COMPACT ORIENTABLE SUBMANIFOLD OF CODIMENSION 2 IN AN ODD DIMENSIONAL SPHERE

Masafumi Okumura

(Received May 25, 1967)

Introduction. It has been proved by H. Liebmann [3] that the only ovaloid with constant mean curvature in Euclidean space E^{3} is a sphere. The analogous theorem for a convex m-dimensional hypersurface in E^{m+1} has been proved by W. Süss [6]. Recently Y. Katsurada [1], [2] and K. Yano [9] have generalized the above theorem to an m-dimensional hypersurface in an Einstein space admitting one-parameter groups of conformal transformations or of homothetic transformations.

Thus we may expect an analogous theorem for a submanifold of codimension greater than 1 in a certain Riemannian manifold. On the other hand the present author studied, in the previous paper [4], a certain hypersurface in an odd dimensional sphere $S^{2 n+1}$ and found that the natural contact structure of $S^{2 n+1}$ plays an important role in the study of the hypersurface of $S^{2 n+1}$.

This fact suggests that, using the natural contact structure of $S^{2 n+1}$, we can solve the problem similar to the Liebmann-Süss problem for a submanifold of codimension 2 in an odd dimensional sphere.

The purpose of the paper is to prove the analogue of the LiebmannSüss theorem for a submanifold of codimension 2 in $S^{2 n+1}$. For this purpose, we give in §1, some properties of the contact structure of $S^{2 n+1}$ and in §2 some formulas in the theory of submanifold of codimension 2 . In §3, we study a submanifold of codimension 2 in an odd dimensional sphere and introduce some quantities for later use.

In §4 some integral formulas for a submanifold of codimension 2 in an odd dimensional sphere are derived and under certain conditions the theorem mentioned above is proved. However an umbilical submanifold of codimension 2 in $(2 n+1)$-dimensional sphere does not necessarily satisfy the conditions of our theorem. So in $\S 5$ we show an example of umbilical submanifold which satisfies our conditions.

1. Contact Riemannian structure on an odd dimensional sphere. A $(2 n+1)$-dimensional differentiable manifold M is said to have a contact
structure and to be a contact manifold if there exists on M a 1 -form $\eta=\eta_{\lambda} d x^{\lambda}$ such that

$$
\begin{equation*}
\eta \wedge(d \eta)^{n} \neq 0 \tag{1.1}
\end{equation*}
$$

everywhere on M, where \wedge denotes the exterior multiplication and $d \eta$ the exterior derivative of $\eta . \quad \eta$ is called a contact form on M.

Since (1.1) means that the 2 -form $d \eta$ is of rank $2 n$ everywhere on M, we can find a unique vector field ξ^{λ} on M satisfying

$$
\begin{equation*}
\eta_{\lambda} \xi^{\lambda}=1, \quad(d \eta)_{\mu \lambda} \xi^{\lambda}=0 \tag{1.2}
\end{equation*}
$$

Let $S^{2 n+1}$ be an odd dimensional sphere which is represented by the equation

$$
\begin{equation*}
\sum_{A=1}^{2 n+2}\left(X^{A}\right)^{2}=1, \tag{1.3}
\end{equation*}
$$

in a ($2 n+2$)-dimensional Euclidean space $E^{2 n+2}$ with rectangular coordinates $X^{A}(A=1,2, \cdots, 2 n+2)$. We put

$$
\begin{equation*}
\eta=\frac{1}{2} \sum_{\alpha=1}^{n+1}\left(X^{n+1+\alpha} d X^{\alpha}-X^{\alpha} d X^{n+1+\alpha}\right) \tag{1.4}
\end{equation*}
$$

then the 1 -form η defines a contact form on $S^{2 n+1}$ and consequently we can find a vector field ξ^{λ} on $S^{2 n+1}$ satisfying (1.2).

The Riemannian metric tensor $G_{\lambda \kappa}$ on $S^{2 n+1}$ is naturally induced from the Euclidean space $E^{2 n+2}$ in such a way that

$$
\begin{equation*}
G_{\lambda \kappa}=\delta_{\lambda \kappa}+\frac{X^{\lambda} X^{\kappa}}{\left(X^{2 n+2}\right)^{2}}, \quad G^{\lambda \kappa}=\delta^{\lambda \kappa}-X^{\lambda} X^{\kappa} \tag{1.5}
\end{equation*}
$$

With respect to this Riemannian metric, the Riemannian curvature tensor $R_{\nu \mu \lambda}{ }^{\kappa}$ of $S^{2 n+1}$ satisfies

$$
\begin{equation*}
R_{\nu \mu \lambda}{ }^{\kappa}=G_{\mu \lambda} \delta_{\nu}^{\kappa}-G_{\nu \lambda} \delta_{\mu}^{\kappa} . \tag{1.6}
\end{equation*}
$$

