Tôhoku Math. Journ. 20(1968), 38-45.

ON THE CHARACTER RING OF REPRESENTATIONS OF A COMPACT GROUP

KAZUO SUZUKI

(Received August 20, 1967)

In Pontrjagin's theory of duality for compact abelian groups, the following theorem is well known:

Let G be a compact abelian group, G^* the dual group. Then the topological dimension of G, in the sense of Lebesgue, is equal to the rank of discrete abelian group G^* .

In his paper [3], S. Takahashi has formulated the corresponding theorem in non-commutative case as follows.

THEOREM A. Let G be an arbitrary compact group, G^{*} the aggregate of continuous finite dimensional representations of G, C[G^{*}] the algebra over the complex numbers C generated by the coefficients of representations in G^{*} , i.e., the representative ring of G in the sense of C. Chevalley in [1]. Then the topological dimension of G, in the sense of Lebesgue, is equal to the transcendental degree of C[G^{*}] over C.

Another form of corresponding theorem is the following:

THEOREM B. Let \overline{G} be the space consisting of conjugate classes of a compact group G, G^{*} the characters of representations in G[^], C[G^{*}] the algebra over C generated by G^{*}. Then the topological dimension of \overline{G} is equal to the transcendental degree of C[G^{*}] over C.

Theorem A was affirmatively solved, but Theorem B was merely justified for connected compact Lie groups, reducing it to the following fact; the transcendental degree of $C[G^*]$ over C is equal to the rank of G, i.e., the topological dimension of a maximal abelian subgroup of G. Prof. T. Tannaka has called my attention to justify Theorem B for arbitrary compact groups. Unfortunately we have not succeeded to prove it by now, accordingly we wish to content ourselves with proving the following fact:

THEOREM C. Let G be a compact group with the finite topological

dimension, r the maximum number of topological dimension of abelian subgroups in G. Then the transcendental degree of $C[G^*]$ over C is equal to r.

The purpose of the present paper is to give the proof for Theorem C.

1. Notations. We shall use following notations for arbitrary compact group.

 $\dim(G)$: the topological dimension of G in the sense of Lebesgue.

r(G): the maximum number of topological dimension of abelian subgroups of G. If G is a connected Lie group, r(G) is equal to the topological dimension of space \overline{G} consisting of conjugate classes of G.

 $C[G^*|S]$ ($C[G^*|S]$) for any subset S of G: the algebra over C consisting of restriction of elements of character ring $C[G^*]$ ($C[G^*]$) to S.

 $r(G^*) = \langle C[G^*] : C \rangle$: the transcendental degree of $C[G^*]$ over C.

 $r(G^*|S)$ for any subset S of G: the transcendental degree of $C[G^*|S]$ over C.

2. Reduction of the theorem to a connected case.

LEMMA 1. Let G be a compact topological group, G_0 the connected component of unit element of G. Then it holds $r(G) = r(G_0)$.

PROOF. Let T be any abelian subgroup of G, T_0 the connected component of unit element of T. Since T, T_0 are compact subgroups, they are projective limit of compact Lie groups, i.e., $T = \lim_{\alpha \to \infty} T_{\alpha,0}$ is a connected where T_{α} are compact Lie groups, and for each α , $T_{\alpha,0}$ is a connected component of unit element of T_{α} . Since dim T (dim T_0) is the maximum number of dim T_{α} (dim $T_{\alpha,0}$), and dim $T_{\alpha} = \dim_{\alpha,0}$, it holds dim $T = \dim_{\alpha} T_0$. Another one, T_0 is contained in G_0 , therefore, $r(G) = r(G_0)$.

In order to reduce our theorem to a connected case we must prove $r(G^*) = r(G^*_0)$ and we shall begin with proving this equality for compact Lie groups.

