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Introduction. It has been proved by H. Liebmann [3] that the only
ovaloid with constant mean curvature in Euclidean space E3 is a sphere.
The analogous theorem for a convex m-dimensional hypersurface in Em+1

has been proved by W. Suss [6]. Recently Y. Katsurada [1], [2] and K. Yano
[9] have generalized the above theorem to an ra-dimensional hypersurface in
an Einstein space admitting one-parameter groups of conformal transformations
or of homothetic transformations.

Thus we may expect an analogous theorem for a submanifold of co-
dimension greater than 1 in a certain Riemannian manifold. On the other
hand the present author studied, in the previous paper [4], a certain
hypersurface in an odd dimensional sphere S2n+1 and found that the natural
contact structure of S2n+1 plays an important role in the study of the
hypersurface of S2n+ι.

This fact suggests that, using the natural contact structure of S2n+1

7 we
can solve the problem similar to the Liebmann-Sϋss problem for a submanifold
of codimension 2 in an odd dimensional sphere.

The purpose of the paper is to prove the analogue of the Liebmann-
Sϋss theorem for a submanifold of codimension 2 in S'2n+1. For this purpose,
we give in §1, some properties of the contact structure of 5 2 n + 1 and in §2
some formulas in the theory of submanifold of codimension 2. In §3, we
study a submanifold of codimension 2 in an odd dimensional sphere and
introduce some quantities for later use.

In §4 some integral formulas for a submanifold of codimension 2 in an
odd dimensional sphere are derived and under certain conditions the theorem
mentioned above is proved. However an umbilical submanifold of codimen-
sion 2 in (2n + l)-dimensional sphere does not necessarily satisfy the conditions
of our theorem. So in §5 we show an example of umbilical submanifold
which satisfies our conditions.

1. Contact Riemannian structure on an odd dimensional sphere.
A (2w + l)-dimensional differentiate manifold M is said to have a contact



COMPACT ORIENT ABLE SUBMANIFOLD OF CODIMENSION 2 9

structure and to be a contact manifold if there exists on M a 1-form

η = ηλdxλ such that

(1.1) η Λ (dηf Φ 0

everywhere on M, where Λ denotes the exterior multiplication and dη the

exterior derivative of η. η is called a contact form on M.

Since (1.1) means that the 2-form dη is of rank 2n everywhere on M,

we can find a unique vector field ξλ on M satisfying

(1.2) ηxξι = l, (dη)μλξ
λ = O.

Let S2n+1 be an odd dimensional sphere which is represented by the

equation

(1. 3) Σ (X1)2 = 1,
4=1

in a (2/z+2)-dimensional Euclidean space E2n+2 with rectangular coordinates

XA (A = l, 2, , 2n + 2). We put

-. n+l

(l. 4) η = 4 - Σ (x n + 1

then the 1-form ?; defines a contact form on S2n+1 and consequently we can

find a vector field £λ on S2n+1 satisfying (1. 2).

The Riemannian metric tensor Gλκ on S2n+1 is naturally induced from

the Euclidean space E2n+2 in such a way that

(1.5)

With respect to this Riemannian metric, the Riemannian curvature

tensor Rvμλ

κ of S2n+1 satisfies

(1.6) Rvμλ

κ = Gμλh
κ

v-GvλS
κ

μ.

We define a linear transformation F λ

κ : T(S2n+1) -* T(52w+1) by

(1.7) Fλ" - - | - O " ( ^ ) λ μ = - | - G^(3λ ̂  - dμ Vλ).
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Then the set (Fλ

κ, ξκ, ηλ, Gλκ) satisfies1}

(1.8) Gκλξ
λ = ηx,

(1.9) GλκFv

λFμ

κ =Gvμ-ηvημ,

and consequently we have

(1.10) ηκFλ« = 0,

(1.11) Fμ

λFλ

κ = - δ j

In general, the set (Fλ\ ξκ, Vλ, Gλκ) satisfying (1.1), (1. 2), (1. 7), (1. 8) and

(1. 9) is called a contact Riemannian (or metric) structure.

