξ T\, it follows that Zλ = 0 for any
tangent vector Z. Thus λ is a constant function on M.

We now prove

PROPOSITION 3.

( i ) M.λ(x) is totally geodesic in M and is complete.
(ii) For any point o, let Mo = M0(o) and Mx = Mx(o). Then M is

isometric to the direct product of Mo and Mx.
(iii) The Euclidean subspaces Rn~k{x) = f(M0(x)), xzMuin Proposition

1 are all parallel to Rn~k = Rn~k(o).
(iv) The restriction fx of f to M1 is an isometry of Mx onto a sphere

Sk in the Euclidean subspace Rk+1 which is perpendicular to Rn~k.
(v) If fo is the restriction off to Mo, then / = / o x/ i , that is,

) = (fo(y),fi(χ)) ^ Rn~k x Sk.

for every (y,x)zMQY>Mλ = M.

PROOF, (i) By Proposition 2 and Lemma 6, we know that \/JTι)dTι

for any vector field X belonging to T1 This means that Mγ(x) is totally
geodesic. The completeness can be proved in the same way as for M0(x).

(ii) Lemmas 5 and 6 together imply that T o and 7\ are parallel.
Since M is simply connected and complete, our conclusion is a standard
result (cf. Theorem 6.1 of Chapter IV, [3]).
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(iii) Let Y € TQ(o) and let Yt be the family of tangent vectors parallel
to Y along a curve x{t) in Mx. By (ii) we have YteT0(x(t)). Considering
/ locally, we get (denoting by xt the tangent vector of the curve x(t))

since V7jt = 0 and h(xt, Yt) = 0. Thus f(Yt) is parallel in Rn+ι. This proves
that f(T0(x)) are parallel in Rn+1. Since the Euclidean subspace Rn~k(x)
= f(M0(x)) has f(TQ(x)) as the tangent space at f(x), we conclude that
Rn~k(x)9 xeMu are parallel.

(iv) Consider the Rn+1-valued vector function x —> ξx + Xf(x) on Mx.
For any tangent vector X to Mλ we have

DrUξ + ̂ -f) =f(-AX+XX) = 0 ,

which shows that £ + λ / is equal to a constant vector, say, ct, in Rn+1.
Hence

\\f(x)-α/X\\ = |l/λ| on Mlf

showing that /(Mx) lies on the hypersphere Sn with center α/X and radius
| l/λ | . On the other hand, /(MO, is perpendicular to f(MQ(x)) = Rn-\x),
xzMl9 at each point of /(Mj), and Rn~k{x) are all parallel to Rn-k. It
follows that f(Mx) lies in the Euclidean subspace Rk+1 through f(p) that is
perpendicular to Rn~k. Hence/(MO lies in the sphere Sk = SnnRk+1. Again
by Theorem 4.6, Chapter IV, [3], it follows that fx:Mγ-^Sk is a covering
map and hence an isometry.

(v) Let (y, x) € M Q X M ^ Let y = exp0 sY0> where Yo is a unit vector
in T0(p). Then the point (y, x) is equal to expx sY, where Y is the unit
vector in T0(x) which is parallel to Yo. By (iii) we know that /(Yo) and /(Y)
are parallel in Rn+1. Since / maps geodesies in M0(x) upon straight lines in
Rn~k(x), we see that f(y, x) = expMx) sf(Y) and this is equal to (fo(y\fι(x))>
since fo(y) = exp/(0) sf(Y0). We have thus shown f(y, x) = (fo(y),fi(x)).

With Proposition 3 the main theorem has been proved under the
assumption that k(x) ^ 3 everywhere.

4. Proof of the theorem. We now prove the theorem under the weaker
assumption that the type number k(x) is Ξg 3 at some point, say, o £ M. As
in the beginning of 3, we may assume that M is simply connected.

Let W={x; k(x)^3}, which is an open set. Let Wo be the connected
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component of o in W. As before, we know that k(x) is a constant on Wo,
X(x) is a differentiable function, and the distributions T o and T1 defined
on Wo are differentiabe and involutive. All the lemmas are valid.

