ON HYPERSURFACES SATISFYING A CERTAIN CONDITION ON THE CURVATURE TENSOR*

Katsumi Nomizu

(Received August 22, 1967)

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition (*) on the curvature tensor field R imply that M is locally symmetric (i.e. $\nabla R=0)$? We conjecture that the answer is affirmative in the case where M is irreducible and complete and $\operatorname{dim} M \geqq 3$. For partial and related results, see [4], p.11, [9], Theorem 8, and [6].

The main purpose of the present paper is to give an affirmative answer in the case where M is a complete hypersurface in a Euclidean space. More precisely, we prove

Theorem. Let M be an n-dimensional, connected, complete Riemannian manifold which is isometrically immersed in à Euclidean space R^{n+1} so that the type number is greater than 2 at least at one point. If M satisfies condition (*), then it is of the form $M=S^{k} \times R^{n-k}$, where S^{k} is a hypersphere in a Euclidean subspace R^{k+1} of R^{n+1} and R^{n-k} is a Euclidean subspace orthogonal to R^{k+1}.

As a result, M is, of course, symmetric. We have also
Corollary. Let M be an n-dimensional, connected compact Riemannian manifold which is isometrically immersed in R^{n+1}, where $n>3$. If M satisfies condition (*), it is a hypersphere.

In the appendix, we shall show that slight modifications of our proof of

[^0]the theorem above lead to the result of Hartman-Nirenberg [2] that a complete locally Euclidean hypersurface is actually imbedded as a cylinder built over a plane curve.

1. Reduction of condition (*). The following is a purely local argument. Let U be a neighborhood of a point $x_{0} \in M$ on which we choose a unit vector field ξ normal to M. For any vector fields X and Y tangent to M, we have the formulas of Gauss and Weingarten :

$$
\begin{aligned}
D_{x} Y & =\nabla_{x} Y+h(X, Y) \xi \\
D_{x} \xi & =-A X
\end{aligned}
$$

where D_{x} and ∇_{x} denote covariant differentiations for the Euclidean connection of R^{n+1} and the Riemannian connection on M, respectiveiy. A is a field of symmetric endomorphisms which corresponds to the second fundamental form h, that is, $h(X, Y)=y(A X, Y)$ for tangent vectors X and Y. The equation of Gauss expresses the curvature tensor R of M by means of A :

$$
R(X, Y)=A X \wedge A Y
$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon $g(Z, Y) X-g(Z, X) Y, g$ being the Riemannian metric. The type number $k(x)$ at x is, by definition, the rank of A at x.

At a point $x \in M$, let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis of the tangent space $T_{x}(M)$ such that $A e_{i}=\lambda_{i} e_{i}, 1 \leqq i \leqq n$. Then the equation of Gauss implies

$$
R\left(e_{i}, e_{j}\right)=\lambda_{i} \lambda_{j} e_{i} \wedge e_{j}
$$

By computing

$$
\begin{aligned}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{k}, \boldsymbol{e}_{l}\right)= & {\left[R\left(e_{i}, e_{j}\right), R\left(e_{k}, e_{l}\right)\right] } \\
& -R\left(R\left(e_{i}, \boldsymbol{e}_{j}\right) e_{k}, \boldsymbol{e}_{l}\right)-R\left(e_{k}, R\left(e_{i}, e_{j}\right) \boldsymbol{e}_{l}\right),
\end{aligned}
$$

we find that it is zero except possibly in the case where $k=i$ and $l \neq i, j$ $(i \neq j)$. For this case we have

$$
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{i}, e_{l}\right)=\lambda_{i} \lambda_{j} \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right) e_{j} \wedge e_{l} .
$$

Thus we see that condition (*) is equivalent to

$$
\lambda_{i} \lambda_{j} \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right)=0 \text { for } l \neq i, j, \text { where } i \neq j
$$

Suppose that the type number $k(x)$ is $\geqq 3$ at a point x and assume that $\lambda_{1}, \cdots, \lambda_{k}$ are non-zero eigenvalues of A at x and $\lambda_{k+1}=\cdots=\lambda_{n}=0$. For any i and j such that $1 \leqq i<j \leqq k$, we choose l such that $1 \leqq l \leqq k$ and $l \neq i, j$. Then (**) implies $\lambda_{i}=\lambda_{j}$. In other words, all the non-zero eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$ are equal to each other.

We have

LEMmA 0 . If $k\left(x_{0}\right) \geqq 3$, then there is a neighborhood U of x_{0} on which the type number $k(x)$ is equal to a constant and the non-zero eigenvalue $\lambda(x)$ of A is a differentiable function.