We define a linear transformation $F_{\lambda}{ }^{\kappa}: T\left(S^{2 n+1}\right) \rightarrow T\left(S^{2 n+1}\right)$ by

$$
\begin{equation*}
F_{\lambda}^{\kappa}=\frac{1}{2} G^{\mu \kappa}(d \eta)_{\lambda \mu}=\frac{1}{2} G^{\mu \kappa}\left(\partial_{\lambda} \eta_{\mu}-\partial_{\mu} \eta_{\lambda}\right) . \tag{1.7}
\end{equation*}
$$

Then the set $\left(F_{\lambda^{k}}{ }^{\kappa} \xi^{\kappa}, \eta_{\lambda}, G_{\lambda k}\right)$ satisfies ${ }^{1)}$

$$
\begin{equation*}
G_{\kappa \lambda} \xi^{\lambda}=\eta_{c}, \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
G_{\lambda \kappa} F_{\nu}^{\lambda} F_{\mu}{ }_{\mu}^{\kappa}=G_{\nu \mu}-\eta_{\nu} \eta_{\mu}, \tag{1.9}
\end{equation*}
$$

and consequently we have

$$
\begin{gather*}
\eta_{\kappa} F_{\lambda}^{\kappa}=0, \tag{1.10}\\
F_{\mu}^{\lambda} F_{\lambda}^{\kappa}=-\delta_{\mu}^{\kappa}+\eta_{\mu} \xi^{\kappa} . \tag{1.11}
\end{gather*}
$$

In general, the set ($F_{\lambda}^{\kappa}, \xi^{\kappa}, \eta_{\lambda}, G_{\lambda \kappa}$) satisfying (1.1), (1.2), (1.7), (1.8) and (1.9) is called a contact Riemannian (or metric) structure.

It is known ${ }^{2)}$ that if the contact Riemannian structure on $S^{2 n+1}$ is the one which is defined by (1.4), (1.5) and (1.7), the structure satisfies further

$$
\begin{equation*}
\frac{1}{2} \widetilde{\nabla}_{\mu}(d \eta)_{\lambda \kappa}=\eta_{\lambda} G_{\mu \kappa}-\eta_{\kappa} G_{\mu \lambda}, \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{\lambda} \xi^{\kappa}=F_{\lambda}{ }^{\kappa}, \tag{1.13}
\end{equation*}
$$

where $\widetilde{\nabla}$ denotes the covariant derivative with respect to the Riemannian metric $G_{\lambda \kappa}$.
2. Submanifolds of codimension 2 in a Riemannian manifold. Let \widetilde{M}^{m+2} be a Riemannian manifold of dimension $m+2$ with local coordinates $\left\{X^{\kappa}\right\}$ and $G_{\lambda k}$ be the Riemannian metric tensor of $\widetilde{M^{m+2}}$. We denote by M^{m} a differentiable submanifold of codimension 2 in \widetilde{M}^{m+2} and by $\left\{x^{i}\right\}$ the local coordinates of M^{m}. Then the immersion $\iota: M^{m} \rightarrow \widetilde{M}^{m+2}$ is locally represented by $X^{\kappa}=X^{\kappa}\left(x^{1}, x^{2}, \cdots, x^{n}\right), \kappa=1,2, \cdots, m+2$.

Assuming that manifolds M^{m} and \widetilde{M}^{m+2} are both orientable, we put $B_{i}{ }^{\kappa}=\partial_{i} X^{\kappa}\left(\partial_{i}=\partial / \partial x^{i}\right)$. Then m vectors $B_{i}{ }^{\kappa}$ span the tangent plane of M^{m} at each point of M^{m} and the Riemannian metric tensor $g_{j i}$ of M^{m} is given by

$$
\begin{equation*}
g_{j i}=G_{\lambda \kappa} B_{j}{ }^{\lambda} B_{i}{ }^{\kappa} . \tag{2.1}
\end{equation*}
$$

We assume that $B_{i}{ }^{\text {e }}(i=1,2, \cdots, m)$ give the positive direction in M^{m} and choose the mutually orthogonal unit normal vectors C^{κ} and D^{κ} to M^{m} in such a way that $B_{i}{ }^{\kappa}, C^{\kappa}, D^{\kappa}$ give the positive direction in \widetilde{M}^{m+2}.

[^0]In the sequel we always consider a coordinate neighborhood of M^{m} in which there exist such two fields of unit normal vectors to M^{m}. We denote by (B_{k}^{i}, C_{k}, D_{k}) the duàl basis of ($B_{i}{ }^{\kappa}, C^{k}, D^{\kappa}$).

