Tôhoku Math. Journ. 20 (1968), 248-253.

ON 1ST CHERN FORM AND HOLONOMY ALGEBRA OF A KÄHLER MANIFOLD

HIDEKIYO WAKAKUWA

(Received October 2, 1967)

1. Introduction. Let M be a 2*n*-dimensional Kähler manifold. We consider a real coordinate neighborhood $U(x^1, \dots, x^n, x^{n+1}, \dots, x^{2n})$ and natural frames $(\partial/\partial x^i)^{(1)}$ in the tangent space at each point of U. Let g_{ij} be the Kähler metric of M and $\begin{vmatrix} i \\ jk \end{vmatrix}$ be the Christoffel symbol of g_{ij} , then the curvature tensor is given by

$$R^{i}_{jkh} = \partial \left\{ \begin{matrix} i \\ jk \end{matrix} \right\} / \partial x^{h} - \partial \left\{ \begin{matrix} i \\ jh \end{matrix} \right\} / \partial x^{k} + \left\{ \begin{matrix} i \\ ah \end{matrix} \right\} \left\{ \begin{matrix} a \\ jk \end{matrix} \right\} - \left\{ \begin{matrix} i \\ ak \end{matrix} \right\} \left\{ \begin{matrix} a \\ jh \end{matrix} \right\}.$$

The Ricci tensor and the scalar curvature are

$$R_{ij} = R^a{}_{ija}, \quad R = g^{ij}R_{ij}.$$

We denote the almost complex structure by F^{i}_{j} , then it is well known that

$$F^{i}{}_{a}F^{a}{}_{j}=-\delta^{i}_{j}, \ g_{ab}F^{a}{}_{i}F^{b}{}_{j}=g_{ij}, \ F_{ij}\equiv g_{ia}F^{a}{}_{j}=-F_{ji}, \ \nabla_{k}F^{i}{}_{j}=0,$$

where ∇_k denotes the covariant differentiation with respect to $\binom{i}{jk}$. Furthermore we know that

(1)
$$F^i_{\ a}R^a_{\ jkh} = F^a_{\ j}R^i_{\ akh}.$$

Now if we put

(3)
$$K_{j}^{i} = -2F_{a}^{i}R_{j}^{a}$$
 $(R_{j}^{a} = g^{ab}R_{bj})$

¹⁾ Throughout this paper, the indices $a, b, c, \dots, i, j, k, \dots$ run from 1 to $2n(=\dim M)$ and for doubly used indices the summation convention is adopted.

and $K_{ij} = g_{ia}K^{a}{}_{j}$ is the coefficient of the *first Chern form* except a constant factor.

On the other hand, it is known ([1]) that if the metric g_{ij} is of class C^{∞} , the set of matrices at a point P

(4)
$$\mathfrak{h}: R^{i}_{jkh}, \nabla_{a_{i}}R^{i}_{jkh}, \nabla_{c_{\mathfrak{g}^{i}l}}R^{i}_{jkh}, \cdots, \nabla_{a_{p}\cdots a_{l}}R^{i}_{jkh}, \cdots (\nabla_{a_{p}\cdots a_{l}} \equiv \nabla_{a_{\mathfrak{p}}} \cdots \nabla_{a_{l}})$$

spans the infinitesimal holonomy algebra of M, where i and j designate the row and the column of the matrices. \mathfrak{h} generates the infinitesimal holonomy group h' at P. Taking account of (1) and the covariant constancy of F^{i}_{j} , we see that $h' \subseteq U(n)$. If g_{ij} is analytic, h' coincides with the restricted homogeneous holonomy group h° and \mathfrak{h} is the homogeneous holonomy algebra of M.

Contracting F^{kh} to each of (4) and taking account of the covariant constancy of F^{kh} , we see that the set at P

(5)
$$\mathfrak{h}^* \colon K^i_{j}, \ \bigtriangledown_{a_1} K^i_{j}, \ \bigtriangledown_{a_{12}i} K^i_{j}, \cdots, \ \bigtriangledown_{a_p \cdots a_1} K^i_{j}, \cdots$$

spans a subspace of \mathfrak{h} .