LEMMA 2. Let G be a compact Lie group, G_0 connected component of unit element of G. Then it holds $r(G_0^*) = r(G^*|G_0)$

Clearly it holds $C[G_0^*] \supseteq C[G^*|G_0]$. Let \mathcal{X} be an irreducible character of a continuous finite dimensional representation of G_0 , D a matrix representation corresponding to \mathcal{X} . Let

$$G = a_1 G_0 + a_2 G_0 + \cdots + a_n G_0$$

be the coset decomposition of G with respect to G_0 . We now extend the domain of definition of D as follows:

$$\dot{D}(y) = \begin{cases} D(y) & y \in G \\ 0 & y \notin G \end{cases}$$

Then D^{a} affords a matrix representation D^{a} given by

$$D^{G}(x) = (D(a_{j}^{-1}xa_{i}))_{1 \leq i, j \leq n}, x \in G.$$

Then the induced character X^{a} obtained from this satisfies

$$\mathcal{X}^{\scriptscriptstyle G}(x) = \sum_{i=1}^n \dot{\mathcal{X}}(a_i^{-1}xa_i), \quad x \in G.$$

Let I(G) be the set of inner automorphisms of G, and for $\sigma \in I(G)$, $f \in C[G_0^*]$, we define f^{σ} by

$$f^{\sigma}(x) = f(a^{-1}xa)$$
 for all $x \in G_0$

where σ means a mapping $x \to a^{-1}xa$. Then $I(G_0)$ is a normal subgroup of I(G), and $I(G)/I(G_0)$ is a finite group. Since $f^{\sigma} = f$ for any $\sigma \in I(G_0)$, it is natural to think that $\overline{\sigma}$ is an element of $I(G)/I(G_0)$ operating on $C[G_0^*]$. If a character \mathcal{X} an element of $C[G_0^*]$ is invariant under the operation of any $\overline{\sigma} \in I(G)/I(G_0)$, it holds

$$\chi^{_G}(x) = \sum_{i=1}^n \chi(a_i^{-1}xa_i) = n\chi(x)$$
 for all $x \in G_0$,

that is, if we set $\chi^{g}|_{G_0}$ the restriction of χ^{g} to G_0 , then it holds the following relation:

$$\frac{1}{n}\chi^{G}|G_{0}=\chi, \text{ i.e., } \chi \in C[G^{*}|G_{0}].$$

Let \mathcal{X} be any character element of $C[G_0^*]$, and we consider the following equation:

$$(X-\boldsymbol{\chi}^{\bar{\sigma}})(X-\boldsymbol{\chi}^{\bar{r}})\cdots(X-\boldsymbol{\chi}^{\bar{\rho}})=0$$

where $I(G)/I(G_0) = \{\bar{\sigma}, \bar{\tau}, \dots, \bar{\rho}\}$, and X unknown element. Then \mathcal{X} is a root of this equation, and each coefficients of X^i , $i=1, 2, \dots, n$ are characters belonging to $C[G_0^*]$ and are invariant under the operation of $\bar{\sigma} \in I(G)/I(G_0)$, therefore their each coefficient belongs to $C[G^*|G_0]$, that is, \mathcal{X} is algebraic over $C[G^*|G_0]$. In S. Takahashi [3] Lemma 2, it is proved that $C[G_0^*]$ has no zero-divisor, then $C[G_0^*]$ is algebraic over $C[G^*|G_0]$, i.e., $r(G_0^*) = r(G^*|G_0)$. q. e. d.

LEMMA 3. Let G be a compact Lie group, G_0 connected component of unit element of G, and let the coset decomposition of G with respect to G_0 be

$$G = G_1 + G_2 + \cdots + G_n$$

If it holds $r(G^*|G_i) \leq m$, $i = 1, 2, \dots, n$, then we have $r(G^*) \leq m$.