The van der Wearden-Bortolotti covariant derivatives $\nabla_{j} B_{i}{ }^{c}, \nabla_{j} C^{k}$ and $\nabla_{j} D^{\kappa}$ of $B_{i}{ }^{\kappa}, C^{\kappa}$ and D^{κ} are respectively given by

$$
\begin{gather*}
\nabla_{j} B_{i}{ }^{\kappa}=\partial_{j} B_{i}{ }^{\kappa}-\left\{\begin{array}{c}
h \\
j \\
i
\end{array}\right\} B_{h}{ }^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} B_{i}{ }^{\lambda}, \tag{2.2}\\
\nabla{ }_{j} C^{\kappa}=\partial_{j} C^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} C^{\lambda} \tag{2.3}
\end{gather*}
$$

and

$$
\nabla_{j} D^{\kappa}=\partial_{j} D^{\kappa}+\left\{\begin{array}{c}
\kappa \tag{2.4}\\
\mu \lambda
\end{array}\right\} B_{j}^{\mu} D^{\lambda}
$$

Let $H_{j i}, K_{j i}$ be the second fundamental tensors of M^{m} with respect to the normals C^{k}, D^{k} and L_{i} the third fundamental tensor of M^{m}. Then we have the following Gauss and Weingarten equations :

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=H_{j i} C^{\kappa}+K_{j i} D^{\kappa} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} C^{\kappa}=-H_{j}{ }^{i} B_{i}{ }^{\kappa}+L_{j} D^{\kappa}, \quad \nabla_{j} D^{\kappa}=-K_{j}{ }^{i} B_{i}{ }^{\kappa}-L_{j} C^{\kappa} \tag{2.6}
\end{equation*}
$$

where $H_{j}{ }^{i}=g^{i n} H_{j h}$ and $K_{j}{ }^{i}=g^{i n} K_{j h}$.
The mean curvature vector field H^{k} of M^{m} in \widetilde{M}^{m+2} is defind by

$$
\begin{equation*}
H^{k}=\frac{1}{2 n}\left(H_{i}^{i} C^{\kappa}+K_{i}^{i} D^{\kappa}\right) \tag{2.7}
\end{equation*}
$$

We know that H^{k} is independent of the choice of mutually orthogonal unit normal vectors C^{k} and D^{κ} and consequently that H^{k} is a globally defined vector field over \widetilde{M}^{m+2}.

Lemma 2.1. Let M^{m} be a submanifold of a Riemannian manifold \widetilde{M}^{m+2}. In order that the covariant derivative $\nabla_{j} H^{c}$ of the mean curvature vector field is tangent to M^{m}, it is necessary and sufficient that

$$
\begin{equation*}
\nabla_{j} H_{r}^{r}=K_{r}^{r} L_{j} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} K_{r}^{r}=-H_{r}^{r} L_{j} . \tag{2.9}
\end{equation*}
$$

Proof. Differentiating (2.7) covariantly, we have

$$
\begin{aligned}
2 n \nabla_{j} H^{k}=\left(\nabla_{j} H_{i}{ }^{i}-K_{i}{ }^{i} L_{j}\right) C^{\kappa} & +\left(\nabla_{j} K_{i}{ }^{i}+H_{i}{ }^{i} L_{j}\right) D^{\kappa} \\
& -\left(H_{i}{ }^{i} H_{j}{ }^{h}+K_{i}{ }^{i} K_{j}{ }^{h}\right) B_{h}{ }^{\kappa} .
\end{aligned}
$$

This proves the assertion of Lemma 2.1.
When the second fundarnental tensors are at each point of the submanifold M^{m} of the form

$$
\begin{equation*}
H_{j i}=H g_{j i}, \quad K_{j i}=K g_{j i} \tag{2.10}
\end{equation*}
$$

we call the submanifold a totally umbilical submanifold. Moreover if the both functions H and K vanish identically, we call it a totally geodesic submanifold.

Lemma 2.2. A necessary and sufficient condition for a submanifold of codimension 2 to be umbilical is that the following equations are satisfied.

$$
\begin{equation*}
H_{j i} H^{j i}=\frac{1}{m}\left(H_{i}^{i}\right)^{2}, \quad K_{j i} K^{j i}=\frac{1}{m}\left(K_{i}^{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Proof. This follows from the identities

$$
\begin{aligned}
& \left(H_{j i}-\frac{1}{m} H_{k}^{k} g_{j i}\right)\left(H^{j i}-\frac{1}{m} H_{k}^{k} g^{j i}\right)=H_{j i} H^{j i}-\frac{1}{m}\left(H_{i}{ }^{i}\right)^{2}, \\
& \left(K_{j i}-\frac{1}{m} K_{k}^{k} g_{j i}\right)\left(K^{j i}-\frac{1}{m} K_{k}^{k} g^{j i}\right)=K_{j i} K^{j i}-\frac{1}{m}\left(K_{i}^{i}\right)^{2},
\end{aligned}
$$

and the positive definiteness of the Riemannian metric $g_{j i}$.
We now write the equations of Gauss, Mainardi-Codazzi and Ricci-Kühne:

$$
\begin{gather*}
\widetilde{R}_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{\lambda} B_{h}{ }^{k}=R_{k j i h}-\left(H_{j i} H_{k h}-H_{k i} H_{j n}\right)-\left(K_{j i} K_{k h}-K_{k i} K_{j h}\right), \tag{2.12}\\
\\
\left\{\begin{array}{l}
\widetilde{R}_{v \mu \lambda_{k}} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{\lambda} C^{k}=\nabla_{k} H_{j i}-\nabla_{j} H_{k i}-L_{k} K_{j i}+L_{j} K_{k i}, \\
\widetilde{R}_{v \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{\lambda} D^{k}=\nabla_{k} K_{j i}-\nabla_{j} K_{k i}+L_{k} H_{j i}-L_{j} H_{k i},
\end{array}\right.
\end{gather*}
$$

and

$$
\begin{equation*}
\widetilde{R}_{\nu \mu \lambda_{k}} B_{k}{ }^{v} B_{j}{ }^{\mu} C^{\curlywedge} D^{k}=\nabla_{k} L_{j}-\nabla_{j} L_{k}-K_{k i} H_{j}{ }^{i}+K_{j i} H_{k}{ }^{i} . \tag{2.14}
\end{equation*}
$$

If \widetilde{M}^{m+2} has the curvature tensor of the form (1.6), equations (2.12), (2.13) and (2.14) can be rewritten respectively as

$$
\begin{align*}
R_{k j i h}= & g_{j i} g_{k h}-g_{k i} g_{j h}+H_{j i} H_{k h}-H_{k i} H_{j h}+K_{j i} K_{k h}-K_{k i} K_{j h}, \tag{2.15}\\
& \left\{\begin{array}{l}
\nabla_{k} H_{j i}-\nabla_{j} H_{k i}=L_{k} K_{j i}-L_{j} K_{k i}, \\
\nabla_{k} K_{j i}-\nabla_{j} K_{k i}=-L_{k} H_{j i}+L_{j} H_{k i},
\end{array}\right. \tag{2.16}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla_{k} L_{j}-\nabla_{j} L_{k}=K_{k i} H_{j}^{i}-K_{j i} H_{k}{ }^{i} . \tag{2.17}
\end{equation*}
$$

LEMMA 2.3. Let M^{m} be a submanifold with non-vanishing mean curvature vector field in a Riemannian manifold of constant curvature. If the covariant derivative of the mean curvature vector field is tangent to M^{m}, we have

$$
\begin{equation*}
K_{k i} H_{j}{ }^{i}=K_{j i} H_{k}{ }^{i} . \tag{2.18}
\end{equation*}
$$

Proof. As a consequence of Lemma 2.1 we have (2.8) and (2.9). By virtue of the assumption we can suppose that $K_{i}{ }^{i} \neq 0$ without loss of generality. Differentiating (2.8) covariantly, we get

$$
\nabla_{k} \nabla_{j} H_{i}{ }^{i}=-H_{i}{ }^{i} L_{k} L_{j}+K_{i}{ }^{i} \nabla_{k} L_{j},
$$

from which

$$
K_{i}^{i}\left(\nabla_{k} L_{j}-\nabla_{j} L_{k}\right)=0 .
$$

This, together with (2.17), implies (2.18). This completes the proof.
3. Submanifolds of codimension 2 in an odd dimensional sphere. We consider a submanifold of codimension 2 in an odd dimensional sphere $S^{2 n+1}$. In the following discussions we always regard $S^{2 n+1}$ as a contact manifold with the contact Riemannian structure ($F_{\lambda}{ }^{\kappa}, \xi^{\kappa}, \eta_{\lambda}, G_{\lambda_{k}}$) defined by (1.4), (1.5) and (1.7).

The transform $F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}$ of $B_{i}{ }^{\lambda}$ by $F_{\lambda}{ }^{\kappa}$ can be expressed as a linear combination of $B_{i}{ }^{\kappa}, C^{k}$ and D^{κ}. So we can put

$$
\begin{equation*}
F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}=f_{i}{ }^{h} B_{h}{ }^{\kappa}+f_{i} C^{\kappa}+g_{i} D^{\kappa}, \tag{3.1}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
f_{i}{ }^{n}=B^{h}{ }_{\kappa} F_{\lambda}{ }^{\kappa} B_{i}{ }^{n}, \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}=F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda} C_{\kappa}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i}=F_{\lambda}^{\kappa} B_{i}{ }^{\lambda} D_{\kappa} . \tag{3.4}
\end{equation*}
$$

Since $F_{\lambda \kappa}$ is skew symmetric with respect to its indices we can easily see that $f_{j i}=g_{j h} f_{i}{ }^{h}$ is also skew symmetric with respect to its indices.