In this paper, we study this \mathfrak{h}^* . It is essentially determined by the Ricci tensor and its successive covariant derivatives.

2.

THEOREM 1. Let M be a Kähler manifold with metric of class C^{∞} . Then the set \mathfrak{h}^* spans a Lie subalgebra of \mathfrak{h} and it is an ideal in \mathfrak{h} .

PROOF. It is analoguous to [1]. According to the Ricci's identity for $\nabla_{a_{i}...a_{i}} K^{i}{}_{j}$, we have

(6)
$$\nabla_{\mathbf{h}\mathbf{k}\mathbf{a}_{\mathbf{p}}\cdots\mathbf{a}_{i}}K^{i}_{j} - \nabla_{\mathbf{k}\mathbf{h}\mathbf{a}_{\mathbf{p}}\cdots\mathbf{a}_{i}}K^{i}_{j} = R^{i}_{a\mathbf{k}\mathbf{h}}(\nabla_{a_{\mathbf{p}}\cdots a_{i}}K^{a}_{j}) - R^{a}_{j\mathbf{k}\mathbf{h}}(\nabla_{a_{\mathbf{p}}\cdots a_{i}}K^{i}_{a})$$

$$-\sum_{\lambda=1}^{p} R^{a}{}_{a_{\lambda}kh}(\bigtriangledown_{a_{p}\cdots a_{1}}K^{i}{}_{j}).$$

We denote by $R^{(p)}$ and $K^{(p)}$ the subspaces spanned by $\nabla_{a_{p}\cdots a_{l}}R^{i}_{jkh}$ and $\nabla_{a_{p}\cdots a_{l}}K^{i}_{j}$ respectively $(R^{(0)}$ and $K^{(0)}$ are spanned by R^{i}_{jkh} and K^{i}_{j}), then (6) means that

(6')
$$[R^{(0)}, K^{(p)}] \subset K^{(p)} + K^{(p+2)},$$

H. WAKAKUWA

where p is an arbitrary non-negative integer. By a contraction of F^{kh} to (6') or (6), we can easily see that

$$[K^{(0)}, K^{(p)}] \subset K^{(p)} + K^{(p+2)}.$$

Now we will proceed inductively. Assume that for an arbitrary non negative integer p and for a non-negative integer q, the following equation holds:

$$(7) \qquad (\nabla_{b_{q}\cdots b_{1}}R^{i}{}_{akh})(\nabla_{a_{p}\cdots a_{1}}K^{a}{}_{j}) - (\nabla_{a_{p}\cdots a_{1}}K^{i}{}_{a})(\nabla_{b_{q}\cdots b_{1}}R^{a}{}_{jkh})$$

$$= \left[\sum (\nabla_{b_{q}\cdots b_{1}}R^{a}{}_{a\lambda kh})(\nabla_{a_{p}\cdots a}\cdots a_{1}K^{i}{}_{j}) + \sum \pm (\nabla_{j_{q-1}\cdots j_{1}}R^{a}{}_{i\lambda kh})(\nabla_{i_{p-1}\cdots a}\cdots i_{1}K^{i}{}_{j})\right]$$

$$+ \cdots + \sum \pm R^{a}{}_{i\lambda kh}(\nabla_{i_{p-1}\cdots a}\cdots i_{1}K^{i}{}_{j})\right]$$

$$+ \sum \pm (\nabla_{j_{q}\cdots j_{p+1}khj_{p}\cdots j_{1}a_{p}\cdots a_{1}}K^{i}{}_{j} - \nabla_{j_{q}\cdots j_{p-1}hkj_{p}\cdots j_{1}a_{p}\cdots a_{1}}K^{i}{}_{j}),$$

where $(j_{q-1} \cdots j_1 i_{p+1} \cdots i_1)$ and so on in Σ 's run over some permutations of $(b_q \cdots b_1 a_p \cdots a_1)$ and the summations with respect to λ runs over all or a part of $1, \cdots, p+q$ while that of μ runs over a part of $1, \cdots, q^{2^{2}}$

