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1. Introduction. Let M be a 2n-dimensional Kdhler manifold. We consid-
er a real coordinate neighborhood U(z!,---., 2", 2™*!, ... 2?) and natural
frames (9/0x")P in the tangent space at each point of U. Let g,; be the Kahler

metric of M and {J-Zk} be the Christoffel symbol of g,;, then the curvature

tensor is given by

Rijk”=a{jl}e}/axh_a ’jél}/axk'l' {aitht;e}_ {aikH;;l}.
The Ricci tensor and the scalar curvature are
R;;=R%;js, R=g"R,,.
We denote the almost complex structure by F*;, then it is well known that

FiaFaj=-81i'a gabF“stj=gm FnEngaJ=_Fﬁ, V=0,

where V, denotes the covariant differentiation with respect to{ jlk}' Furthermore

we know that
(1) FiaRajkh=FajRiukh .

Now if we put

(2) RtjabFab ___.Kij R
then
3) K!,=—2F*%"R%, (R®;=g"Ry;)

1) Throughout this paper, the indices a,b,c,---,1,7,k,--- run from 1 to 2z2(=dim M) and for
doubly used indices the summation convention is adopted.
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and K,;;=g¢;,K%; is the coefficient of th= first Chern form except a constant
factor.

On the other hand, it is known ([1]) that if the metric g,; is of class
C~, the set of matrices at a point P

(4) b : Ri]kh’ ValRijklu v::,l,Rijkh, ey Va,....a,Ri,-k,,,, e (vap"'a.EVa,"'Va.)

spans the infinitesimal holonomy algebra of M, where i and j designate the
row and the column of the matrices. § generates the infinitesimal holonomy
group A’ at P. Taking account of (1) and the covariant constancy of F',, we see
that A’'cU(n). If g¢,; is analytic, 2’ coincides with the restricted homogeneous
holonomy group %° and Y is the homogeneous holonomy algebra of M.

Contracting  F** to each of (4) and taking account of the covariant
constancy of F¥**, we see that the set at P

(5) b*: Ki.i’ vdlKli’ vﬂ'ﬂlKii’ °t S v%"--alKi]', M

spans a subspace of §.
In this paper, we study this §*. It is essentially determined by the Ricci
tensor and its successive covariant derivatives.

THEOREM 1. Let M be a Kihler manifold with metric of class C~.
Then the set Y spans a Lie subalgebra of Yy and it is an ideal in Y.

PROOF. It is analoguous to [1]. According to the Ricci’s identity for
Vayoas Kby, we have

(6) me,..-a,Kij - tha,---a.Kij = Riakh( va,---a,KaJ)— Rajkh(Va,-nanKia)

p

- Z Ra’alkh( vdr'-g;‘-athj)-

A=1 A

We denote by R and K¢ the subspaces spanned by V,,...,R';, and
Vay-aK's respectively (R® and K¢® are spanned by R';,, and K*)), then (6)
means that

6) [R©®, K®] ¢ KW 4 K@+,
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where p is an arbitrary non-negative integer. By a contraction of F** to (6)
or (6), we can easily see that

[K(o)’K(p)] C K(”)+K(”+2),

Now we will proceed inductively. Assume that for an arbitrary non
negative integer p and for a non-negative integer g, the following equation

holds :

7 (Voo R eV a0 K%)= (V e (Vs R 0)

= [Z(Vba.-.b, Rualkh)(Va,---a---a. Kij)+ Z _'—-(qu_,...j,Railkh)(V,‘.H...a...i,Kij)

i i
+ Z i(qumj,ﬂkhj,.--jla,malK i qu...j'ﬂhkj'...jm'...al K j),

where (jg_1***Jilps1*++%;) and so on in 3¥’s run over some permutations
of (bg+-+bia,---a,)and the summations with respect to A runs over all or
a part of 1,- -+, p+qg while that of g runs over a part of 1,---,q.?

The above assumption is true for p=arbitrary and ¢=0, since (6) actually
holds. And (7) means that

(8) [RO, K] ¢ K® L K@D 4 oo o p KP+o . K(p+a+d)
If we contract F** to (7), we see immediately that
(g) [K@O, K] ¢ K® 4 KE+D oo L K@+0 4 K(pra+d),

We operate Vs, to (7) and apply (7) for V,,,.q,...c.K*; instead of V..., K*;.
Then we have

(Vbq,.bqu-blRtakh)( va'-'aLKuj)—(vdn"'axKia)(v"au'“blRajkh)

= [Z (vb"“"'b‘Ra“’Ak")(vav“a“axKij) + Z i(vl.,---L.RamMch)(Vmw--aum.Kij)

2) For example, if g=1 this equation is as follows :
(VoRlakn) (Vap-a:K%5) = (Vape+-a.: Kia) (Vo R jin)

D
= lzl(vaRa'ahkh) (Va.pu-a_na' K’:j) '—'R“bklh(Va.up---a.Kij)
+ (Vknoiap a1 Kl — T hidsage 0. K5) — (Vorknape-a: Kij — onkape-a, Ki5).
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oo+ Z :'—_Rumhkh(Vm,,‘,‘,..a..leij)1
+ Z i(vl“"'lpﬂkmr'llﬂ»'"lll Kij— vluu--lp»xhklp"l.ap-.a, Kij),

where (lg+-+l;m,,;+++m;) and so on in I’s run over some permutations
of (bg41+++bya,+++a,) and the summation with respect to A runs over all
or a part of 1,--+, p+qg+1 while that of u runs over a part of 1,---,¢+1.

