NEARLY NORMAL OPERATORS

TAKashi Yoshino

(Received May 1, 1967)

1. We say that a bounded linear operator T on a Hilbert space H is nearly normal if $T \leftrightarrow T^{*} T$ where the symbol \leftrightarrow denotes commutativity. $R(T)$ denotes the smallest von Neumann algebra containing T and $R(T)^{\prime}$ its commutant. The terminology of von Neumann algebras will be found to conform with [2]. In [4], N. Suzuki proved that $R(V)$ is of type I if V is an isometry.

The purpose of this note is to prove that $R(T)$ is also of type I if T is nearly normal. Clearly, isometries are nearly normal.
2. For our object, the following Lemma 1 and Lemma 4 are essential.

Lemma 1. If T is a nearly normal operator on H and if E is the projection from H on $\mathfrak{\Re}_{T}=\{x \in H ; T x=0\}$, then $E \in R(T) \cap R(T)^{\prime}$.

Proof. Clearly, $E \in R(T)$ and $\mathfrak{\Re}_{T}$ is invariant under T. Hence we have only to prove \mathfrak{R}_{T} is invariant under T^{*}. For any $x \in \mathfrak{R}_{T}$, we have $\left\|T T^{*} x\right\|^{2}=\left(T T^{*} x, T T^{*} x\right)=\left(\left(T^{*} T\right) T^{*} x, T^{*} x\right)=\left(T^{*}\left(T^{*} T\right) x, T^{*} x\right)=0$ by the definition of nearly normal operators; hence $T^{*} x \in \mathfrak{R}_{r}$.

The following lemma is a modification of the results of A . Brown [1].
Lemma 2. If T is a nearly normal operator on H such that $\mathfrak{R}_{T}=(0)$, then, in the polar decomposition $T=V(T * T)^{1 / 2}$ of T, V is an isometry and $V \leftrightarrow\left(T^{*} T\right)^{1 / 2}$.

Proof. $\mathfrak{\Re}_{T}=(0)$ means that the closure of $\left(T^{*} T\right)^{1 / 2} H$ is equal to H and this implies V is an isometry. On the other hand $T \leftrightarrow T^{*} T$ implies $\left\{\left(T^{*} T\right)^{1 / 2} V-V\left(T^{*} T\right)^{1 / 2}\right\}\left(T^{*} T\right)^{1 / 2}=0$. Hence $V \leftrightarrow(T * T)^{1 / 2}$.

If V is an isometry, then we have easily $V^{m} \mathfrak{R}_{V^{*}} \perp V^{n} \mathfrak{R}_{V^{*}}$ for all nonnegative integers $m, n, m \neq n$; hence we have the following lemma.

Lemma 3. If V is an isometry on H and if E is the projection from H on $\bigoplus_{n=0}^{\infty} V^{n} \Re_{V^{*}}$, then $E \in R(V) \cap R(V)^{\prime}$ and $V \mid(I-E) H$ is unitary, where $V \mid(I-E) H$ denotes the restriction of V on its reducing subspace $(I-E) H$
and I denotes the identity operator on H.
Proof. Clearly, $\underset{n=0}{\infty} V^{n} \mathfrak{R}_{V^{*}}$ is a reducing subspace of V and hence $E \in R(V)^{\prime}$. On the other hand, by the simple calculation, we have easily $\left\{\bigoplus_{n=0}^{\infty} V^{n} \mathfrak{R}_{\Gamma^{*}}\right\}^{\perp}=\left\{x \in H ; V^{n} V^{* n} x=x\right.$ for all $\left.n=0,1,2, \cdots\right\}$. This implies $E \in R(V)$. Therefore $E \in R(V) \cap R(V)^{\prime}$. The last assertion is clear.

REMARK. This kind of the decomposition of isometries is already known. Indeed, it is a special case of the canonical decomposition of contractions [3].

Lemma 4. Let T be a nearly normal operator on H with the polar decomposition $T=V\left(T^{*} T\right)^{1 / 2}$ such that $\mathfrak{R}_{T}=(0)$. If E is a projection from H on $\underset{n=0}{\infty} V^{n} \Re_{V^{*}}$, then $E \in R(T) \cap R(T)^{\prime}$ and $T \mid(I-E) H$ is normal.

Proof. Lemma 2 guarantees that V is an isometry; hence $E \in R(V) \cap R(V)^{\prime}$ by Lemma 3. Since $R(T)=R\left(V,\left(T^{*} T\right)^{1 / 2}\right), E \in R(T)$. On the other hand, by Lemma $2, V \leftrightarrow T$. Since $E \in R(V) \cap R(V)^{\prime}, E \leftrightarrow T$ and this means $E \in R(T)^{\prime}$. Thus $E \in R(T) \cap R(T)^{\prime}$. The last assertion is clear by Lemma 2 and Lemma 3.

Theorem. If T is a nearly normal operator on H such that $\mathfrak{N}_{T}=(0)$ and if $H=\oplus_{n=0}^{\infty} V^{n} \Re_{V^{*}}$ where V is the isometry in the polar decomposition $T=V\left(T^{*} T\right)^{1 / 2}$ of T, then $R(T)$ is of type I and $R(T) \cap R(T)^{\prime}=R\left(\left(T^{*} T\right)^{1 / 2}\right)$.