Let Mo and Mγ be the maximal integral manifolds of T o and Tl9

respectively, through o.

PROPOSITION 4.

( i ) Mo is totally geodesic in M and is locally Euclidean.
(ii) On a geodesic L{s) in Mo with arc length parameter s, we have

λ(s) = .
v J as + b

(iii) Mo is complete and λ is a constant on Mo.
(iv) The type number k(x) is, in fact, g: 3 everywhere on M.

PROOF, (i) Mo is totally geodesic by Lemma 5, (ii). Hence the
curvature tensor of Mo is the restriction of the curvature tensor R of M to
Mo. We have R(X, Y) = AX A AY = 0 for X and Y tangent to Mo. Thus
Mo is locally Euclidean.

(ii) For any geodesic L(s) in Mo with arc length parameter s> we may

show that —j-γ[ ) — 0 by using the essentially same argument as for
US \ Λι /

Proposition 2.
(iii) Let L(s) be a geodesic in Mo starting from o. As a geodesic in M,

it is infinitely extendible. If this entire geodesic does not lie in Wo, let 50

be such that L(s) £ Wo (hence L(s) £ Mo) for 5 < s0 but L(ί0) ^ T̂ o We
derive a contradiction by showing that the type numder at L(s0) is ^ 3.
The characteristic polynomial of A at L(s), s<s0, is (t—X(s))Hn~k. That of
A at L(s0) is therefore the limit as 5—>s0, namely, (t—X(sQ))ktn-k. But

MSQ) =S limλ(s) =s lim =- cannot be 0. This shows that the type number
«-»ίo «->«o as-\"b

of A at L($o) i9 ^ § 3. It follows that L(sQ) € Wo and hence L(J0) ^ Λf0.
Thus Mo is complete. We also see that the constant a has to be 0 (as in
the proof of Proposition 2), namely, λ is a constant on Mo.

(iv) Since λ is constant on any maximal integral manifold of T o

(defined on WQ), we have Yλ==0 for YeT0. By Lemma 3, we have Xλ = 0
for X<Ξ 7Y Thus we see that λ is a constant function on Wo. We now show
that T̂ o is actually equal to M. Suppose Wo Φ M and let x be a point of
Wo—Wo By the continuity argument for the characteristic polynomial of
A, we see that the type number at x is again k §: 3. Thus Wo is open and
closed so that Wo — M, completing the proof of Proposition 4.
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Proposition 4 shows that the assumption that the type number is ^ 3
at one point actually implies that it is ^ 3 everywhere on M. Thus our
main theorem has been proved.

The Corollary follows easily from the fact that for an ?z-dimensional
compact Riemannian manifold M isometrically immersed in Rn+1 there is
a point xe M where the type number is n (for example, a point x e. M
where the distance from an arbitrarily fixed point in Rn+ι attains a
maximum).

5. Appendix. Let M be an ?z-dimensional, connected, locally Euclidean
and complete Riemannian manifold and let f:M-^Rn+1 be an isometric
immersion. The result of Hartman-Nirenberg [2] says that f(M) is of the
form 7xi?n~\ where Rn~1 is a Euclidean subspace of Rn+1 and 7 is a curve:
— 00 < s < 00 —>7(s) in a plane R2 perpendicular to R71'1. We indicate a
proof of this result.

First assume that M is moreover simply connected (so that M is
isometric to a Euclidean space Rn). Since its curvature tensor is identically
zero, the eigenvalues of A are 0 except possibly one of them, say, λ. If λ
is also identically 0, then obviously f(M) is a hyperplane in Rn + ι and / is
an isometry of M onto the hyperplane.