Proof. If $k\left(x_{0}\right)=n$, then obviously $k(x)$ is n in a neighborhood of x_{0}. Assume that $3 \leqq k\left(x_{0}\right)<n$ and that $\lambda_{1}=\cdots=\lambda_{k_{0}}=\lambda \neq 0, \lambda_{k_{0}+1}=\cdots=\lambda_{n}$ $=0$ are the eigenvalues of A at x_{0}. By continuity of the eigenvalues of A, there is a neighborhood U of x_{0} on which k_{0} eigenvalues of A are of absolute value $>|\lambda| / 2$ and $n-k_{0}$ eigenvalues are of absolute value $<|\lambda| / 2$ (both counting the multiplicity). Since $k(x) \geqq k_{0} \geqq 3$ for $x \in U$, we know that all the non-zero eigenvalues of A at x are equal. Hence the eigenvalues of absolute value $<|\lambda| / 2$ must be 0 . Thus $k(x)=k_{0}$ for every $x \in U$. The non-zero eigenvalue $\lambda(x)$ is a differentiable function on U, since $\lambda(x)=$ trace A / k_{0} and since trace A is a differentiable function (where it is defined, that is, in a neighborhood of x_{0} on which the unit normal field ξ is defined).
2. Lemmas. In this section, we shall assume that M is oriented (so that a unit normal field ξ is defined on the whole M) and that the type number $k(x)$ is $\geqq 3$ everywhere on M. By the observations we made in 1 , the function $k(x)$ is locally constant and hence is a constant function, say, k, since M is connected. We may also speak of the differentiable function $\lambda(x)$ which assings to each $x \in M$ the non-zero eigenvalue of A at x.

Thus, at each $x \in M, \lambda(x)$ is the non-zero eigenvalue of A with multiplicity k and 0 is the eigenvalue with multiplicity $n-k$. We define two distributions on M as follows:

$$
\begin{aligned}
& T_{0}(x)=\left\{X \in T_{x}(M) ; A X=0\right\} \\
& T_{1}(x)=\left\{X \in T_{x}(M) ; A X=\lambda(x) X\right\}
\end{aligned}
$$

We have $T_{x}(M)=T_{0}(x)+T_{1}(x)$ (direct sum). For any $Z \in T_{x}(M), Z_{0}$ and Z_{1} will denote the components of Z in $T_{0}(x)$ and $T_{1}(x)$. respectively.

Lemma 1. T_{0} and T_{1} are differentiable.

Proof. For any point $x_{0} \in M$, let $\left\{X_{1}, \cdots, X_{k}\right\}$ be a basis of $T_{1}\left(x_{0}\right)$ and let $\left\{X_{k+1}, \cdots, X_{n}\right\}$ be a basis of $T_{0}\left(x_{0}\right)$. We extend X_{i} 's to vector fields on M and define vector fields

$$
Y_{i}=A X_{i} \quad \text { for } \quad 1 \leqq i \leqq k
$$

and

$$
Y_{j}=(A-\lambda I) X_{j} \quad \text { for } \quad k+1 \leqq j \leqq n,
$$

where I denotes the identity transformation. At x_{0}, we have $Y_{i}=\lambda X_{i}$ for $1 \leqq i \leqq k$ and $Y_{j}=-\lambda X_{j}$ for $k+1 \leqq j \leqq n$. Thus Y_{1}, \cdots, Y_{n} are linearly independent at x_{0} and hence in a neighborhood U of x_{0}. At each point of U, we have

$$
\begin{array}{rll}
(A-\lambda I) Y_{i}=(A-\lambda I) A X_{i}=0 & \text { for } & 1 \leqq i \leqq k \\
A Y_{j} & =A(A-\lambda I) X_{j}=0 & \text { for }
\end{array} \quad k+1 \leqq j \leqq n . ~ .
$$

Hence Y_{1}, \cdots, Y_{k} form a basis of T_{1} and Y_{k+1}, \cdots, Y_{n} form a basis of T_{0}.
Lemma 2. T_{0} and T_{1} are involutive.
Proof. We recall the Codazzi equation

$$
\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right)(X) .
$$

Suppose that X and Y are vector fields belonging to T_{0}. Then

$$
\left(\nabla_{X} A\right) Y=\nabla_{X}(A Y)-A\left(\nabla_{X} Y\right)=-A\left(\nabla_{X} Y\right),
$$

and

$$
\left(\nabla_{Y} A\right) X=-A\left(\nabla_{Y} X\right)
$$

Thus we get $A\left(\nabla_{X} Y\right)=A\left(\nabla_{Y} X\right)$, that is,

$$
A([X, Y])=A\left(\nabla_{X} Y-\nabla_{Y} X\right)=0
$$

showing that $[X, Y]$ belongs to T_{0}. Thus T_{0} is involutive.
Suppose now that X and Y belong to T_{1}. Then

$$
\begin{aligned}
\left(\nabla_{X} A\right) Y & =\nabla_{X}(A Y)-A\left(\nabla_{X} Y\right)=\nabla_{X}(\lambda Y)-A\left(\nabla_{X} Y\right) \\
& =X \lambda \cdot Y+\lambda \nabla_{X} Y-A\left(\nabla_{X} Y\right)
\end{aligned}
$$

Interchanging X and Y here and using the Codazzi equation, we get

$$
(X \lambda) Y-(Y \lambda) X+(\lambda I-A)[X, Y]=0 .
$$

Since $(X \lambda) Y-(Y \lambda) X \in T_{1}$ and $(\lambda I-A)[X, Y]=\lambda[X, Y]_{0}$, we get

$$
(X \lambda) Y-(Y \lambda) X=0 \text { and }[X, Y]_{0}=0 .
$$

The second identity shows that $[X, Y] \in T_{1}$, proving that T_{1} is involutive. The first identity will establish

Lemma 3. If X belongs to $T_{1}(x)$, then $X \lambda=0$.
Proof. Since $\operatorname{dim} T_{1}(x)=k \geqq 3$, we may choose $Y \in T_{1}(x)$ such that X and Y are linearly independent. Extending X and Y to vector fields belonging to T_{1}, we have $(X \lambda) Y-(Y \lambda) X=0$ at x. Thus $X \lambda=Y \lambda=0$ at x.

