Tôhoku Math. Journ. 20 (1968), 1–4.

NEARLY NORMAL OPERATORS

TAKASHI YOSHINO

(Received May 1, 1967)

1. We say that a bounded linear operator T on a Hilbert space H is nearly normal if $T \leftrightarrow T^*T$ where the symbol \leftrightarrow denotes commutativity. R(T) denotes the smallest von Neumann algebra containing T and R(T)' its commutant. The terminology of von Neumann algebras will be found to conform with [2]. In [4], N. Suzuki proved that R(V) is of type I if V is an isometry.

The purpose of this note is to prove that R(T) is also of type I if T is nearly normal. Clearly, isometries are nearly normal.

2. For our object, the following Lemma 1 and Lemma 4 are essential.

LEMMA 1. If T is a nearly normal operator on H and if E is the projection from H on $\mathfrak{N}_{\mathbb{T}} = \{x \in H ; Tx=0\}$, then $E \in R(T) \cap R(T)'$.

PROOF. Clearly, $E \in R(T)$ and \mathfrak{N}_T is invariant under T. Hence we have only to prove \mathfrak{N}_T is invariant under T^* . For any $x \in \mathfrak{N}_T$, we have $\|TT^*x\|^2 = (TT^*x, TT^*x) = ((T^*T)T^*x, T^*x) = (T^*(T^*T)x, T^*x) = 0$ by the definition of nearly normal operators; hence $T^*x \in \mathfrak{N}_T$.

The following lemma is a modification of the results of A. Brown [1].

LEMMA 2. If T is a nearly normal operator on H such that $\Re_T = (0)$, then, in the polar decomposition $T = V(T^*T)^{1/2}$ of T, V is an isometry and $V \leftrightarrow (T^*T)^{1/2}$.

PROOF. $\mathfrak{N}_{T} = (0)$ means that the closure of $(T^{*}T)^{1/2}H$ is equal to H and this implies V is an isometry. On the other hand $T \leftrightarrow T^{*}T$ implies $\{(T^{*}T)^{1/2}V - V(T^{*}T)^{1/2}\}(T^{*}T)^{1/2} = 0$. Hence $V \leftrightarrow (T^{*}T)^{1/2}$.

If V is an isometry, then we have easily $V^m \mathfrak{N}_{V^*} \perp V^n \mathfrak{N}_{V^*}$ for all non-negative integers $m, n, m \neq n$; hence we have the following lemma.

LEMMA 3. If V is an isometry on H and if E is the projection from $H \text{ on } \bigoplus_{n=0}^{\infty} V^n \mathfrak{N}_{V^*}$, then $E \in R(V) \cap R(V)'$ and V|(I-E)H is unitary, where V|(I-E)H denotes the restriction of V on its reducing subspace (I-E)H

T. YOSHINO

and I denotes the identity operator on H.

PROOF. Clearly, $\bigoplus_{n=0}^{\infty} V^n \mathfrak{N}_{V^*}$ is a reducing subspace of V and hence $E \in R(V)'$. On the other hand, by the simple calculation, we have easily $\{\bigoplus_{n=0}^{\infty} V^n \mathfrak{N}_{V^*}\}^{\perp} = \{x \in H; V^n V^{*n} x = x \text{ for all } n = 0, 1, 2, \cdots \}$. This implies $E \in R(V)$. Therefore $E \in R(V) \cap R(V)'$. The last assertion is clear.

REMARK. This kind of the decomposition of isometries is already known. Indeed, it is a special case of the canonical decomposition of contractions [3].

LEMMA 4. Let T be a nearly normal operator on H with the polar decomposition $T = V(T^*T)^{1/2}$ such that $\mathfrak{N}_T = (0)$. If E is a projection from H on $\bigoplus_{n=0}^{\infty} V^n \mathfrak{N}_{r^n}$, then $E \in R(T) \cap R(T)$ and T | (I-E)H is normal.

PROOF. Lemma 2 guarantees that V is an isometry; hence $E \in R(V) \cap R(V)'$ by Lemma 3. Since $R(T) = R(V, (T^*T)^{1/2})$, $E \in R(T)$. On the other hand, by Lemma 2, $V \leftrightarrow T$. Since $E \in R(V) \cap R(V)'$, $E \leftrightarrow T$ and this means $E \in R(T)'$. Thus $E \in R(T) \cap R(T)'$. The last assertion is clear by Lemma 2 and Lemma 3.

THEOREM. If T is a nearly normal operator on H such that $\mathfrak{N}_T = (0)$ and if $H = \bigoplus_{n=0}^{\infty} V^n \mathfrak{N}_{V^*}$ where V is the isometry in the polar decomposition $T = V(T^*T)^{1/2}$ of T, then R(T) is of type I and $R(T) \cap R(T)' = R((T^*T)^{1/2})$.