It is known2) that if the contact Riemannian structure on S2n+1 is the

one which is defined by (1. 4), (1. 5) and (1. 7), the structure satisfies further

• 1̂ ) ~7Γ Vμ(dη)λκ = ηλLrμκ — ηκCrμλ ,

and

(1.13) V λ f = Fλ*9

where V denotes the covariant derivative with respect to the Riemannian

metric Gλκ.

2. Submanifolds of codimension 2 in a Riemannian manifold. Let

Mm+2 be a Riemannian manifold of dimension m + 2 with local coordinates

{Xκ} and Gλκ be the Riemannian metric tensor of Mm+2. We denote by Mm

a differentiate submanifold of codimension 2 in M m + 2 and by {x1} the local

coordinates of Mm. Then the immersion ι: Mm —>Mm+2 is locally represented
\y*r y κ Ύκ (rλ r2 rm\ w — 1 9 . '»>i_L-9

Assuming that manifolds Mm and M m + 2 are both orientable, we put

Bi

κ=diX
κ (di=d/dxi). Then m vectors Bf span the tangent plane of Mm at

each point of Mm and the Riemannian metric tensor gjt of Mm is given by

We assume that Bf (i = l92, ,m) give the positive direction in Mm

and choose the mutually orthogonal unit normal vectors Cκ and Dκ to Mm

in such a way that iV, Cκ, Dκ give the positive direction in M m + 2 .

1) S. Sasaki and Y. Hatakeyama [5].
2) S. Sasaki and Y. Hatakeyama [5].



COMPACT ORIENTABLE SUBMANIFOLD OF CODIMENSION 2 H

In the sequel we always consider a coordinate neighborhood of Mm in
which there exist such two fields of unit normal vectors to Λfm. We denote
by (B\, Cκ, Dκ) the dual basis of (J3t«, O, Dκ).

The van der Wearden-Bortolotti covariant derivatives V^BΛ V^C* and
VjDκ of Bf, Cκ and Dκ are respectively given by

(2.2) VA" = ajBi' - { ^ } 5 / + {μ\ ) B?B? ,

(2. 3) V tθ = djO + f " λ } β/ Cλ,

and

(2.4) V, D" = 3, D" + { ̂  } B/D".

Let ϋ^i, i^ ί be the second fundamental tensors of M.m with respect to
the normals C", Σf and Li the third fundamental tensor of Mm. Then we
have the following Gauss and Weingarten equations:

(2.5) V, B« = H ί t C' + Kjt D",

(2.6) V,O=-Hi

iBi' + L,Dt, V,i> = -KJBf - L}O,

where H / = gihH,h and K/ = ̂ ί f t K M .

The mean curvature vector field H' of Mm in M m + 2 is defind by

(2.7) H' = ^ (H,' O + ^ 4 1 > ) .

We know that //* is independent of the choice of mutually orthogonal
unit normal vectors Cκ and Z> and consequently that Hκ is a globally defined
vector field over Mm+2.

LEMMA 2.1. Le£ M m έ^ α submanifold of a Riemannian manifold
Mm+2. In order that the covariant derivative VjHκ of the mean curvature
vector field is tangent to Mn, it is necessary and sufficient that

(2.8) VjH/ = K/Lj,

and

(2.9) VjK/= -H/Lj.
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PROOF. Differentiating (2.7) covariantly, we have

2n V3H« = (V, H,' - Kf L}) O + (V, KJ + HfL,) ΣT

-(HSHf + KSKfiBf.

This proves the assertion of Lemma 2.1.

When the second fundamental tensors are at each point of the sub-
manifold Mm of the form

(2.10) HH = H9ji, KH = Kgjiy

we call the submanifold a totally umbilical submanifold. Moreover if the
both functions H and K vanish identically, we call it a totally geodesic
submanifold.

LEMMA 2.2. A necessary and sufficient condition for a submanifold of
codimension 2 to be umbilical is that the following equations are satisfied.