REMARK. The function λ is therefore constant on each maximal integral manifold of T_{1}. We shall later see that λ is actually a constant on M (for this, completeness of M is essential).

We now let $X \in T_{1}, Y \in T_{0}$ and compute the both sides of the Codazzi equation:

$$
\begin{aligned}
\left(\nabla_{X} A\right) Y & =\nabla_{X}(A Y)-A\left(\nabla_{X} Y\right)=-A\left(\nabla_{X} Y\right)=-\lambda\left(\nabla_{X} Y\right)_{1}, \\
\left(\nabla_{Y} A\right) X & =\nabla_{Y}(A X)-A\left(\nabla_{Y} X\right)=\nabla_{Y}(\lambda X)-A\left(\nabla_{Y} X\right) \\
& =Y \lambda \cdot X+\lambda\left(\nabla_{Y} X\right)-A\left(\nabla_{Y} X\right) \\
& =Y \lambda \cdot X+\lambda\left(\nabla_{Y} X\right)_{0} .
\end{aligned}
$$

Therefore we have

$$
\left(\nabla_{Y} X\right)_{0}=0, \quad \text { that is, } \quad \nabla_{Y} X \in T_{1}
$$

and

$$
(Y \lambda) X=-\lambda\left(\nabla_{X} Y\right)_{1}=-A\left(\nabla_{X} Y\right) .
$$

We have hence
Lemma 4. If $X \in T_{1}, Y \in T_{0}$, then $A\left(\nabla_{X} Y\right)=-(Y \lambda) X$.

Lemma 5.
(i) If $Y \in T_{0}$, then $\nabla_{r}\left(T_{1}\right) \subset T_{1}$.
(ii) If $Y \in T_{0}$, then $\nabla_{Y}\left(T_{0}\right) \subset T_{0}$.
(iii) If $Y \in T_{0}, X \in T_{1}$ and $[X, Y]=0$, then $\nabla_{X} Y \in T_{1}$.

Proof. (i) has been already shown above. (ii) follows from (i) and from the fact that T_{0} and T_{1} are orthogonal complements to each other. (iii) follows from $\nabla_{X} Y=\nabla_{Y} X+[X, Y]=\nabla_{Y} X \in T_{1}$.

Lemma 6. If $Y \lambda=0$ for every $Y \in T_{0}$, then $X \in T_{1}$ implies $\nabla_{X}\left(T_{0}\right) \subset T_{0}$ and $\nabla_{X}\left(T_{1}\right) \subset T_{1}$.

Proof. Under the assumption, Lemma 4 implies $A\left(\nabla_{X} Y\right)=0$, that is, $\nabla_{X} Y \in T_{0}$ for $X \in T_{1}$ and $Y \in T_{0}$. Thus $\nabla_{X}\left(T_{0}\right) \subset T_{0}$ for $X \in T_{1}$. Since T_{1} is the orthogonal complement of T_{0}, we have $\nabla_{X}\left(T_{1}\right) \subset T_{1}$ as well.

Lemma 7. Let Y and Z be vector fields belonging to T_{0} such that $\nabla_{Y} Z=\nabla_{Z} Y=0$. If there is a non-vanishing vector field X belonging to T_{1} such that $[X, Y]=[X, Z]=0$, then $(Y Z)\left(\frac{1}{\lambda}\right)=0$.

Proof. We know that $R(X, Y)=A X \wedge A Y=0$ since $A Y=0$. On the other hand, we have

$$
R(X, Y) \cdot Z=\nabla_{x}\left(\nabla_{Y} Z\right)-\nabla_{Y}\left(\nabla_{X} Z\right)-\nabla_{[X, Y]} Z=-\nabla_{Y}\left(\nabla_{X} Z\right)
$$

in view of $\nabla_{Y} Z=0$ and $[X, Y]=0$. By Lemma 4, we have $-(Z \lambda) X=A\left(\nabla_{X} Z\right)$. By Lemma 5, (iii), we have $A\left(\nabla_{X} Z\right)=\lambda\left(\nabla_{X} Z\right)$. Thus we get $\nabla_{X} Z=-\frac{Z \lambda}{\lambda} X$.

Therefore $\nabla_{r}\left(\frac{Z \lambda}{\lambda} X\right)=0$, which implies

$$
\frac{\lambda(Y Z \lambda)-(Y \lambda)(Z \lambda)}{\lambda^{2}} X+\frac{Z \lambda}{\lambda} \nabla_{Y} X=0 .
$$

Since $[X, Y]=0$, we have $\nabla_{Y} X=\nabla_{X} Y$ and this is equal to $\frac{-Y \lambda}{\lambda} X$ (in the same way as for $\left.\nabla_{X} Z=\frac{-Z \lambda}{\lambda} X\right)$. Hence the equation above reduces to

$$
(\lambda(Y Z \lambda)-2(Y \lambda)(Z \lambda)) X=0
$$

Since X is non-vanishing, we get

$$
\lambda(Y Z \lambda)-2(Y \lambda)(Z \lambda)=0
$$

A simple computation shows

$$
Y Z\left(\frac{1}{\lambda}\right)=-\frac{\lambda Y(Z \lambda)-2\left(Y \lambda_{\cdot}\right)\left(Z \lambda_{0}\right)}{\lambda^{3}}=0 .
$$