PROOF. Since V is an isometry by Lemma 2, dim $V^n \mathfrak{N}_{r^*} = \dim \mathfrak{N}_{r^*}$ for all $n = 1, 2, \cdots$. Hence, for each subspace $V^n \mathfrak{N}_{r^*}$, there exists an isometric mapping U_n from $V^n \mathfrak{N}_{r^*}$ onto \mathfrak{N}_{r^*} . Let U be the direct sum $\bigoplus_{n=0}^{\infty} U_n$ and let ϕ be the mapping defined as follows; $\phi(T) = UTU^*$ for all $T \in B(H)$, where B(H) denotes the full operator algebra on H. Then ϕ is clearly a spatial isomorphism from B(H) on $B(\bigoplus_{n=0}^{\infty} M_n)$, where $M_n = \mathfrak{N}_{r^*}$ for all $n=0, 1, 2, \cdots$.

For each non-negative integers n, the projection E_n from H on $V^n \mathfrak{N}_{r^*}$ belongs to R(V) because $E_0 = I - VV^*$, $E_n = V^n V^{*n} - V^{n+1}V^{*n+1}$, $n=1, 2, \cdots$. This means that each subspace $V^n \mathfrak{N}_{r^*}$ is a reducing subspace for all $S \in R(V)'$. And clearly,

 $\mathbf{2}$

Therefore, by the simple calculation, we have

$$\phi(R(V)') = \left\{ \begin{pmatrix} S & 0 \\ S & 0 \\ 0 & \cdot \\ 0 & \cdot \end{pmatrix} ; S \in B(\mathfrak{N}_{\nu^*}) \right\}$$

Since $(T^*T)^{1/2} \in R(V)'$ by Lemma 2 and $R(T) = R(V, (T^*T)^{1/2})$, we have

$$\phi(R(T)) = \phi(R(V)' \cap R((T^*T)^{1/2})') = \left\{ \begin{pmatrix} S & 0 \\ S & \\ S & \\ & \ddots \\ 0 & & \ddots \end{pmatrix}; S \in R((T^*T)^{1/2} | \mathfrak{N}_{P^*})' \right\};$$

hence,

$$\phi(R(T) \cap R(T)') = \left\{ \left(egin{array}{ccc} S & & 0 \\ & S & & \\ & S & & \\ & & \ddots & \\ 0 & & \ddots & \end{array}
ight\}; \ S \in R((T^*T)^{1/2} | \mathfrak{N}_{r^*})
ight\}.$$

Next, we define the mapping ψ as follows:

$$\psi\begin{pmatrix} S & 0 \\ S & 0 \\ S & 0 \\ 0 & 0 \end{pmatrix} = S \text{ for all} \begin{pmatrix} S & 0 \\ S & 0 \\ S & 0 \\ 0 & 0 \end{pmatrix} \in \phi(R(T)').$$

Then ψ is clearly an algebraic isomorphism from $\phi(R(T))$ on $R((T^*T)^{1/2} | \mathfrak{N}_{r^*})'$. Since $R((T^*T)^{1/2} | \mathfrak{N}_{r^*})$ is abelian, $R((T^*T)^{1/2} | \mathfrak{N}_{r^*})'$ is of type I; and hence $\phi(R(T)')$ is also of type I. Thus R(T)' is of type I and $R(T) \cap R(T)' = R((T^*T)^{1/2})$, because ϕ is a spatial isomorphism from B(H) on $B(\bigoplus_{n=0}^{\infty} M_n)$. Therefore R(T) is of type I.

COROLLARY. If T is a nearly normal operator on H, then R(T) is of type I.

PROOF. By Lemma 1 and Lemma 4, we have $T = 0 \oplus T_1 \oplus T_2$ and $R(T) = \{\lambda I\} \oplus R(T_1) \oplus R(T_2)$, where T_1 is normal and T_2 satisfies the conditions of Theorem. Hence $R(T_1)$ is abelian and $R(T_2)$ is of type I by Theorem. Therefore R(T) is of type I.

T. YOSHINO

References

- [1] A. BROWN, On a class of operators, Proc. Amer. Math. Soc., 4(1953), 723-728.
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, (1957).
- [3] B. Sz.-NAGY et C. FOIAŞ, Sur les contractions de l'espace de Hilbert. IV, Acta. Szeged, 21(1960), 251-259.
- [4] N. SUZUKI, Isometries on Hilbert Spaces, Proc. Japan Academy, 39-7(1963), 435-438.

The College of General Education Tôhoku University Sendai, Japan