The transform $F_{\lambda}{ }^{\kappa} C^{\lambda}$ of C^{λ} by $F_{\lambda}{ }^{\kappa}$ is perpendicular to C^{κ} and consequently we can put

$$
\begin{equation*}
F_{\lambda}{ }^{\kappa} C^{\lambda}=-f^{h} B_{h}{ }^{\kappa}+r D^{\kappa} \tag{3.5}
\end{equation*}
$$

from which we have $f^{h}=g^{h i} f_{i}$ and

$$
\begin{equation*}
r=F_{\lambda}{ }^{\kappa} C^{\wedge} D_{\kappa}=F_{\lambda \kappa} C^{\wedge} D^{\kappa} . \tag{3.6}
\end{equation*}
$$

In exactly the same way we have

$$
\begin{equation*}
F_{\lambda}{ }^{\kappa} D^{\lambda}=-g^{h} B_{h}{ }^{\kappa}-r C^{\kappa}, \tag{3.7}
\end{equation*}
$$

where $g^{h}=g^{h i} g_{i}$. The function r seems to be dependent of the choice of the mutually orthogonal unit normal vectors C^{k} and D^{κ}. However we can verify that r is independent of the choice of these vectors ${ }^{3)}$. Consequently we see that r is a globally defined function on M.

Since the vector field ξ^{κ} is tangent to $S^{2 n+1}$ it is represented as a linear combination of $B_{i}{ }^{\kappa}, C^{\kappa}$ and D^{κ}. Consequently we put

$$
\begin{equation*}
\xi^{\kappa}=u^{h} B_{h}{ }^{\kappa}+a C^{\kappa}+b D^{\kappa}, \tag{3.8}
\end{equation*}
$$

which implies that

$$
\begin{align*}
& u^{h}=\xi^{\kappa} B^{h}{ }_{\kappa}=g^{h i} B_{i}{ }^{\kappa} \eta_{\kappa} \tag{3.9}\\
& a=C^{\kappa} \eta_{\kappa}, \quad b=D^{\kappa} \eta_{\kappa} \tag{3.10}
\end{align*}
$$

Differentiating (3.3) and (3.4) covariantly and making use of (1.12), (2.2), (2.3) and (2.4), we get

$$
\begin{align*}
& \nabla_{j} f_{h}=-a g_{j h}-r K_{j h}-f_{h}^{i} H_{j i}+g_{h} L_{j}, \tag{3.11}\\
& \nabla_{j} g_{n}=-b g_{j h}+r H_{j h}-f_{h}^{i} K_{j i}-f_{h} L_{j} . \tag{3.12}
\end{align*}
$$

3) Y. Watanabe [7].

We also have

$$
\begin{align*}
& \nabla_{j} r=K_{j i} f^{i}-H_{j i} g^{i}, \tag{3.13}\\
& \nabla_{j} a=f_{j}-u^{i} H_{j i}+b L_{j}, \tag{3.14}\\
& \nabla_{j} b=g_{j}-u^{i} K_{j i}-a L_{j} \tag{3.15}
\end{align*}
$$

4. Integral formulas. In this paragraph we construct some integral formulas which are valid in a submanifold of codimension 2 in an odd dimensional sphere. For this purpose we first state the Green-Stokes' theorem which plays an important role in our discussion.

Green-Stokes' Theorem. ${ }^{4}$ Let M be a compact orientable Riemannian manifold. Then for an arbitrary vector field v^{i}, we have

$$
\begin{equation*}
\int_{M} \nabla_{i} v^{i} d M=0 \tag{4.1}
\end{equation*}
$$

where $d M$ is the volume element of M.
In the following we always suppose that the submanifold $M^{2 n-1}$ of codimension 2 in $S^{2 n+1}$ be compact and orientable.

Differentiating (3.13) covariantly and making use of (3.11) and (3.12), we have

$$
\begin{aligned}
\nabla_{k} \nabla_{j} r= & \left(\nabla_{k} K_{j i}+H_{j i} L_{k}\right) f^{i}-\left(\nabla_{k} H_{j i}-K_{j i} L_{k}\right) g^{i}+b H_{j k}-a K_{j k} \\
& -r\left(H_{j}{ }^{i} H_{k i}+K_{j}{ }^{i} K_{k i}\right)+f_{i}{ }^{r}\left(H_{j}{ }^{i} K_{k r}-K_{j}{ }^{i} H_{k r}\right),
\end{aligned}
$$

from which, together with Lemma 2.3, we have

$$
\begin{gathered}
\nabla_{j} \nabla^{j} r=\left(\nabla^{r} K_{r i}+H_{i}^{r} L_{r}\right) f^{i}-\left(\nabla^{r} H_{r i}-K_{i}^{r} L_{r}\right) g^{i}+b H_{r}{ }^{r}-a K_{r}^{r} \\
-r\left(H_{j i} H^{j i}+K_{j i} K^{j i}\right) .
\end{gathered}
$$