(2.11) HitH» = ±- (Htγ , KH K» = ~ (Ktγ .
Ills 11 if

PROOF. This follows from the identities

and the positive definiteness of the Riemannian metric gjt.

We now write the equations of Gauss, Mainardi-Codazzi and Ricci-Kϋhne:

(2.12) RvμλκBk"B/Bt

λBh" =-Rkjih — (H}lHkh—HklHίn) — (KHKkh—KklKjh),

ί R^BJB/BSO = VkHH - V,Hkt - LkKH + L}Kkl,
(2.13)

1 R^B^B/BSD* = X7kKjt - V^*, + LkHH - L}Hkl,

and

(2.14) RvμλκBk°BfσD< = V, Lj - V, Lk - Kkl H/ + KH Hk

ι.
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If Mm+2 has the curvature tensor of the form (1. 6), equations (2. 12),
(2.13) and (2.14) can be rewritten respectively as

(2.15) Rjcjίh = 9ji9hh — 9kι9jh + HHHkh — HkίHjh + KHKkh — KkiKjh ,

I VkHji — VjHki = LkKjt — LjKjci,

Vλ ^ji — ̂ 7jKki = —LkHji + LjHkί,

and

(2.17) v*L, -VjLk = KkiH/ - KHHj.

LEMMA 2.3. Le£ Λίm &<? α submanifold with non-vanishing mean
curvature vector field in a Riemannian manifold of constant curvature.
If the covariant derivative of the mean curvature vector field is tangent
to Mm, we have

(2.18) KkiH; = KHHk\

PROOF. AS a consequence of Lemma 2.1 we have (2. 8) and (2. 9). By
virtue of the assumption we can suppose that K^ Φ 0 without loss of
generality. Differentiating (2. 8) covariantly, we get

from which

Ki

i(VkLj-X7jLk) = 0.

This, together with (2.17), implies (2. 18). This completes the proof.

3. Submanifolds of codimension 2 in an odd dimensional sphere. We
consider a submanifold of codimension 2 in an odd dimensional sphere jS2n+1.
In the following discussions we always regard S2n+1 as a contact manifold
with the contact Riemannian structure (Fλ

κ, ξκ, ηλi Gλκ) denned by (1. 4), (1. 5)
and (1. 7).

The transform Fλ

κBiλ of Bt

λ by Fλ

κ can be expressed as a linear com-
bination of Bt

K, Cκ and Dκ. So we can put

(3.1) FX*B* =fi

hBh'+fi& + giΣr,

which implies that

(3.2) ft = B>,Fx*B%\
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(3.3) fi = Fλ'Bi

λCκ,

and

(3.4) g^Fx'BfD..

Since Fχκ is skew symmetric with respect to its indices we can easily
se,e that f}i = g^hfi1 is also skew symmetric with respect to its indices.

The transform Fλ

κ Cλ of Cλ by Fλ

κ is perpendicular to Cκ and consequently
we can put

(3.5) Fλ

κCλ= -fhBh

κ

from which we have fh = gMft and

(3.6) r = Fλ

κCλDκ = Fλ

In exactly the same way we have

(3.7) Fλ*Dλ = -g*Bh*

where gh = ghi gt. The function r seems to be dependent of the choice of
the mutually orthogonal unit normal vectors Cκ and Dκ. However we can
verify that r is independent of the choice of these vectors3). Consequently
we see that r is a globally defined function on M.

Since the vector field ξκ is tangent to S2n+1 it is represented as a
linear combination of B*, Cκ and Dκ. Consequently we put

(3. 8) ξ* = uh Bh

κ + aCκ + bDκ,

which implies that

(3.9) uh = ξκB\ = gΛiBi

κηK9

(3.10) a = CκηK9 b = Dκ

Vκ.

Differentiating (3.3) and (3.4) covariantly and making use of (1. 12),
(2. 2), (2. 3) and (2. 4), we get

(3.11) Vjh - - agjh - rKjh -fh

ιHH + ghL3,

(3. 12) VtfΛ = - bgih + rHih - U KH -fhL,.