3. Proof of the theorem in the case where $\boldsymbol{k}(\boldsymbol{x}) \geqq 3$ everywhere. We restate the assumptions explicitly. M is an n-dimensional, connected and complete Riemannian manifold satisfying condition (*). $f: M \rightarrow R^{n+1}$ is an isometric immersion such that the type number $k(x)$ is $\geqq 3$ everywhere. We wish to prove that M is the direct product $M_{0} \times M_{1}$ and that f is the direct product of $f_{0}: M_{0} \rightarrow R^{n-k}$ and $f_{1}: M_{1} \rightarrow R^{k+1}$, where R^{n-k} and R^{k+1} are Euclidean subspaces of R^{n+1} which are orthogonal to each other, f_{0} is an isometry and f_{1} is an isometry of M_{1} onto a sphere S^{k} in R^{k+1}.

Let \widetilde{M} be the universal covering of M with projection $\pi: \widetilde{M} \rightarrow M$. The assumptions above are satisfied for \widetilde{M} and its isometric immersion $\widetilde{f}=f \circ \pi$. If we know that \widetilde{f} is an isometry of \widetilde{M} onto $R^{n-k} \times S^{k}$ in the manner above, then it follows that π is one-to-one, that is, $\widetilde{M}=M$. Thus it will be sufficient to prove the theorem for \widetilde{M}.

We shall therefore assume that M is simply connected (and hence orientable).

In 2 we have introduced involutive distributions T_{0} and T_{1}. For each $x \in M$, we denote by $M_{0}(x)$ and $M_{1}(x)$ the maximal integral manifolds through x of T_{0} and T_{1}, respectively.

Proposition 1.

(i) $M_{0}(x)$ is totally geodesic in M and is complete.
(ii) The restriction of f to $M_{0}(x)$ is an isomeiry of $M_{0}(x)$ onto a Euclidean subspace $R^{n-k}(x)$ of R^{n+1}.

Proof. (i) By Lemma 5, (ii), we know $\nabla_{Y}\left(T_{0}\right) \subset T_{0}$ for $Y \in T_{0}$. This means that $M_{0}(x)$ is totally geodesic in $M . \quad M_{0}(x)$ is complete as a maximal integral manifold which is totally geodesic. Indeed, let $y(t)$ be a geodesic in $M_{0}(x)$. As a geodesic in M, it is infinitely extendible. Suppose $t_{0}=\sup \left\{t_{1}\right.$; $y(t) \in M_{0}(x)$ for $\left.t<t_{1}\right\}$. Take local coordinates $\left\{x^{1}, \cdots, x^{k}, x^{k+1}, \cdots, x^{n}\right\}$ with origin $y\left(t_{0}\right)$ such that $\left\{\partial / \partial x^{1}, \cdots, \partial / \partial x^{k}\right\}$ and $\left\{\partial / \partial x^{k+1}, \cdots, \partial / \partial x^{n}\right\}$ are local bases for T_{1} and T_{0}. Since $y(t), t<t_{0}$, is a geodesic lying in the T_{0}-direction, we have $y^{i}(t)=c^{i}, 1 \leqq i \leqq k$, for $t_{0}-\delta<t<t_{0}$, where $\delta_{0}>0$. As $t \rightarrow t_{0}$, we have $y^{i}(t) \rightarrow 0$, hence $c^{1}=\cdots=c^{k}=0$. Thus the geodesic continues to lie in $M_{0}(x)$.
(ii) Consider f locally. If X and Y are vector fields tangent to $M_{0}(x)$, then

$$
D_{f(X)} f(Y)=f\left(\nabla_{X} Y\right)+h(X, Y) \xi
$$

We have $h(X, Y)=0$ since $X, Y \in T_{0}$. We know that $\nabla_{X} Y$ is tangent to $M_{0}(x)$. This means that $f: M_{0}(x) \rightarrow R^{n+1}$ is totally geodesic (that is, a geodesic in $M_{0}(x)$ is mapped upon a straight line in $\left.R^{n+1}\right)$. Hence $f\left(M_{0}(x)\right)$ is contained in an ($n-k$)-dimensional Euclidean subspace $R^{n-k}(x)$. Since $M_{0}(x)$ is complete, it follows that $f\left(M_{0}(x)\right)=R^{n-k}(x)$. By a well known result (cf. Theorem 4.6 of Chapter IV, [3]), f is a covering map and hence an isometry of $M_{0}(x)$ onto $R^{n-k}(x)$.