As we have mentioned in $\S 3 r$ is a globally defined function on $M^{2 n-1}$, and so $\nabla_{j} \nabla^{i} r$ is also a globally defined function over $M^{2 n-1}$. Hence we have

$$
\begin{gather*}
\int_{M}\left[\left(\nabla^{r} K_{r i}+H_{i}^{r} L_{r}\right) f^{i}-\left(\nabla^{r} H_{r i}-K_{i}^{r} L_{r}\right) g^{i}+b H_{r}^{r}-a K_{r}^{r}\right. \tag{4.2}\\
\left.-r\left(H_{j i} H^{j i}+K_{j i} K^{j i}\right)\right] d M=0
\end{gather*}
$$

4) For example K. Yano and S. Bochner [10].
because of Green-Stokes' theorem.
Next we try to construct another integral formula for the later use. We put

$$
\begin{equation*}
w_{i}=H_{r}^{r} g_{i}-K_{r}^{r} f_{i} . \tag{4.3}
\end{equation*}
$$

f_{i} and g_{i} both depend on the choice of the mutually orthogonal unit normal vectors C^{κ} and D^{κ}. However we have the

LEMMA 4.1. $\quad w_{i}$ is independent of the choice of the mutually orthogonal unit normal vectors C^{k} and D^{k}. Consequently it defines a vector field on $M^{2 n-1}$.

Proof. Let ' C^{c} and ' D^{k} be mutually orthogonal unit normal vectors to $M^{2 n-1}$ at $p \in M^{2 n-1}$. Since $M^{2 n-1}$ and $S^{2 n+1}$ are both orientable we can find following relations between a pair of unit normal vectors (C^{k}, D^{k}) and (${ }^{\prime} C^{k},{ }^{\prime} D^{k}$) that

$$
\begin{equation*}
C^{\prime}=C^{\kappa} \cos \theta-D^{\kappa} \sin \theta, \quad{ }^{\prime} D^{\kappa}=C^{\kappa} \sin \theta+D^{\kappa} \cos \theta, \tag{4.4}
\end{equation*}
$$

for some function θ defined on $M^{2 n-1}$. Then the second fundamental tensors ${ }^{\prime} H_{j i}$ and ' $K_{j i}$ with respect to ${ }^{\prime} C^{k}$ and ${ }^{\prime} D^{k}$ are defined by

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}={ }^{\prime} H_{j i}{ }^{\prime} C^{k}+{ }^{\prime} K_{j i}{ }^{\prime} D^{k} . \tag{4.5}
\end{equation*}
$$

From these two equations we easily see that

$$
' H_{j i}=H_{j i} \cos \theta-K_{j i} \sin \theta, \quad ' K_{j i}=H_{j i} \sin \theta+K_{j i} \cos \theta,
$$

which imply that

$$
\begin{equation*}
{ }^{\prime} H_{i}{ }^{i}=H_{i}{ }^{i} \cos \theta-K_{i}{ }^{i} \sin \theta, \quad K_{i}{ }^{i}=H_{i}{ }^{i} \sin \theta+K_{i}{ }^{i} \cos \theta . \tag{4.6}
\end{equation*}
$$

Substituting (4.4) into ' $f_{i}=F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda} C^{\kappa}$ and ${ }^{\prime} g_{i}=F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda \prime} D^{\kappa}$, we also have

$$
\begin{equation*}
f_{i}=f_{i} \cos \theta-g_{i} \sin \theta, \quad ' g_{i}=f_{i} \sin \theta+g_{i} \cos \theta . \tag{4.7}
\end{equation*}
$$

Consequently we have

$$
' w_{i}={ }^{\prime} H_{r}^{r^{\prime}} g_{i}-{ }^{\prime} K_{r}^{r^{\prime}} f_{i}=H_{r}^{r} g_{i}-K_{r}^{r} f_{i}=w_{i} .
$$

This shows that w_{i} is independent of the choice of the mutually orthogonal unit normal vectors C^{k} and D^{κ}. This completes the proof.

Differentiating w_{i} covariantly and making use of (3.11) and (3.12), we have

$$
\begin{aligned}
\nabla_{j} w_{i}=\nabla_{j}\left(H_{r}^{r} g_{i}-K_{r}^{r} f_{i}\right)= & \left(\nabla_{j} H_{r}^{r}-K_{r}^{r} L_{j}\right) g_{i}-\left(\nabla_{j} K_{r}^{r}+H_{r}^{r} L_{j}\right) f_{i} \\
& -\left(b H_{r}^{r}-a K_{r}^{r}\right) g_{j i}+r\left(H_{r}^{r} H_{j i}+K_{r}^{r} K_{j i}\right) \\
& -f_{i}^{s}\left(K_{i s} H_{r}^{r}-H_{j s} K_{r}^{r}\right),
\end{aligned}
$$

from which

$$
\begin{gathered}
\nabla_{i} w^{i}=\left(\nabla_{i} H_{r}^{r}-K_{r}^{r} L_{i}\right) y^{i}-\left(\nabla_{i} K_{r}{ }^{r}+H_{r}^{r} L_{i}\right) f^{i}-(2 n-1)\left(b H_{r}^{r}-a K_{r}^{r}\right) \\
+ \\
+r\left[\left(H_{r}^{r}\right)^{2}+\left(K_{r}^{r}\right)^{2}\right]
\end{gathered}
$$