The above assumption is true for p= arbitrary and q=0, since (6) actually holds. And (7) means that

(8)
$$[R^{(q)}, K^{(p)}] \subset K^{(p)} + K^{(p+1)} + \cdots + K^{(p+q)} + K^{(p+q+2)}$$

If we contract F^{kh} to (7), we see immediately that

(9)
$$[K^{(q)}, K^{(p)}] \subset K^{(p)} + K^{(p+1)} + \cdots + K^{(p+q)} + K^{(p+q+2)}.$$

We operate $\bigtriangledown_{b_{q+1}}$ to (7) and apply (7) for $\bigtriangledown_{b_{q+1}a_p\cdots a_1}K^i_j$ instead of $\bigtriangledown_{a_p\cdots a_1}K^i_j$. Then we have

$$(\nabla_{b_{l+1}b_{l}\cdots b_{1}}R^{i}_{akh})(\nabla_{a_{p}\cdots a_{1}}K^{a}_{j}) - (\nabla_{a_{p}\cdots a_{1}}K^{i}_{a})(\nabla_{b_{l+1}\cdots b_{1}}R^{a}_{jkh})$$
$$= \left[\sum (\nabla_{b_{l+1}\cdots b_{1}}R^{a}_{a\lambda kh})(\nabla_{a_{p}\cdots a\cdots a_{1}}K^{i}_{j}) + \sum \pm (\nabla_{l_{q}\cdots l_{1}}R^{a}_{m\lambda kh})(\nabla_{m_{p+1}\cdots a\cdots m_{1}}K^{i}_{j})\right]$$

2) For example, if
$$q=1$$
 this equation is as follows:

$$(\nabla_{b_{1}}R^{i}a_{kh})(\nabla_{a_{p}\cdots a_{1}}K^{a}_{j}) - (\nabla_{a_{p}\cdots a_{1}}K^{i}_{a})(\nabla_{b_{1}}R^{a}_{jkh})$$

$$= \sum_{\lambda=1}^{p} (\nabla_{b_{1}}R^{a}_{a\lambda kh})(\nabla_{a_{p}\cdots a_{1}}K^{i}_{j}) - R^{a}_{bk_{1}h}(\nabla_{aa_{p}\cdots a_{1}}K^{i}_{j})$$

$$+ (\nabla_{khb_{1}a_{p}\cdots a_{1}}K^{i}_{j} - \nabla_{hkb_{1}a_{p}\cdots a_{1}}K^{i}_{j}) - (\nabla_{b_{1}kha_{p}\cdots a_{1}}K^{i}_{j} - \nabla_{b_{1}hka_{p}\cdots a_{1}}K^{i}_{j}).$$

250

$$+\cdots+\sum\pm R^{a}{}_{m_{\lambda}kh}(\bigtriangledown_{m_{p,q+1}\cdots a\cdots m_{1}}K^{i}{}_{j})\Big]$$
$$+\sum\pm(\bigtriangledown_{l_{q+1}\cdots l_{p+1}khl_{p}\cdots l_{1}a_{p}\cdots a_{1}}K^{i}{}_{j}-\bigtriangledown_{l_{q+1}\cdots l_{p+1}hkl_{p}\cdots l_{1}a_{p}\cdots a_{1}}K^{i}{}_{j}),$$

where $(l_q \cdots l_1 m_{p+1} \cdots m_1)$ and so on in Σ 's run over some permutations of $(b_{q+1} \cdots b_1 a_p \cdots a_1)$ and the summation with respect to λ runs over all or a part of $1, \cdots, p+q+1$ while that of μ runs over a part of $1, \cdots, q+1$.