We now come to the crucial step of the proof.
Proposition 2. For any $Y \in T_{0}$, we have $Y \lambda=0$.
Proof. For a point $x \in M$, let $\left\{y^{1}, \cdots, y^{k}, y^{k+1}, \cdots y^{n}\right\}$ be a coordinate system with origin x in a neighborhood U of x such that $\left\{\partial / \partial y^{1}, \cdots, \partial / \partial y^{k}\right\}$ and $\left\{\partial / \partial y^{k+1}, \cdots, \partial / \partial y^{n}\right\}$ are local bases for T_{1} and T_{0} (cf. Lemma, [3], p. 182). Since $M_{0}(x)$ is isometric to a Euclidean space by Proposition 1, we may assume that the restriction of $\left\{y^{k+1}, \cdots, y^{n}\right\}$ to $M_{0}(x) \cap U$ is rectangular, that is

$$
g\left(\partial / \partial y^{\alpha}, \partial / \partial y^{\beta}\right)=\delta_{\alpha \beta} \quad \text { for } \quad k+1 \leqq \alpha, \beta \leqq n
$$

We show that the restriction of $\left\{y^{k+1}, \cdots, y^{n}\right\}$ to $M_{0}(y) \cap U$ for any $y \in M_{1}(x) \cap U$ is rectangular. By setting $g_{\alpha \beta}\left(y^{1}, \cdots, y^{n}\right)=\ell\left(\partial / \partial y^{\alpha}, \partial / \partial y^{\beta}\right)$. $k+1 \leqq \alpha, \beta \leqq n$, we have

$$
\frac{\partial g_{\alpha \beta}}{\partial y_{i}}=g\left(\nabla_{\partial \partial y^{\prime}}\left(\partial / \partial y^{\alpha}\right), \partial / \partial y^{\beta}\right)+g\left(\partial / \partial y^{\alpha}, \nabla_{\partial / \partial y^{\prime}}\left(\partial / \partial y^{\beta}\right)\right)
$$

But Lemma 5, (iii), implies $\nabla_{\partial / \partial y}\left(\partial / \partial y^{\alpha}\right) \in T_{1}$ for $1 \leqq i \leqq k$. Hence

$$
g\left(\nabla_{\partial \partial y y^{\prime}}\left(\partial / \partial y^{\alpha}\right), \partial / \partial y^{s}\right)=0
$$

and, similarly, $g\left(\partial / \partial y^{\alpha}, \nabla_{\partial / \partial y^{i}}\left(\partial / \partial y^{\beta}\right)\right)=0$. We have thus $\partial g_{\alpha \beta} / \partial y^{i}=0$, that is;

$$
g_{\alpha \beta}\left(y^{1}, \cdots, y^{k}, y^{k+1}, \cdots, y^{n}\right)=g_{\alpha \beta}\left(0, \cdots, 0, y^{k+1}, \cdots, y^{n}\right)=\delta_{\alpha \beta}:
$$

Now let $Y=\partial / \partial y^{\alpha}$, where $k+1 \leqq \alpha \leqq n$, and $X=\partial / \partial y^{i}$, where $1 \leqq i \leqq k$: Since $\left\{y^{k+1}, \cdots, y^{n}\right\}$ is rectangular on each $M_{0}(y) \cap U$, which is totally geodesic in M, we have $\nabla_{r} Y=0$. Applying Lemma 7 to X, Y and $Z=Y$, we have $Y^{2}(1 / \lambda)=0$.

If L is a straight line in $M_{0}(x)$, let Y be the parallel vector field in the direction of L on the Euclidean space $M_{0}(x)$. For any point of L, we may choose suitable local coordinates $\left\{y^{1}, \cdots, y^{n}\right\}$ and show by the argument above that $Y^{2}(1 / \lambda)=0$. This means that if s is the length parameter of L, then $\frac{d^{2}}{d s^{2}}\left(\frac{1}{\lambda}\right)=0$. Thus

$$
\frac{1}{\lambda}=a s+b
$$

where a and b are certain constants. If a is not 0 , then $1 / \lambda$ will be 0 for $s=-b / a$, which is a contradiction. We have thus shown that λ is equal to a constant on L. Since L can be an arbitrary straight line in $M_{0}(x)$ starting from x, we conclude that λ is equal to a constant on $M_{0}(x)$. Thus $Y \lambda=0$ for any $Y \in T_{0}$.

Remark. Since $X \lambda=0$ for any $X \in T_{1}$, it follows that $Z \lambda=0$ for any tangent vector Z. Thus λ is a constant function on M.

We now prove

Proposition 3.

(i) $M_{1}(x)$ is totally geodesic in M and is complete.
(ii) For any point o, let $M_{0}=M_{0}(o)$ and $M_{1}=M_{1}(o)$. Then M is isometric to the direct product of M_{0} and M_{1}.
(iii) The Euclidean subspaces $R^{n-k}(x)=f\left(M_{0}(x)\right), x \in M_{1}$, in Proposition 1 are all parallel to $R^{n-k}=R^{n-k}(o)$.
(iv) The restriction f_{1} of f to M_{1} is an isometry of M_{1} onto a sphere S^{k} in the Euclidean subspace R^{k+1} which is perpendicular to R^{n-k}.
(v) If f_{0} is the restriction of f to M_{0}, then $f=f_{0} \times f_{1}$, that is,

$$
f(y, x)=\left(f_{0}(y), f_{1}(x)\right) \in R^{n-k} \times S^{k} .
$$

for every $(y, x) \in M_{0} \times M_{1}=M$.