3) Y. Wataπabe [7].
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We also have

(3.13) Vjr=Kjίf
i-Hjίg\

(3.14) Vja =fj - u'Hjt + bLό,

(3.15) Vjb = gj -uιKn -ah,.

4. Integral formulas. In this paragraph we construct some integral
formulas which are valid in a submanifold of codimension 2 in an odd
dimensional sphere. For this purpose we first state the Green-Stokes'
theorem which plays an important role in our discussion.

GREEN-STOKES' THEOREM.
 4 ) Let M be a compact orientable Rie-

mannian manifold. Then for an arbitrary vector field vι, we have

(4.1)

where dM is the volume element of M.

In the following we always suppose that the submanifold M'ln~ι of
codimension 2 in S2n+1 be compact and orientable.

Differentiating (3.13) covariantly and making use of (3.11) and (3. 12),
we have

V* V, r = (VjcKjt + HjiLJΓ - (VtHjt-KjtLJg* + bHik - aKjk

- r(H/ Hki + K; Kki) + /t'(ff/ Kkr - K; Hkr),

from which, together with Lemma 2.3, we have

V, V jr = (\7rKri^-HjLr)f - (VΉ r i-K t

rL r) g* + bH/ - aK/

- r(HHHjί + KHK»).

As we have mentioned in §3 r is a globally defined function on M271'1,
and so Vj W is also a globally defined function over M2n~ι. Hence we
have

(4. 2) [ [(STKri + HSLr)/' - {\7rHri-K'Lr) g* + bH/ - aK/

- r(HHHjί + KHKjί)] dM = 0 ,

4) For example K. Yano and S. Bochner [10].
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because of Green-Stokes' theorem.

Next we try to construct another integral formula for the later use.

We put

(4.3) Wt^H/gt-K/ft.

fi and gt both depend on the choice of the mutually orthogonal unit

normal vectors Cκ and Dκ. However we have the

LEMMA 4.1. wi is independent of the choice of the mutually orthogonal

unit normal vectors Cκ and Dκ. Consequently it defines a vector field on

M2n~\

PROOF. Let Cκ and 'Dκ be mutually orthogonal unit normal vectors to

M2n~ι at pzM2n~l. Since M2n~ι and S2n+1 are both orientable we can find

following relations between a pair of unit normal vectors (CX Dκ) and (CK/DK)

that

(4. 4) Ό = Cκ cos 0 - Dκ sin 0 , 'Dκ = O sin 0 + Dκ cos θ ,

for some function θ denned on M2n~\ Then the second fundamental tensors

Ήji and 'Kjt with respect to C* and Dκ are defined by

(4. 5) v,B t

β = 'Hji'O + 'Kjt'iy.

From these two equations we easily see that

Ήjt = HH cos θ - Kjt sin θ , 'KJt = H j t sin 0 + X"it cos 0 ,

which imply that

(4. 6) Ή / = Hi* cos 0 - Xt* sin 0 , 'Kf = Ht* sin 0 + JSΓ4* cos 0 .

Substituting (4.4) into '/, = FfBf'G and > έ = F^Bf'D*, we also have

(4. 7) '/i = /i cos θ — gt sin 0 , '#i = /* sin θ Λ- gt cos 0 .

Consequently we have

This shows that wi is independent of the choice of the mutually

orthogonal unit normal vectors Cκ and D\ This completes the proof.
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Differentiating wt covariantly and making use of (3.11) and (3.12), we
have

\/jwi = ViiH/gt-K/ft) = ̂ 7}Hr

r-K/LJ)gi - (ViKS

- φHS-aK/) gH + r(H/HH+.K/Kn)

-MKisH/-HjsK/),

from which

Vιzvι = (ViHS-K/Ljy* - (ViK/+H/Li)f - (2n-l)(bH/-aK/)

+ r[(H/y + (K/Y],

because of skew symmetric property of fH. Consequently we have

(4. 8) f [(VίH/-K/Lί) if - (VίK/-hH/Lί)fi - (2n-l)(bH/-aK/)

2 + (K/)2}]dM=0,

by means of Green-Stokes' theorem.
Suppose that the covariant derivative of the mean curvature vector field

Hκ of M271-1 in S2n+1 is tangent to Mln~\ Then (2.16) and Lemma 2.1 show
that

(4. 9) VrHjr = K/Lr, VrKjr = - H/Lr.