Consequently (7) is true for an arbitrary non-negative p and for q+1, hence by the induction it is valid for all $p,q \ge 0$. Therefore (8) and (9) hold true for all non-negative integers p and q. This shows that \mathfrak{h}^* is an ideal of \mathfrak{h} . Q.E.D.

3. In this section, we suppose that the Kähler metric g_{ij} is analytic, hence \mathfrak{h} is the homogeneous holonomy algebra of M.

THEOREM 2. Let M (n > 1) be an irreducible Kähler manifold with analytic Kähler metric. Then the ideal \mathfrak{h}^* of (5) is proper if and only if

(i) M is Kähler-Einstein $\left(R \stackrel{\geq}{=} 0\right)$ or

(ii) R=0 all over M (not Einstein).

PROOF. If M is locally symmetric: $\bigtriangledown_i R^i_{jkh} = 0$, then we have $\bigtriangledown_i R^i_j = 0$. Hence R^i_j is invariant under the restricted homogeneous holonomy group h^0 . Since M is irreducible, that is h^0 is irreducible in real number field, we have $R^i_j = c\delta^i_j$ (Schur's lemma), which means that M is Einstein.

Assume that M is irreducible and not locally symmetric. In this case, it is known ([2]) that the restricted homogeneous holonomy group h^0 of M is one of the following types:

$$oldsymbol{\psi}$$
 , $oldsymbol{\psi} \otimes T^{_1}$, $oldsymbol{\psi} \otimes SU(2)$,

where ψ is a simple Lie group $(\subseteq SO(2n))$ and T^1 is the one dimensional torus group. In our case $h^0 = U(n) = SU(n) \otimes T^1$ or its subgroup. The third case $\psi \otimes SU(2)$ does not occur, since this is not a subgroup of U(n).³ Hence

$$h^{\scriptscriptstyle 0} = \psi$$
 or $\psi \otimes T^{\scriptscriptstyle 1}$,

³⁾ This group is absolutely irreducible, i.e., irreducible even in complex number field (Cartan's 1st class).

H. WAKAKUWA

and since ψ is simple, it is SU(n) or its simple subgroup. This corresponds in the holonomy algebra to

$$\mathfrak{h} = \psi'$$
 or $\psi' + \mathfrak{t}$ (direct sum),

where ψ' is the Lie algebra $\mathfrak{Su}(n)$ of SU(n) or its simple subalgebra. In the case $\mathfrak{h}=\psi'+t$, ψ' is an ideal in \mathfrak{h} and t is one dimensional subalgebra generated by the matrix (F^i_j) .

a) Case $\mathfrak{h}=\psi'$. If \mathfrak{h}^* is a proper ideal of the simple ψ' , $\mathfrak{h}^*=\{0\}$ and hence $K^i{}_j=R^i{}_j=0$ all over M. We remark that in this case any element $(\xi^i{}_j)$ of \mathfrak{h} of (4) satisfies $F^j{}_i\xi^i{}_j=0$ and hence $\mathfrak{h}\subseteq\mathfrak{su}(n)$.

b) Case $\mathfrak{h}=\psi'+\mathfrak{t}$. If \mathfrak{h}^* is a proper ideal of \mathfrak{h} and is contained in ψ' , then $\mathfrak{h}^*=\{0\}$ or ψ' . But the case $\mathfrak{h}^*=\{0\}$ is impossible, for if so, \mathfrak{h} can not contain \mathfrak{t} (as in the above remark, in this case $\mathfrak{h}\subseteq\mathfrak{Su}(n)$). Hence $\mathfrak{h}^*=\psi'$. In this case, any element $(\xi^{i}{}_{j})\in\mathfrak{h}^*$ satisfies $F^{i}{}_{i}\xi^{i}{}_{j}=0$. We have

$$F_{i}^{j}K_{i}^{i}=2R=0$$
 all over M ,

and M is not Einstein (if otherwise, $R_{j}^{i}=0$ hence $\mathfrak{h}^{*}=\{0\}$).