Proof. (i) By Proposition 2 and Lemma 6, we know that $\nabla_{x}\left(T_{1}\right) \subset T_{1}$ for any vector field X belonging to T_{1} This means that $M_{1}(x)$ is totally geodesic. The completeness can be proved in the same way as for $M_{0}(x)$.
(ii) Lemmas 5 and 6 together imply that T_{0} and T_{1} are parallel. Since M is simply connected and complete, our conclusion is a standard result (cf. Theorem 6.1 of Chapter IV, [3]).
(iii) Let $Y \in T_{0}(o)$ and let Y_{t} be the family of tangent vectors parallel to Y along a curve $x(t)$ in M_{1}. By (ii) we have $Y_{t} \in T_{0}(x(t))$. Considering f locally, we get (denoting by \vec{x}_{t} the tangent vector of the curve $x(t)$)

$$
D_{f\left(x_{t}\right)} f\left(Y_{t}\right)=f\left(\nabla \vec{x}_{t} Y_{t}\right)+h\left(\vec{x}_{t}, Y_{t}\right) \xi=0,
$$

since $\nabla \vec{x}_{t} Y_{t}=0$ and $h\left(\vec{x}_{t}, Y_{t}\right)=0$. Thus $f\left(Y_{t}\right)$ is parallel in R^{n+1}. This proves that $f\left(T_{0}(x)\right)$ are parallel in R^{n+1}. Since the Euclidean subspace $R^{n-k}(x)$ $=f\left(M_{0}(x)\right)$ has $f\left(T_{0}(x)\right)$ as the tangent space at $f(x)$, we conclude that $R^{n-k}(x), x \in M_{1}$, are paralleJ.
(iv) Consider the R^{n+1}-valued vector function $x \rightarrow \xi_{x}+\lambda f(x)$ on M_{1}. For any tangent vector X to M_{1} we have

$$
D_{f(x)}(\xi+\lambda \cdot f)=f(-A X+\lambda X)=0
$$

which shows that $\xi+\lambda \cdot f$ is equal to a constant vector, say, α, in R^{n+1}. Hence

$$
\|f(x)-\alpha / \lambda\|=|1 / \lambda| \quad \text { on } \quad M_{1}
$$

showing that $f\left(M_{1}\right)$ lies on the hypersphere S^{n} with center α / λ and radius $|1 / \lambda|$. On the other hand, $f\left(M_{1}\right)$, is perpendicular to $f\left(M_{0}(x)\right)=R^{n-k}(x)$, $x \in M_{1}$, at each point of $f\left(M_{1}\right)$, and $R^{n-k}(x)$ are all parallel to R^{n-k}. It follows that $f\left(M_{1}\right)$ lies in the Euclidean subspace R^{k+1} through $f(o)$ that is perpendicular to R^{n-k}. Hence $f\left(M_{1}\right)$ lies in the sphere $S^{k}=S^{n} \cap R^{k+1}$. Again by Theorem 4.6, Chapter IV, [3], it follows that $f_{1}: M_{1} \rightarrow S^{k}$ is a covering map and hence an isometry.
(v) Let $(y, x) \in M_{0} \times M_{1}$. Let $y=\exp _{o} s Y_{0}$, where Y_{0} is a unit vector in $T_{0}(o)$. Then the point (y, x) is equal to $\exp _{x} s Y$, where Y is the unit vector in $T_{0}(x)$ which is parallel to Y_{0}. By (iii) we know that $f\left(Y_{0}\right)$ and $f(Y)$ are parallel in R^{n+1}. Since f maps geodesics in $M_{0}(x)$ upon straight lines in $R^{n-k}(x)$, we see that $f(y, x)=\exp _{f_{1}(x)} s f(Y)$ and this is equal to $\left(f_{0}(y), f_{1}(x)\right)$, since $f_{0}(y)=\exp _{f(o)} s f\left(Y_{0}\right)$. We have thus shown $f(y, x)=\left(f_{0}(y), f_{1}(x)\right)$.

With Proposition 3 the main theorem has been proved under the assumption that $k(x) \geqq 3$ everywhere.
4. Proof of the theorem. We now prove the theorem under the weaker assumption that the type number $k(x)$ is $\geqq 3$ at some point, say, $o \in M$. As in the beginning of 3 , we may assume that M is simply connected.

Let $W=\{x ; k(x) \geqq 3\}$, which is an open set. Let W_{0} be the connected
component of o in W. As before, we know that $k(x)$ is a constant on W_{0}, $\lambda(x)$ is a differentiable function, and the distributions T_{0} and T_{1} defined on W_{0} are differentiabe and involutive. All the lemmas are valid.

Let M_{0} and M_{1} be the maximal integral manifolds of T_{0} and T_{1}, respectively, through o.

Proposition 4.

(i) M_{0} is totally geodesic in M and is locally Euclidean.
(ii) On a geodesic $L(s)$ in M_{0} with arc length parameter s, we have $\lambda(s)=\frac{1}{a s+b}$.
(iii) M_{0} is complete and λ is a constant on M_{0}.
(iv) The type number $k(x)$ is, in fact, $\geqq 3$ everywhere on M.