PROOF. Let f_1, f_2, \dots, f_{m+1} be arbitrary elements of $C[G^*]$. Since $f_1(x), f_2(x), \dots, f_{m+1}(x), x \in G_i$ are algebraically dependent, there exists a non-trivial polynomial $F_i(X_1, X_2, \dots, X_{m+1})$ in the polynomial ring $C[X_1, X_2, \dots, X_{m+1}]$ over C generated by indeterminates X_1, X_2, \dots, X_{m+1} such that:

$$F_i(f_1(x), f_2(x), \cdots, f_{m+1}(x)) = 0, \quad x \in G_i.$$

Therefore

$$\prod_{i=1}^{n} F_{i}(f_{1}(x), f_{2}(x), \cdots, f_{m+1}(x)) = 0, \quad x \in G.$$

This means that f_1, f_2, \dots, f_{m+1} are algebraically dependent, i.e., $r(G^*) \leq m$. q. e. d.

LEMMA 4. Let G, G_i $(i = 1, 2, \dots, n)$ be as in Lemma 3. If U is any open subset of G_i , then $r(G^*|U) = r(G^*|G_i)$.

PROOF. Clearly it holds $r(G^*|U) \leq r(G^*|G_i)$. Let $r = r(G^*|U)$, and f_1 , f_2, \dots, f_{r+1} any elements in $C[G^*|G_i]$. Then there exists a non-trivial polynomial $F(X_1, X_2, \dots, X_{r+1})$ in $C[X_1, X_2, \dots, X_{r+1}]$ such that:

$$F(f_1(x), f_2(x), \cdots, f_{r+1}(x)) = 0 \quad x \in U.$$

This polynomial F is an analytic function on G_i . Since G_i is connected, this equality holds everywhere on G_i , i.e., $r(G^*|U) \ge r(G^*|G_i)$. q. e. d.

K. SUZUKI

LEMMA 5. Let G, G_i $i = 1, 2, \dots, n$ be as in Lemma 3, $C[G^*]$ the representative ring, $C[G^*|G_i]$ the restriction of $C[G^*]$ to G_i . Then $C[G^*|G_i]$ has no zero divisor.

PROOF. Assume $f_1(x) f_2(x) = 0$ everywhere on G_i , where f_1, f_2 are two functions belonging to $C[G^{\wedge}|G_i]$. We must then show that at least one of f_1, f_2 is zero everywhere on G_i . Now as f_1, f_2 are analytic functions on G_i , by property of analytic functions at least one of f_1, f_2 is zero in a sufficiently small open set of G_i . Since G_i is connected, this holds everywhere on G_i .

LEMMA 6. Let G, G_0 be as in Lemma 2, T a maximal abelian subgroup of G_0 . Then it holds $r(G_0^*) = r(T^*)$.

PROOF. See S. Takahashi [3] Theorem B.

LEMMA 7. Let G, G₀ be as in Lemma 2. Then it holds $r(G^*) = r(G_0^*)$.

PROOF. We have clearly $r(G^*) \ge r(G^*|G_0)$, accordingly it holds by Lemma 2,

$$r(G^*) \ge r(G_0^*)$$
.

Let the coset decomposition of G with respect to G_0 be

$$G = G_1 + G_2 + \cdots + G_n,$$

and T be a maximal abelian subgroup of G_0 . In order to deduce $r(G^*) \leq r(G_0^*)$, it is sufficient to prove $r(G^*|G_i) \leq r(T^*)$ for $i = 1, 2, \dots, n$, by Lemmas 3 and 6.

We put now $r(T^*) = r$, and take out arbitrary r+1 elements of character $\chi_1, \chi_2, \dots, \chi_{r+1} \in C[G^*|G_i]$. Let each corresponding matrix representations be D_1, D_2, \dots, D_{r+1} , that is, $D_l(a_{\alpha\beta}^l(x)) \ l=1, 2, \dots, r+1, \ a_{\alpha\beta}^l(x) \in C[G^*|G_i]$ for $x \in G_i$, and let the characteristic equation of D_l be

$$\Phi_{l}(X) = X^{n_{l}} + F_{1}^{l} X^{n_{l}-1} + \cdots + F_{n_{l}}^{l} = 0,$$

where $F_{\gamma}^{\iota} \in C[G^{\wedge} | G_i]$. If there is a reducible characteristic equation $\Phi_{\iota} = 0$ over $C[G^{\wedge} | G_i]$, we decompose this equation into irreducible equations over $C[G^{\wedge} | G_i]$, $\Phi_i^{\iota} = 0$, $\Phi_i^2 = 0$, \cdots , $\Phi_i^{\mathfrak{f}\iota} = 0$. Since $C[G^{\wedge} | G_i]$ is the integral domain by Lemma 5, the discriminants $\mathcal{D}_{\iota}^{\mathfrak{f}}$ of $\Phi_{\iota}^{\mathfrak{s}} = 0$ are all non-zero and belong to $C[G^{\wedge} | G_i]$, that is:

RING OF REPESENTATIVE OF A COMPACT GROUP

$$\mathcal{D}_1^1\cdots\mathcal{D}_1^{s_1}\mathcal{D}_2^1\cdots\mathcal{D}_2^{s_2}\cdots\mathcal{D}_{r+1}^1\cdots\mathcal{D}_{r+1}^{s_{r+1}}\neq 0$$
.

Then there exists an element g in G_i such that $\mathcal{D}_l^{\delta}(g) \neq 0$ for $l = 1, 2, \cdots$, $r+1, \delta = 1, 2, \cdots, s_l$. Therefore, since elements of $C[G^{\wedge}|G_i]$ are analytic on G_i , there exists a neighborhood U of g such that $U \subset G_i$, and roots $\lambda_l^j(x)$ $(j = 1, 2, \cdots, n_l)$ of $\Phi_l(x) = 0$ $(l = 1, 2, \cdots, r+1)$ for $x \in U$ are analytic on U. Let $C[\lambda]$ be the algebra generated by $\lambda_l^j(x) \ x \in U$ over C. In the proof of Lemma 5, it is clear that $C[\lambda]$ is the integral domain and contain $\mathcal{X}_1(x)$, $\mathcal{X}_2(x), \cdots, \mathcal{X}_{r+1}(x), \ x \in U$. Now we may assume that the representation of the maximal abelian subgroup T by D_l is diagonal:

$$D_{l}(t) = egin{pmatrix} h_{l}^{l}(t) & 0 \ h_{l}^{2}(t) & . \ . & . \ 0 & . & . \ 0 & . & . \ 0 & . & . \ \end{pmatrix} \quad t \in T \, .$$

Since for each $x \in U$, $\{\lambda_l^i(x)\}^n$ is an eigen-value of a matrix $D_l(x^n)$, we set $\lambda_l^j(x^n) = \{\lambda_l^j(x)\}^n$. Since the order of G/G_0 is *n*, we have $x^n \in G_0$ for $x \in U$, and there exists an element g in G_0 with $g^{-1}x^n y = t \in T$. Therefore, for any λ_l^j , $x \in U$, there exist $t \in T$ and h_l^k with

$$\lambda_l^j(x^n) = h_l^k(t) \,.$$

Now we shall show that the transcendental degree of $C[\lambda]$ over C is at most r. By taking arbitrary r+1 elements of eigen-values λ_{λ}^{i} from $C[\lambda]$, we can choose without loss of generality

$$\lambda_1^1, \lambda_1^2, \cdots, \lambda_1^{s_1}, \lambda_2^1, \cdots, \lambda_2^{s_2}, \cdots, \lambda_m^1, \cdots, \lambda_m^{s_m}, \cdots$$

where $s_1 + s_2 + \cdots + s_m = r+1$. Let Ψ_l , $l=1, 2, \cdots, m$ be the aggregates of combinations $(i_1, i_2, \cdots, i_{s_l})$ to choose s_l elements from $1, 2, \cdots, n_l$. Since the transcendental degree of $C[T^*]$ over C is r, there exist non-trivial polynomials $F_{\alpha_1,\alpha_2,\ldots,\alpha_m}(X_1, X_2, \cdots, X_{r+1})$ in the polynomial ring $C[X_1, X_2, \cdots, X_{r+1}]$, generated by indeterminates $X_1, X_2, \cdots, X_{r+1}$ over C such that:

$$F_{\alpha_{1},\alpha_{2},\cdots,\alpha_{m}}(h_{1}^{i_{1}}(t),h_{1}^{i_{2}}(t),\cdots,h_{1}^{i_{q_{1}}}(t),h_{2}^{k_{1}}(t),\cdots,h_{2}^{k_{q_{1}}}(t),\cdots,h_{m}^{t_{1}}(t),\cdots,h_{m}^{t_{q_{m}}}(t))=0$$

there by $t \in T$, $\alpha_l \in \Psi_l$, $\alpha_1 = (i_1, \dots, i_{s_1})$, $\alpha_2 = (k_1, \dots, k_{s_2})$, \dots , $\alpha_m = (t_1, \dots, t_{s_m})$. Let Θ_l be the aggregates of permutations $\begin{pmatrix} 1, 2, \dots, s_l \\ j_1, j_2, \dots, j_{s_l} \end{pmatrix}$ of s_l elements and we set K. SUZUKI

$$F_{\alpha_1,\alpha_2,\cdots,\alpha_m}^{\beta_1,\beta_2,\cdots,\beta_m}(\lambda_1^{i_1},\cdots,\lambda_1^{s_1},\lambda_2^{i_2},\cdots,\lambda_2^{s_2},\cdots,\lambda_m^{i_m},\cdots,\lambda_m^{s_m})$$

= $F_{\alpha_1,\alpha_2,\cdots,\alpha_m}(\lambda_1^{j_1},\cdots,\lambda_1^{j_{s_1}},\lambda_2^{k_1},\cdots,\lambda_2^{k_{s_1}},\cdots,\lambda_m^{i_{s_m}},\cdots,\lambda_m^{i_{s_m}})$

where

$$\alpha_{l} \in \Theta_{l}, \quad \beta_{1} = \begin{pmatrix} 1, 2, \cdots, s_{1} \\ j_{1}, j_{2}, \cdots, j_{s_{1}} \end{pmatrix}, \quad \beta_{2} = \begin{pmatrix} 1, 2, \cdots, s_{2} \\ k_{1}, k_{2}, \cdots, k_{s_{t}} \end{pmatrix}, \quad \cdots, \quad \beta_{m} = \begin{pmatrix} 1, 2, \cdots, s_{m} \\ t_{1}, t_{2}, \cdots, t_{s_{m}} \end{pmatrix}.$$

As $g^{-1}x^n g = t \in T$, we have

$$\prod_{\alpha_l \in \Psi_l, \beta_{l'} \in \Theta_{l'}} F_{\alpha_1, \alpha_2, \cdots, \alpha_m}^{\beta_1, \beta_2, \cdots, \beta_m}(\lambda_1^1(x^n), \cdots, \lambda_1^{s_1}(x^n), \lambda_2^1(x^n), \cdots, \lambda_2^{s_2}(x^n), \cdots, \lambda_m^{s_m}(x^n), \cdots, \lambda_m^{s_m}(x^n)) = 0 \quad x \in U.$$

Since it holds $\lambda_i^j(x^n) = (\lambda_i^j(x))^n$ for $x \in U$, $\lambda_1^1, \lambda_1^2, \dots, \lambda_1^{s_1}, \lambda_2^1, \dots, \lambda_2^{s_1}, \dots, \lambda_m^{s_m}$, $\dots, \lambda_m^{s_m}$ are algebraically dependent, i.e., the transcendental degree of $C[\lambda]$ over C is at most r. Hence $\chi_1(x), \chi_2(x), \dots, \chi_{r+1}(x), x \in U$ are algebraically dependent, Since $C[G^*|U]$ is the integral domain, we have $r(G^*|U) \leq r$. By Lemmas 3 and 4 we then have $r(G^*) \leq r$. q.e.d.

Now we shall refer to the reduction theory under compact topological groups.

LEMMA 8. Let G be a compact topological group, G_0 the connected component of unit element of G. Then we have $r(G^*) = r(G_0^*)$.