Consequently we have

(4.10) f [r(H j tH" + KnK") - φH/ - aK/)] dM = 0 ,

because of (4.2).
On the other hand (4. 8) and Lemma 2.1 show that

(4.11) [ [r[(H/γ + (K/Y) - (2n-l)(bH/-aK/)] dM=0.

Eliminating I (bHr

r —aKr

r) dM from the above two equations, we find

(4.12) / r \(HHH- - -<g?l) + (KtlK» - g j ) ] dM = 0.
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From this, together with Lemma 2.2, we have the

THEOREM 4.2. Let M be a compact orientable submanifold of

codimension 2 in an odd dimensional sphere. We suppose that the covariant

derivative of the mean curvature vector field Hκ is tangent to M and that

the inner product of Fλ

κCλ and Dκ is an almost everywhere non-zero valued

function on M and does not change the sign. Then M is a totally

umbilical submanifold of codimension 2 and consequently a (2n — 1)-

dimensional sphere.

5. An example. In Theorem 4.2 we have assumed that the function

r = Fλκ C
λ Dκ does not change the sign and is almost everywhere non-zero

valued. On the other hand, Y. Watanabe [7] has proved that, if, in a

contact manifold with the contact Riemannian structure (Fλ\ ξκ, ηλ, Gλlc)

satisfying (1.12) and (1.13), the submanifold of codimension 2 is totally

umbilical the function r is a solution of the partial differential equation

V,V,r = - {(1 + H 2 + K > + c]

where H= — —H/, K= K/ and c is a constant. These facts show
2n — 1 2n — 1

that if the function r is a non-zero constant in the submanifold the
umbilical submanifold satisfies the condition of Theorem 4.2.

Now it is natural to ask whether we can find a totally umbilical sub-
manifold satisfying r = constant. In this paragraph we give an example of
such a submanifold.

T h e exterior derivative of the contact fcrm η given by (1. 4) becomes

(5.1) dη = ~ £ (dXn+1+« A dX« - dX« Λ dXn+1+«).

Since S2n+1 is denned by (1. 3), we have

(5.2) X*n+*dX2n+2= -Σ
A=X

From these two relations we have
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(5.3) (2Fλκ) = (dη)λκ =

0 X2"-1 - 1

0 - χ»

X2"-*

- 1

V"2W +

X"
0 - :gsτr °

1 -
X2"-1

whicti implies that

(5.4) 2Έ

Qx £)*+! + « _ (

Now we consider a submanifold of *S2n+1 whose local representation is

given by

(5.5)

XA = xA {A = 1, , n , , 2ή), Xn + 1 = 0 ,

, 0 < ί < 1,

Then the submanifold is compact and we have

We put

(5.7)

Then Cκ and Dκ are mutually orthogonal unit normal vectors to the sub-

manifold defined by (5. 5).
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The submanifcld is, as is easily seen, totally umbilical submanifold oί
codimension 3 in E2n+2. Since S2n+1 is a totally umbilical submanifold of
2ζ2n+2, we have, by Yano's formula5), the submanifold defined by (5.5) is
totally umbilical in S2n+1. Since, in a Riemannian manifold with the
curvature tensor of the form (1.6), any totally umbilical submanifold M
satisfies that VjHκ £ T(M), we have only to examine if r is constant.

Substituting (5. 7) into (5. 4); we find

1
£Ί — ^Γ \κ^ LJ — — V λn + 2 2—^ I Λ ^ / " \^ ) ) >

α-1

from which, we have

t
r = —

because of (5. 5). This shows that our example is a desired one.
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