If $\mathfrak{h}^* = \psi_1' + \mathfrak{t}$ ($\psi_1' \subset \psi$), then ψ_1' is an ideal of ψ' because ψ' and \mathfrak{h}^* are both ideals. Hence $\psi_1' = \{0\}$ and $\mathfrak{h}^* = \mathfrak{t}$. Then any $(\xi_j^i) \in \mathfrak{h}^*$ is proportional to F_j^i . We have $K_j^i = cF_j^i (c \neq 0)$ at each point of M, which means that

(10)
$$R^{i}{}_{j} = \frac{c}{2} \delta^{j}_{i} \qquad (c \neq 0).$$

M is therefore Einstein with $R \neq 0$.

Conversely, suppose that M is Einstein. If R=0, i.e., $R^{i}_{j}=0$, then $\mathfrak{h}^{*}=\{0\}$. This is trivially a proper ideal of \mathfrak{h} . If $R\neq 0$ then (10) and hence $K^{i}_{j}=cF^{i}_{j}$ (c=const.) holds. Therefore $\mathfrak{h}^{*}=\mathfrak{t}$. In this case if furthermore $\mathfrak{h}=\mathfrak{t}$, we have $R^{i}_{jkh}=F^{i}_{j}\varphi_{kh}$. And by a contraction with F^{j}_{i} we see that $\varphi_{kh}=(1/2n) K_{kh}$, i.e., $R^{i}_{jkh}=(1/2n) F^{i}_{j}K_{kh}=(c/2n) F^{i}_{j}F_{kh}$. Contracting g^{jk} we have $R^{i}_{h}=-(c/2n)\delta^{i}_{h}$ which yields c=0 by virtue of (10). This is a contradiction,⁴⁾ and hence \mathfrak{h}^{*} is a proper ideal of \mathfrak{h} .

Lastly suppose that R=0 all over M and M is not Einstein $(R_{kh} \neq 0, \text{ i.e.}, F^{i}_{i}R^{i}_{jkh}\neq 0)$. Then $\mathfrak{h}^{*}\subseteq\mathfrak{Sn}(n)$ and $\mathfrak{h}\mathfrak{su}(n)$, hence \mathfrak{h}^{*} is a proper ideal of \mathfrak{h} . In this case, $\mathfrak{h}=\mathfrak{h}^{*}+t$ (since M is not locally symmetric, see the case b)).

Q.E.D.

COROLLARY. Let M (n > 1) be an irreducible Kähler manifold with analytic Kähler metric. Then the holonomy algebra of M is spanned by \mathfrak{h}^* of (5), except in the following cases:

⁴⁾ This also follows from the fact that M is reducible because \mathfrak{h} or h^0 is 1-dimensional and hence solvable.

(i) *M* is Kähler-Einstein
$$\left(R \ge 0\right)$$

or

(ii) R=0 all over M (not Einstein).

From the proof of Theorem 2 and from the corollary, under the same assumption for M as in the Theorem 2, we can sum up as follows:

References

- A. NIJENHUIS, On the holonomy groups of linear connections, I, Koninkl. Nedel. Akad. van Wetenschappen, Amsterdam, Proc., Ser. A, 56(1953), 233-249.
- [2] M. BERGER, Sur les groupes d'holonomie des variétés riemanniennes, C. R. Acad. Sci., Paris, 237(1953), 472-474.
- [3] M. BERGER, Sur les groupes d'holonomie des variétés riemanniennes non symmétriques, C. R. Acad. Sci., Paris, 237(1953), 1306-1308.
- [4] M. BERGER, Groupes d'holonomie des variétés riemanniennes, Applications, C. R. Acad. Sci., Paris, 238(1954), 985-986.

DEPARTMENT OF MATHEMATICS TOKYO GAKUGEI UNIVERSITY TOKYO, JAPAN