PROOF. We set $n=r(G^*)$ and $n_0=r(G^*_0)$, and let $f_1, f_2, \dots, f_{n_0+1}$ be any n_0+1 elements in $C[G^*]$. Then there is a compact Lie group G' such that G is homomorphic to G' and $f_1, f_2, \dots, f_{n_0+1}$ are defined on G', i.e., they belong to $C[G^{**}]$. Since G_0 is mapped onto a connected component G'_0 of unit element of G', $f_1, f_2, \dots, f_{n_0+1}$ are algebraically dependent, by Lemma 7, hence $n \leq n_0$. On the other hand, let f_1, f_2, \dots, f_{n+1} be n+1 elements in $C[G^*_0]$. Since by Van Kampen's theorem, any irreducible representation of G_0 is contained in the restriction of a representation of G, there is a compact Lie group G' such that, if G'_0 denotes the connected component of unit of G', then f_1, f_2, \dots, f_{n+1} are defined on G'_0 , that is to say $f_i \in C$ $[G'_0^*], i = 1, 2, \dots, n+1$. Since $C[G^*] \subset C[G^*], f_1, f_2, \dots, f_{n+1}$ are algebraically dependent by Lemma 7, so that, we have $n \geq n_0$.

3. On compact connected topological groups. Let G be a compact connected finite dimensional topological group. Then in Pontrjagin [4] example 107, it is shown that G is isomorphic to $(L \times H)/D$, where L is a compact simply connected semi-simple Lie group, and H a compact connected

44

abelian group, dim $H < \infty$, and D is a finite normal subgroup contained in the center of the direct product $L \times H$, $H \cap D = \{e\}$.

LEMMA 9. Let G, L, H be as above. Then $r(G^*) = r(L^*) + r(H^*)$.

PROOF. See S. Takahashi [3] Lemma 5.

LEMMA 10. Let G, L, H, D be as in Lemma 9, T_{G} a maximal abelian subgroup of G, T_{L} a maximal abelian subgroup of L. Then it holds dim $T_{G} = \dim T_{L} + \dim H$.

PROOF. By applying Theorem A, we have easily that dim T_L + dim $H \leq \dim T_G$. Let f be the canonical mapping of $L \times H$ onto G, and we set f(L)=L', f(H)=H'. Then it holds $G=L' \cdot H'$ where $L' \cap H'$ is a finite normal subgroup of G, and H' is contained in the center of G. Then it holds

$$G/H' = L' \cdot H'/H' \cong L'/L' \cap H'$$

where $L'/L' \cap H'$ is a connected semi-simple Lie group. Let A be a maximal abelian subgroup of $L'/L' \cap H'$, then it holds clearly dim $T_L = \dim A$. T_G/H' is isomorphic to a subgroup of A, so that, T_G/H' is a compact Lie group. Then by Pontrjagin [4] Theorem 69, we have dim $(T_G/H') = \dim T_G - \dim H'$, that is to say dim $T_G \leq \dim H' + \dim T_L$. Since dim $H = \dim H'$, we have dim $T_G = \dim H + \dim T_L$.

In S. Takahashi [3], it is shown that dim $T_L = r(L^*)$, dim $H = r(H^*)$. Therefore by Lemmas 9 and 10, the following theorem is established:

THEOREM. Let G be a compact connected finite dimensional topological group, T a maximal abelian subgroup. Then it holds $r(G^*) = \dim T$.

Theorem C is now completely proved by the above theorem and Lemmas 1 and 8.

REFERENCES

- [1] C. CHEVALLEY, Theory of Lie groups I, (1946).
- [2] E. B. DYNKIN AND A. L. OIŠCIK, Compact global Lie groups, Amer. Math. Soc. Transl., 21, 119-192.
- [3] S. TAKAHASHI, Dimension of compact groups and their representations, Tôhoku Math. Journ., 5(1953), 178-184.
- [4] L. S. PONTRJAGIN, Topological groups, Princeton, (1954).
- [5] A. WEIL, L'intégration dans les groupes topologiques et ses applications, (1940).

The Third Women High School Sendai, Japan