Proof. (i) M_{0} is totally geodesic by Lemma 5, (ii). Hence the curvature tensor of M_{0} is the restriction of the curvature tensor R of M to M_{0}. We have $R(X, Y)=A X \wedge A Y=0$ for X and Y tangent to M_{0}. Thus M_{0} is locally Euclidean.
(ii) For any geodesic $L(s)$ in M_{0} with arc length parameter s, we may show that $\frac{d^{2}}{d s^{2}}\left(\frac{1}{\lambda}\right)=0$ by using the essentially same argument as for Proposition 2.
(iii) Let $L(s)$ be a geodesic in M_{0} starting from o. As a geodesic in M, it is infinitely extendible. If this entire geodesic does not lie in W_{0}, let s_{0} be such that $L(s) \in W_{0}$ (hence $L(s) \in M_{0}$) for $s<s_{0}$ but $L\left(s_{0}\right) \notin W_{0}$. We derive a contradiction by showing that the type numder at $L\left(s_{0}\right)$ is $\geqq 3$. The characteristic polynomial of A at $L(s), s<s_{0}$, is $(t-\lambda(s))^{k} t^{n-k}$. That of A at $L\left(s_{0}\right)$ is therefore the limit as $s \rightarrow s_{0}$, namely, $\left(t-\lambda\left(s_{0}\right)\right)^{k} t^{n-k}$. But $\lambda\left(s_{0}\right)=\lim _{s \rightarrow s_{0}} \lambda(s)=\lim _{s \rightarrow s_{0}} \frac{1}{a s+b}$ cannot be 0 . This shows that the type number of A at $L\left(s_{0}\right)$ is $k \geqq 3$. It follows that $L\left(s_{0}\right) \in W_{0}$ and hence $L\left(s_{0}\right) \in M_{0}$. Thus M_{0} is complete. We also see that the constant a has to be 0 (as in the proof of Proposition 2), namely, λ is a constant on M_{0}.
(iv) Since λ is constant on any maximal integral manifold of T_{0} (defined on W_{0}), we have $Y \lambda=0$ for $Y \in T_{0}$. By Lemma 3, we have $X \lambda=0$ for $X \in T_{1}$. Thus we see that λ is a constant function on W_{0}. We now show that W_{0} is actually equal to M. Suppose $W_{0} \neq M$ and let x be a point of $\bar{W}_{0}-W_{0}$. By the continuity argument for the characteristic polynomial of A, we see that the type number at x is again $k \geqq 3$. Thus W_{0} is open and closed so that $W_{0}=M$, completing the proof of Proposition 4.

Proposition 4 shows that the assumption that the type number is $\geqq 3$ at one point actually implies that it is $\geqq 3$ everywhere on M. Thus our main theorem has been proved.

The Corollary follows easily from the fact that for an n-dimensional compact Riemannian manifold M isometrically immersed in R^{n+1} there is a point $x \in M$ where the type number is n (for example, a point $x \in M$ where the distance from an arbitrarily fixed point in R^{n+1} attains a maximum).
5. Appendix. Let M be an n-dimensional, connected, locally Euclidean and complete Riemannian manifold and let $f: M \rightarrow R^{n+1}$ be an isometric immersion. The result of Hartman-Nirenberg [2] says that $f(M)$ is of the form $\gamma \times R^{n-1}$, where R^{n-1} is a Euclidean subspace of R^{n+1} and γ is a curve : $-\infty<s<\infty \rightarrow \gamma(s)$ in a plane R^{2} perpendicular to R^{n-1}. We indicate a proof of this result.

First assume that M is moreover simply connected (so that M is isometric to a Euclidean space R^{n}). Since its curvature tensor is identically zero, the eigenvalues of A are 0 except possibly one of them, say, λ. If λ is also identically 0 , then obviously $f(M)$ is a hyperplane in R^{n+1} and f is an isometry of M onto the hyperplane.

Assume that λ is not identically zero. Let W be the set of points where λ is not 0 and let $W=\bigcup_{\alpha} W_{\alpha}$ be the decomposition of W into the connected components. On each W_{α} we may define two distributions $T_{0}=\{X ; A X=0\}$ and $T_{1}=\{X ; A X=\lambda X\}$, for which all the lemmas are valid except Lemma 3 (for Lemma 3 , $\operatorname{dim} T_{1} \geqq 2$ is needed, whereas here $\operatorname{dim} T_{1}=1$). For each point $x \in W_{\alpha}$, we may show, as in Proposition 4, that the maximal integral manifold $M_{0}(x)$ of T_{0} through x is totally geodesic in M and is complete, that λ is a constant on $M_{0}(x)$, and that f induces an isometry of $M_{0}(x)$ onto an ($n-1$)-dimensional subspace R^{n-1} of R^{n+1}. M being isometric with R^{n}, we may identify $M_{0}(x)$ with a hyperplane, say $H(x)$, of $R^{n}=M$. The hyperplanes $H(x)$ are parallel for all points x in one component W_{α}, because if $H(x)$ and $H(y)$ are distinct, they have no common point as the distinct maximal integral manifolds of T_{1}. We also see that the maximal integral manifold $M_{1}(x)$ of T_{1} through each point x is a geodesic in W_{α}, hence part of a straight line in $M=R^{n}$.