because of skew symmetric property of $f_{j i}$. Consequently we have

$$
\begin{align*}
\int_{M}\left[\left(\nabla_{i} H_{r}^{r}-K_{r}^{r} L_{i}\right) g^{i}\right. & -\left(\nabla_{i} K_{r}^{r}+H_{r}^{r} L_{i}\right) f^{i}-(2 n-1)\left(b H_{r}^{r}-a K_{r}^{r}\right) \tag{4.8}\\
& \left.+r\left\{\left(H_{r}^{r}\right)^{2}+\left(K_{r}^{r}\right)^{2}\right\}\right] d M=0,
\end{align*}
$$

by means of Green-Stokes' theorem.
Suppose that the covariant derivative of the mean curvature vector field H^{c} of $M^{2 n-1}$ in $S^{2 n+1}$ is tangent to $M^{2 n-1}$. Then (2.16) and Lemma 2.1 show that

$$
\begin{equation*}
\nabla^{r} H_{j r}=K_{j}^{r} L_{r}, \quad \nabla^{r} K_{j r}=-H_{j}^{r} L_{r} \tag{4.9}
\end{equation*}
$$

Consequently we have

$$
\begin{equation*}
\int_{m}\left[r\left(H_{j i} H^{j i}+K_{j i} K^{j i}\right)-\left(b H_{r}^{r}-a K_{r}^{r}\right)\right] d M=0 \tag{4.10}
\end{equation*}
$$

because of (4.2).
On the other hand (4.8) and Lemma 2.1 show that

$$
\begin{equation*}
\int_{M}\left[r\left\{\left(H_{r}^{r}\right)^{2}+\left(K_{r}^{r}\right)^{2}\right\}-(2 n-1)\left(b H_{r}^{r}-a K_{r}^{r}\right)\right] d M=0 . \tag{4.11}
\end{equation*}
$$

Eliminating $\int_{M}\left(b H_{r}{ }^{r}-a K_{r}{ }^{r}\right) d M$ from the above two equations, we find

$$
\begin{equation*}
\int_{\boldsymbol{M}} r\left[\left(H_{j i} H^{j i}-\frac{\left(H_{r}^{r}\right)^{2}}{2 n-1}\right)+\left(K_{j i} K^{j i}-\frac{\left(K_{r}^{r}\right)^{2}}{2 n-1}\right)\right] d M=0 . \tag{4.12}
\end{equation*}
$$

From this, together with Lemma 2.2, we have the

THEOREM 4.2. Let M be a compact orientable submanifold of codimension 2 in an odd dimensional sphere. We suppose that the covariant derivative of the mean curvature vector field H^{*} is tangent to M and that the inner product of $F_{\lambda}{ }^{\kappa} C^{\lambda}$ and D^{κ} is an almost everywhere non-zero valued function on M and does not change the sign. Then M is a totally umbilical submanifold of codimension 2 and consequently $a(2 n-1)$ dimensional sphere.
5. An example. In Theorem 4.2 we have assumed that the function $r \equiv F_{\lambda \kappa} C^{\lambda} D^{\kappa}$ does not change the sign and is almost everywhere non-zero valued. On the other hand, Y. Watanabe [7] has proved that, if, in a contact manifold with the contact Riemannian structure ($F_{\lambda}{ }^{\kappa}, \xi^{\kappa}, \eta_{\lambda}, G_{\lambda_{k}}$) satisfying (1.12) and (1.13), the submanifold of codimension 2 is totally umbilical the function r is a solution of the partial differential equation

$$
\nabla_{j} \nabla_{i} r=-\left\{\left(1+H^{2}+K^{2}\right) r+c\right\} g_{j i},
$$

where $H=\frac{1}{2 n-1} H_{r}{ }^{r}, K=\frac{1}{2 n-1} K_{r}{ }^{r}$ and c is a constant. These facts show that if the function r is a non-zero constant in the submanifold the umbilical submanifold satisfies the condition of Theorem 4.2.

Now it is natural to ask whether we can find a totally umbilical submanifold satisfying $r=$ constant. In this paragraph we give an example of such a submanifold.