Consequently (7) is true for an arbitrary non-negative p and for g+1,
hence by the induction it is valid for all p,¢ = 0. Therefore (8) and (9) hold
true for all non-negative integers p and ¢q. This shows that §* is an ideal
of Y. Q.E.D.

3. In this section, we suppose that the K&hler metric g;; is analytic,
hence § is the homogeneous holonomy algebra of M.

THEOREM 2. Let M (n>1) be an irreducible Kihler manifold with
analytic Kihler metric. Then the ideal B* of (5) is proper if and only if

(i) M is Kahler-Einstein (R z o)
<

or

(ii) R=0 all over M (not Einstein).

PROOF. If M is locally symmetric: V,R%,,=0, then we have V,R!;=0.
Hence R?; is invariant under the restricted homogeneous holonomy group A°.
Since M is irreducible, that is A° is irreducible in real number field, we
have R!;=c8} (Schur’s lemma), which means that M is Einstein.

Assume that M is irreducible and not locally symmetric. In this case, it
is known ([2]) that the restricted homogeneous holonomy group A° of M is
one of the following types :

v, yQT, ¥®SU2),
where 4 is a simple Lie group (=SO(2n)) and 7" is the one dimensional

torus group. In our case A°=U(n)=SUn)QT" or its subgroup. The third case
Y®SU(2) does not occur, since this is not a subgroup of U(n).® Hence

h'=+y or YRT",

3) This group is absolutely irreducible, i.e., irreducible even in complex number field (Cartan’s
1st class).
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and since 4 is simple, it is SU(n) or its simple subgroup. This corresponds
in the holonomy algebra to

b= or '+t (direct sum),

where 4" is the Lie algebra su(n) of SU(n) or its simple subalgebra. In the
case h=+'+t, " is an ideal in by and t is one dimensional subalgebra
generated by the matrix (F1)).

a) Case h=+". If h* is a proper ideal of the simple ¢, §*= {0} and hence
K';=R';=0 all over M. We remark that in this case any element (£%;) of §
of (4) satisfies FY;£',=0 and hence j<su(n).

b) Case h=+'+t. If §* is a proper ideal of ) and is contained in ',
then §*={0} or 4. But the case §*={0} is impossible, for if so, § can not
contain t (as in the above remark, in this case §<Ssu(n)). Hence §*=+" In
this case, any element (§',) € h* satisfies F’;£';=0. We have

F.K',=2R=0 all over M,

and M is not Einstein (if otherwise, R};=0 hence §*={0}).

If 9*=+r;+t (YiC), then Y] is an ideal of 4 because ¢ and §H* are
both ideals. Hence yr;={0} and y*=t. Then any (§';) € §* is proportional to
F*;. We have K';=cF*(c+0) at each point of M, which means that

(10) Ri=-S38  (c#0).

c
2
M is therefore Einstein with R+0.

Conversely, suppose that M is Einstein. If R=0, i.e., R};=0, then §*={0}.
This is trivially a proper ideal of §). 1f R#0 then (10) and hence K!;=cF;
(c=const.) holds. Therefore §*=t. In this case if furthermore (=t, we have
R';in=F";,pis. And by a contraction with F’; we see that @, =(1/2n) K,,, ie.,
R'yin=(1/2n) F*,K,,=(c/2n) F*,F,,. Contracting g¢g’* we have R‘,=—(c/2n)8
which yields ¢=0 by virtue of (10). This is a contradiction,” and hence §*
is a proper ideal of §.

Lastly suppose that R=0 all over M and M is not Einstein (R, ;&0 ie.,
FJ,R%;,#0). Then H*cén(n) and H<su(n), hence H* is a proper ideal of §.
In this case, §=§* +t (since M is not locally symmetric, see the case b)).

Q.E.D.

COROLLARY. Let M (n>1) be an irreducible Kdihler manifold with
analytic Kdahler metric. Then the holonomy algebra of M is spanned by H*
of (5), except in the following cases:

4) This also follows from the fact that M is reducible because f or ks 1—dimensionél and hence
solvable.
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(i) M is Kahler-Einstein (R Z0)
or <

(i) R=0 all over M (not Einstein).

From the proof of Theorem 2 and from the corollary, under the same
assumption for M as in the Theorem 2, we can sum up as follows:

M is Kéhler-Einstein (R=0) & §h*=1{0}
M is Kihler-Einstein (R+0) &= h*=
R=0 all over M (not Einstein) <= §=0§*+1t (direct sum; §*+ {0})

all the other cases = h=1p*
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