Assume that λ is not identically zero. Let W be the set of points where

λ is not 0 and let W = \JWa be the decomposition of W into the connected

components. On each Wa we may define two distributions T0={X; AX=0}
and TΊ = [X AX= \X}, for which all the lemmas are valid except Lemma 3
(for Lemma 3, dim Tλ ĝ 2 is needed, whereas here dimTΊ = l). For each
point x € W«, we may show, as in Proposition 4, that the maximal integral
manifold M0(x) of To through x is totally geodesic in M and is complete,
that λ is a constant on M0(x), and that / induces an isometry of MQ(x)
onto an (Λ—l)-dimensional subspace R""1 of Rn+\ M being isometric with
Rn, we may identify MQ(x) with a hyperplane, say H(x)% of Rn = M. The
hyperplanes H(x) are parallel for all points x in one component Wa, because
if H(x) and H(y) are distinct, they have no common point as the distinct
maximal integral manifolds of Tv We also see that the maximal integral
manifold Mλ(x) of Tx through each point x is a geodesic in Wa, hence
part of a straight line in M = Rn.

We now choose an arbitrary point o € W and extend the geodesic M^o)
as a straight line, say, L of M=Rn. We have the following situations:

1) For each point x of Wa, we have assigned a hyperplane H(x)(zWa

and λ is constant en H(x).
2) All the hyperplanes H(x), x^W, are parallel. In fact, if x,y^Wα9

then H(x) and H(y) are parallel as we already know. Suppose xeWα9
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yzWβ (ctΦ β). If there is a point z <Ξ H{x) Π H(y)> then, since λ is a
constant on H(x), z e. Wa and, similarly, z £ Wβ, which is a contradiction.
Thus H(x) and H(y) are disjoint, that is, parallel.

3) The straight line L is perpendicular to H(x) at every point xe LίλW.
Indeed, if \(x) φ 0, then x belongs to Wa for some a and the hyperplane
H(x), which is the maximal integral manifold of T o through x, is parallel
to H(p). Since L is perpendicular to H(o), we see that L is perpendicular
to H(x).

4) For each x on L — W, we define H(x) to be the hyperplane through
x which is parallel to H(p). Then X(y) = 0 for every y € H(x). Indeed,
suppose there is a point y e H(x) with \(y) Φ§. Then H(y), being parallel
to H(o), must coincide with H(x). Since λ is constant on H(y), we must
have \(x) Φ 0, which is a contradiction.

We now show how / maps all H(x) into Rn+1. Let Yt be a vector
field along L = Lt which is parallel to Y € T0(o). We have locally

Df(ΐύf(Yt) = f(Vΐ, Yt) + h(Lt, Yt) ξ = h(Lt, Yt)

since V£tYt = 0. If λ(Lt) Φ 0, then, in a neighborhood, Yt belongs to T o

and Lt belongs to Tx. Thus h(Lt, Yt) = 0. If \(Lt) = 0, this means that

Λ is identically 0 at the point Lt. Hence h(Lt, Yt) — 0. In either case, that
is, for each point of L, we have Df(£ύf(Yt) = 0. This means that f(Yt) is
parallel in Rn+\ It follows that f(H(x)), xeL, are all parallel to the
subspace Rn~ι = f(H(p)).

Since L is perpendicular to all H(x) and since / is isometric, we see
that y =f(L) is a curve on a plane perpendicular to R71'1. From the fact
that f(Yt) is parallel whenever Yt is parallel along L, it follows, as in
Proposition 3, (iii), that

for all (Ltyy) £ LxH(p) = M, where fx and f0 are the restrictions of / to
L and H(o), respectively.

We have thus proved that M = Rn, which is the direct product of the
straight line L and the hyperplane H(p), is mapped onto the cylinder
yxR71'1.

In the case where M is not simply connected, let M be the universal
covering of M with projection τt:M-+M. From the result for M. and its
immersion / = /°τr, we see that f(M)=f(M) is a cylinder in the sense
above.

We note that the result of Hartman-Nirenberg was earlier proved under
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weaker differentiability assumptions by A. Pogorelov [8]. Also for the case
of a 2-dimensional surface, see Massey [5]. As a matter of fact, our proof
of the main theorem is an adaptation of Massey's arguments for a higher-
dimensional case. For extensions of the cylinder theorem, see O'Neill [7]
and Hartman [1].
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