The exterior derivative of the contact fcrm η given by (1.4) becomes

$$
\begin{equation*}
d \eta=\frac{1}{2} \sum_{\alpha=1}^{n+1}\left(d X^{n+1+\alpha} \wedge d X^{\alpha}-d X^{\alpha} \wedge d X^{n+1+\alpha}\right) \tag{5.1}
\end{equation*}
$$

Since $S^{2 n+1}$ is defined by (1.3), we have

$$
\begin{equation*}
X^{2 n+2} d X^{2 n+2}=-\sum_{A=1}^{2 n+1} X^{A} d X^{A} \tag{5.2}
\end{equation*}
$$

From these two relations we have

which implies that

$$
\begin{align*}
2 F_{\lambda \kappa} C^{n} D^{\kappa}= & \sum_{\alpha=1}^{n}\left\{\frac{X^{\alpha}}{X^{2 n+2}}\left(C^{\alpha} D^{n+1}-C^{n+1} D^{\alpha}\right)\right. \tag{5.4}\\
& \left.+\frac{X^{n+1+\alpha}}{X^{2 n+2}}\left(C^{n+1+\alpha} D^{n+1}-C^{n+1} D^{n+1+\alpha}\right)+C^{\alpha} D^{n+1+\alpha}-C^{n+1+\alpha} D^{\alpha}\right\}
\end{align*}
$$

Now we consider a submanifold of $S^{2 n+1}$ whose local representation is given by

$$
\left\{\begin{array}{l}
X^{4}=x^{4}(A=1, \cdots, n, n+2, \cdots, 2 n), X^{n+1}=0 \tag{5.5}\\
\left(X^{2 n+1}\right)^{2}=t-\sum_{\alpha=1}^{n}\left(x^{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{2 n}\left(x^{\alpha}\right)^{2}, \quad 0<t<1 \\
X^{2 n+2}=\sqrt{1-t}
\end{array}\right.
$$

Then the submanifold is compact and we have

$$
\begin{equation*}
B_{i}{ }^{\kappa}=\delta_{i}{ }^{\kappa}(\kappa=1, \cdots, n, n+2, \cdots, 2 n), \quad B_{i}{ }^{n+1}=0, B_{i}^{2 n+1}=-\frac{X^{i}}{X^{2 n+1}} . \tag{5.6}
\end{equation*}
$$

We put

$$
\begin{equation*}
\left(C^{k}\right)=(\overbrace{0, \cdots 0}^{n}, 1, \overbrace{0, \cdots, 0}^{n}),\left(D^{k}\right)=\left(X^{1}, \cdots, X^{n}, 0, X^{n+2}, \cdots, X^{2 n+1}\right) . \tag{5.7}
\end{equation*}
$$

Then C^{c} and D^{κ} are mutually orthogonal unit normal vectors to the submanifold defined by (5.5).

The submaniffld is, as is easily seen, totally umbilical submanifold of codimension 3 in $E^{2 n+2}$. Since $S^{2 n+1}$ is a totally umbilical submanifold of $E^{2 n+2}$, we have, by Yano's formula ${ }^{5}$, the submanifold defined by (5.5) is totally umbilical in $S^{2 n+1}$. Since, in a Riemannian manifold with the curvature tensor of the form (1.6), any totally umbilical submanifold M satisfies that $\nabla_{j} H^{\kappa} \in T(M)$, we have only to examine if r is constant.

Substituting (5.7) into (5.4), we find

$$
2 r=2 F_{\lambda \kappa} C^{\alpha} D^{\kappa}=-\frac{1}{X^{2 n+2}} \sum_{\alpha=1}^{n}\left\{\left(X^{\alpha}\right)^{2}+\left(X^{n+1+\alpha}\right)^{2}\right\}
$$

from which, we have

$$
r=-\frac{t}{2 \sqrt{1-t}}
$$

because of (5.5). This shows that our example is a desired one.

Bibliography

[1] Y. Katsurada, Generalized Minkowski formulas for closed hypersurfaces in a Riemannian space, Ann. Mat. Pura. Appl., 57(1962), 283-294.
[2] Y. Katsurada, On a certain property of closed hypersurfaces in an Einstein space, Comm. Math. Helv., 38(1964), 165-171.
[3] H. Liebmann, Über die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann., 53(1900), 91-112.
[4] M. Okumura, Certain hypersurfaces of an odd dimensional sphere, Tôhoku Math. Journ., 19(1967), 381-395.
[5] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures, Journ. of Math. Soc. of Japan, 14(1962), 249-271.
[6] W. Süss, Zur relativen Differentialgeometrie V, Tôhoku Math. Journ., 31(1929), 202209.
[7] Y. Watanabe, Totally umbilical surfaces in normal contact Riemannian manifolds, Kōdai Math. Sem. Rep., 19 (1967), 474-487.
[8] K. Yano, Sur quelques propriétés conformes de V_{l} dans V_{m} dans V_{n}, Proc. of the Imperial Acad., 16(1940), 173-177.
[9] K. Yano, Closed hypersurfaces with constant mean curvature in a Riemannian manifold. Journ. of Math. Soc. of Japan, 17(1965), 333-340.
[10] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, 1953.

Department of Mathematics
Tokyo Institute of Technology
TOKYo, Japan

[^1]
[^0]: 1) S. Sasaki and Y. Hatakeyama [5].
 2) S. Sasaki and Y. Hatakeyama [5].
[^1]: 5) K. Yano [8].
