Tôhoku Math. Journ. 20(1968), 5-7.

ON A PROBLEM OF BONSALL

TAKASHI YOSHINO

(Received September 19, 1967)

We say that a bounded linear operator T on a Hilbert space H is hyponormal if $||Tx|| \ge ||T^*x||$ for all $x \in H$.

We shall consider the following problem due to Bonsall: If a hyponormal operator T is the sum of a compact operator and a generalized nilpotent operator, does it follow that T is normal?

An operator means a bounded linear operator on a Hilbert space. $\sigma(T)$, $\sigma_p(T)$, $\sigma_c(T)$ and $\sigma_r(T)$ denote the spectrum, the point spectrum, the continuous spectrum and the residual spectrum of an operator T, respectively.

Let $\mathfrak{N}_{T}(\lambda)$ be the λ -th proper subspace of a hyponormal operator T, that is $\mathfrak{N}_{T}(\lambda) = \{x \in H: Tx = \lambda x\}$, then by the properties of hyponormal operator, it is easy to verify that $\{\mathfrak{N}_{T}(\lambda): \lambda \in \sigma_{p}(T)\}$ is a family of mutually orthogonal reducing subspaces of T.

Therefore we have the following lemma.

LEMMA 1. If T is hyponormal, then it can be expressed uniquely as a direct sum $T = T_1 \oplus T_2$ defined on a product space $H = H_1 \oplus H_2$ where H_1 is spanned by all the proper vectors of T such that: (a) T_1 is normal and $\sigma(T_1) =$ the closure of $\sigma_p(T)$, (b) T_2 is hyponormal and $\sigma_p(T_2) = \emptyset$, (c) T is normal if and only if T_2 is normal.

Next, we prepare the spectral properties of operators with some relation to a compact operator.

LEMMA 2. If an operator T on H is the sum of a compact operator C and an operator S and if $T_{\mathfrak{M}}$ is the restriction of T on its invariant subspace \mathfrak{M} , then $\sigma_c(T_{\mathfrak{M}}) \subset \sigma(S)$.

PROOF. Let $\mu \in \sigma_c(T_{\mathfrak{M}})$, then there exists a sequence $\{x_n\}$ of unit vectors in \mathfrak{M} such that $||T_{\mathfrak{M}}x_n - \mu x_n|| \to 0 \quad (n \to \infty)$. Since C is compact, we may assume that (if necessary, by choosing a suitable subsequence) the sequence $\{Cx_n\}$ converges to a certain vector $x \in H$.

If $\mu \notin \sigma(S)$, then $S - \mu I$ is invertible. Let $x_0 = -(S - \mu I)^{-1}x$, then

T. YOSHINO

 $\begin{aligned} \|x_n - x_0\| &\leq \|(S - \mu I)^{-1}\| \cdot \|(S - \mu I)x_n + x\| = \|(S - \mu I)^{-1}\| \cdot \|(T_{\mathfrak{M}} - \mu I - C)x_n + x\| \\ &\leq \|(S - \mu I)^{-1}\| \{ \|T_{\mathfrak{M}}x_n - \mu x_n\| + \|Cx_n - x\| \} \to 0 \ (n \to \infty). \end{aligned}$ Thus $\mu \in \sigma_p(T_{\mathfrak{M}}).$ This is a contradiction.

LEMMA 3. If T is an operator on H such that p(T) is compact for some polynomial $p(\cdot)$ and if $T_{\mathfrak{M}}$ is the restriction of T on its invariant subspace \mathfrak{M} , then $\sigma_c(T_{\mathfrak{M}}) \subset \{\lambda : p(\lambda) = 0\}$.

PROOF. Let $\mu \in \sigma_c(T_{\mathfrak{M}})$, then there exists a sequence $\{x_n\}$ of unit vectors in \mathfrak{M} such that $||T_{\mathfrak{M}}x_n - \mu x_n|| \to 0$ and $||p(T_{\mathfrak{M}})x_n - p(\mu)x_n|| \to 0 \ (n \to \infty)$. Since $p(T_{\mathfrak{M}})$ is compact, we may assume that (if necessary, by choosing a suitable subsequence) the sequence $\{p(T_{\mathfrak{M}})x_n\}$ converges to a certain vector $x \in \mathfrak{M}$. If $p(\mu) \neq 0$, then for $x_0 = x/p(\mu)$,

$$\|x_n - x_0\| \leq \|x_n - p(T_{\mathfrak{M}})/p(\mu) \cdot x_n\| + \|p(T_{\mathfrak{M}})/p(\mu) \cdot x_n - x_0\| \to 0 \quad (n \to \infty).$$

Therefore $\mu \in \sigma_p(T_{\mathfrak{M}})$. This contradicts with $\mu \in \sigma_c(T_{\mathfrak{M}})$.

Now, we shall prove the following theorems.

THEOREM 1. If a hyponormal operator T on H is the sum of a compact operator C and a generalized nilpotent operator N (i.e $\sigma(N) = \{0\}$), then T is normal.

THEOREM 2. Every hyponormal operator T on H with compact imaginary part is normal.

THEOREM 3. Every polynomially compact hyponormal operator T on H is normal.

To prove our theorems, by Lemma 1, we have only to show that T_2 is normal or $H_2 = (0)$.

It is known that for any operator $S, \sigma_r(S)$ is open [2]. Since $\sigma(S)$ is closed, $\partial \sigma_r(S)$ (boundary of $\sigma_r(S)) \subset \sigma_p(S) \cup \sigma_c(S)$. Applying this fact for the operator T_2 in Lemma 1, we have $\partial \sigma_r(T_2) \subset \sigma_c(T_2)$. Therefore, in each case where T satisfies the condition of Theorem 1, Theorem 2 or Theorem 3, by Lemma 2 or Lemma 3, we have $\sigma(T_2) = \{0\}, \sigma(T_2) \subset \text{real line or } \subset \{\lambda: p(\lambda) = 0\}$ respectively. Since it is known that every isolated point of the spectrum of a hyponormal operator is a proper value [1], in each case where T satisfies the conditions of Theorem 1 or Theorem 3, $H_2 = (0)$. And it is also known that every hyponormal operator with its spectrum on a real line is self-adjoint [3]. Therefore, in the case where T satisfies the conditions of Theorem 2, T_2 is self-adjoint.

ON A PROBLEM OF BONSALL

References

- J. G. STAMPFLI, Hyponormal operators, Pacific Journ. Math., 12(1962), 1453-1458.
 A. E. TAYLOR, The minimum modulus of a linear operator, and its use for estimates in spectral theory, Studia Mathematica, Z. I. (1963), 131-132.
 T. YOSHINO, On the spectrum of a hyponormal operator, Tôhoku Math. Journ., 17(1972), 2022
- 17(1965), 305-309.

THE COLLEGE OF GENERAL EDUCATION Tôhoku University Sendai, Japan