We now choose an arbitrary point $o \in W$ and extend the geodesic $M_{1}(o)$ as a straight line, say, L of $M=R^{n}$. We have the following situations:

1) For each point x of W_{α}, we have assigned a hyperplane $H(x) \subset W_{\alpha}$ and λ is constant on $H(x)$.
2) All the hyperplanes $H(x), x \in W$, are parallel. In fact, if $x, y \in W_{\alpha}$, then $H(x)$ and $H(y)$ are parallel as we already know. Suppose $x \in W_{\alpha}$,
$y \in W_{\beta}(\alpha \neq \beta)$. If there is a point $z \in H(x) \cap H(y)$, then, since λ is a constant on $H(x), z \in W_{\alpha}$ and, similarly, $z \in W_{\beta}$, which is a contradiction. Thus $H(x)$ and $H(y)$ are disjoint, that is, parallel.
3) The straight line L is perpendicular to $H(x)$ at every point $x \in L \cap W$. Indeed, if $\lambda(x) \neq 0$, then x belongs to W_{α} for some α and the hyperplane $H(x)$, which is the maximal integral manifold of T_{0} through x, is parallel to $H(o)$. Since L is perpendicular to $H(o)$, we see that L is perpendicular to $H(x)$.
4) For each x on $L-W$, we define $H(x)$ to be the hyperplane through x which is parallel to $H(o)$. Then $\lambda(y)=0$ for every $y \in H(x)$. Indeed, suppose there is a point $y \in H(x)$ with $\lambda(y) \neq 0$. Then $H(y)$, being parallel to $H(o)$, must coincide with $H(x)$. Since λ is constant on $H(y)$, we must have $\lambda(x) \neq 0$, which is a contradiction.

We now show how f maps all $H(x)$ into R^{n+1}. Let Y_{t} be a vector field along $L=L_{t}$ which is parallel to $Y \in T_{0}(o)$. We have locally

$$
D_{f\left(\vec{L}_{t}\right)} f\left(Y_{t}\right)=f\left(\nabla{\overrightarrow{I_{t}}} Y_{t}\right)+h\left(\overrightarrow{L_{t}}, Y_{t}\right) \xi=h\left(\overrightarrow{L_{t}}, Y_{t}\right)
$$

since $\nabla{\overrightarrow{\mathcal{L}_{t}}} Y_{t}=0$. If $\lambda\left(L_{t}\right) \neq 0$, then, in a neighborhood, Y_{t} belongs to T_{0} and \vec{L}_{t} belongs to T_{1}. Thus $h\left(\vec{L}_{t}, Y_{t}\right)=0$. If $\lambda\left(L_{t}\right)=0$, this means that h is identically 0 at the point L_{t}. Hence $h\left(\vec{L}_{t}, Y_{t}\right)=0$. In either case, that is, for each point of L, we have $D_{f\left(\overrightarrow{L_{t}}\right)} f\left(Y_{t}\right)=0$. This means that $f\left(Y_{t}\right)$ is parallel in R^{n+1}. It follows that $f(H(x)), x \in L$, are all parallel to the subspace $R^{n-1}=f(H(o))$.

Since L is perpendicular to all $H(x)$ and since f is isometric, we see that $\gamma=f(L)$ is a curve on a plane perpendicular to R^{n-1}. From the fact that $f\left(Y_{t}\right)$ is parallel whenever Y_{t} is parailel along L, it follows, as in Proposition 3, (iii), that

$$
f\left(L_{t}, Y\right)=\left(f_{1}\left(L_{t}\right), f_{0}(y)\right)
$$

for all $\left(L_{t}, y\right) \in L \times H(o)=M$, where f_{1} and f_{0} are the restrictions of f to L and $H(o)$, respectively.

We have thus proved that $M=R^{n}$, which is the direct product of the straight line L and the hyperplane $H(o)$, is mapped onto the cylinder $\gamma \times R^{n-1}$.

In the case where M is not simply connected, let \widetilde{M} be the universal covering of M with projection $\pi: \widetilde{M} \rightarrow M$. From the result for \widetilde{M} and its immersion $\widetilde{f}=f \circ \pi$, we see that $\widetilde{f}(\widetilde{M})=f(M)$ is a cylinder in the sense above.

We note that the result of Hartman-Nirenberg was earlier proved under
weaker differentiability assumptions by A. Pogorelov [8]. Also for the case of a 2-dimensional surface, see Massey [5]. As a matter of fact, our proof of the main theorem is an adaptation of Massey's arguments for a higherdimensional case. For extensions of the cylinder theorem, see O'Neill [7] and Hartman [1].

Bibliography

[1] P. Hartman, On isometric immersions in Euclidean space of manifolds with nonnegative sectional curvature, Trans. Amer. Math. Soc., 115(1965), 94-109.
[2] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. Journ. Math., 81 (1959), 901-920.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
[4] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
[5] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. Journ., 14(1962), 73-79.
[6] K. Nomizu, On infinitesimal holonomy and isotropy groups, Nagoya Math. Journ., 11(1957), 111-114.
[7] B. O'NEILL, Isometric immersions which preserve curvatture operators, Proc. Amer. Math. Soc., 13(1962), 759-763.
[8] A. Pogorelov, An extension of Gauss' theorem on the spherical representation of surfaces of bounded exterior curvature, Doklady Akademii Nauk, 111(1956), 945-947.
[9] J. Simons, On transitivity of holonomy systems, Ann. of Math., 76(1962), 213-234.

Department of Mathematics
Brown University
Providence, Rhode Island, U.S.A.

[^0]: * This paper has been written with partial support by NSF Grant GP 4251.