Proof. Since V is an isometry by Lemma 2, $\operatorname{dim} V^{n} \mathfrak{N}_{V^{*}}=\operatorname{dim} \mathfrak{R}_{V^{*}}$ for all $n=1,2, \cdots$. Hence, for each subspace $V^{n} \mathfrak{R}_{V^{*}}$, there exists an isometric mapping U_{n} from $V^{n} \Re_{V^{*}}$ onto $\mathfrak{\Re}_{V^{*}}$. Let U be the direct sum $\oplus_{n=0}^{\infty} U_{n}$ and let ϕ be the mapping defined as follows; $\phi(T)=U T U^{*}$ for all $T \in B(H)$, where $B(H)$ denotes the full operator algebra on H. Then ϕ is clearly a spatial isomorphism from $B(H)$ on $B\left(\bigoplus_{n=0}^{\infty} M_{n}\right)$, where $M_{n}=\mathfrak{R}_{\Gamma^{*}}$ for all $n=0,1,2, \cdots$.

For each non-negative integers n, the projection E_{n} from H on $V^{n} \mathfrak{R}_{V^{*}}$ belongs to $R(V)$ because $E_{0}=I-V V^{*}, E_{n}=V^{n} V^{* n}-V^{n+1} V^{* n+1}, n=1,2, \cdots$. This means that each subspace $V^{n} \Re_{V^{*}}$ is a reducing subspace for all $S \in R(V)^{\prime}$. And clearly,

Therefore, by the simple calculation, we have

$$
\phi\left(R(V)^{\prime}\right)=\left\{\left(\begin{array}{llll}
{ }^{S} & & & \\
& & & \\
& & & \\
& & & \\
& & 0 & \cdot
\end{array}\right) ; S \in B\left(\Re_{V^{*}}\right)\right\} .
$$

Since $(T * T)^{1 / 2} \in R(V)^{\prime}$ by Lemma 2 and $R(T)=R\left(V,\left(T^{*} T\right)^{1 / 2}\right)$, we have

$$
\phi(R(T))=\phi\left(R(V)^{\prime} \cap R\left(\left(T^{*} T\right)^{1 / 2}\right)^{\prime}\right)=\left\{\left(\begin{array}{lllll}
S^{S} & & & 0 \\
& S & & & \\
& & & & \\
& & & . & \\
0 & & & .
\end{array}\right) ; S \in R\left(\left(T^{*} T\right)^{1 / 2} \mid \mathfrak{R}_{\Gamma^{*}}\right)^{\prime}\right\} ;
$$

hence,

$$
\phi\left(R(T) \cap R(T)^{\prime}\right)=\left\{\left(\begin{array}{lllll}
S & & & & 0 \\
& S & & & \\
& & & \cdot & \\
& & & \cdot & .
\end{array}\right) ; S \in R\left(\left(T^{*} T\right)^{1 / 2} \mid \Re_{V^{*}}\right)\right\} .
$$

Next, we define the mapping ψ as follows:

$$
\psi\left(\left(\begin{array}{llll}
S & & & 0 \\
& S & & \\
& & S & \\
& & & \\
0 & & & \\
& & .
\end{array}\right)\right)=S \text { for all }\left(\begin{array}{llll}
{ }^{S} & & & \\
& S & & \\
& & & \\
& & & \\
& & & \\
0 & & & .
\end{array}\right) \in \phi\left(R(T)^{\prime}\right)
$$

Then ψ is clearly an algebraic isomorphism from $\phi\left(R(T)^{\prime}\right)$ on $R\left(\left(T^{*} T\right)^{1 / 2} \mid \mathfrak{n}_{\nabla^{*}}\right)^{\prime}$. Since $R\left(\left(T^{*} T\right)^{1 / 2} \mid \Re_{V^{*}}\right)$ is abelian, $R\left(\left(T^{*} T\right)^{1 / 2} \mid \mathfrak{\Re}_{V^{*}}\right)^{\prime}$ is of type I ; and hence $\phi\left(R(T)^{\prime}\right)$ is also of type I. Thus $R(T)^{\prime}$ is of type I and $R(T) \cap R(T)^{\prime}$ $=R\left(\left(T^{*} T\right)^{1 / 2}\right)$, because ϕ is a spatial isomorphism from $B(H)$ on $B\left({ }_{n=0}^{\infty} M_{n}\right)$. Therefore $R(T)$ is of type I.

Corollary. If T is a nearly normal operator on H, then $R(T)$ is of type I.

Proof. By Lemma 1 and Lemma 4, we have $T=0 \oplus T_{1} \oplus T_{2}$ and $R(T)=\{\lambda I\} \oplus R\left(T_{1}\right) \oplus R\left(T_{2}\right)$, where T_{1} is normal and T_{2} satisfies the conditions of Theorem. Hence $R\left(T_{1}\right)$ is abelian and $R\left(T_{2}\right)$ is of type I by Theorem. Therefore $R(T)_{2}$ is_of type_I.

References

[1] A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4(1953), 723-728.
[2] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, (1957).
[3] B. Sz.-Nagy et C. Foiaş, Sur les contractions de l'espace de Hilbert. IV, Acta. Szeged, 21 (1960), 251-259.
[4] N. Suzuki, Isometries on Hilbert Spaces, Proc. Japan Academy, 39-7(1963), 435-438.

The College of General Education
Tôhoku University
Sendai, Japan

