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TORSIONLESS MODULES

TOYONORI KATO

(Received November 6, 1967)

Throughout this paper each ring R will be a ring with identity element
and each module will be unital. We denote the category of right (resp. left)
^-modules by 2KΛ (resp. Λ3K).

If A is a right ^-module, A*=HomΛ(A, R) will be its dual, and we may
have the natural .R-homomorphism

S A : A->A**.

Following H.Bass [3, p. 476], we call A torsionless if δ^ is a monomorphism
and reflexive if δ^ is an isomorphism. If X is a subset of A (resp. A*) we
denote its annihilator in A* (resp. A) by l(X) (resp. r(XJ). In case X is a
subset of R, ί(X) (resp. r(X)) is just the left (resp. right) annihilator of X
in R since (RR)* = RR.

In this paper we shall be concerned with torsionless modules. In Section
1, we recall elementary basic properties of torsionless modules and discuss
the following condition : Every essential extension of a torsionless module is
torsionless. We end the section with a remark on a theorem of L. E. T.Wu.,
H. Y. Mochizuki and J. P. Jans [20]. In Section 2 we study /S-rings (without
any chain condition) and right self-cogenerator rings. We show in Proposition
3 that, if 9KΛ has a torsionless cogenerator, then R is a cogenerator in 2JίΛ

(compare this result with C. Faith and E. A. Walker [6, Theorem 4. 1]). Our
main results are obtained in Section 3. Theorem 1 states the equivalence of
the following conditions :

( 1 ) R is an injective cogenerator in 9JIΛ.
( 2 ) The injective hull E(RR) of RR is torsionless and R is an S-ring.
( 3 ) Each factor module of RR®RR is torsionless and R is a right

S-ring.

Note that the implication (1)=^(2), (3) is due to B. L.Osofsky [16]. Finally,
in Section 4, we make some remarks on duality and then give equivalent
criteria for the simplicity of [7* for any simple right ideal U.
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1. Preliminaries. To begin with we shall look at characteristic proper-
ties of torsionless modules :

(1. 1) The following conditions on a right R-module A are equivalent :
(1) A is torsionless.
(2) r(A*) = 0.
(3) 7/O^αeA, then there exists b <= A* such that ba^Q.
(4) A can be imbedded in a direct product of copies of RR.
(5) For any nonzero map A0 — > A (A0 € 9KΛ), there is a map A — > RR such

that the composition map A0 — > A — > RR is nonzero.
(6) A is a submodule of a dual module.

(1. 2) Let A be a right R-module and A0 a submodule of A. Then the
following conditions are equivalent :

(1) A/AO is torsionless.
(2) 7/αsA, α£A0, then there exists b € A* such that ba^Q, £A0 = 0.
(3) r(/(Ao))=A0.

The equivalence of the above conditions are well known, and we shall
omit the proofs (see H. Bass [3, p. 477], J. P. Jans [9, p. 68]).

If A is a right Tί-module, then we set

Concerning the properties of K(A\ we have the following

(1. 3) (1) A/K(A) is torsionless.
(2) K(A)=A if and only if A*=0.
(3) If AO is a submodule of A such that K(A)(£A0, then A/A0 is not

torsionless.

PROOF. The proof can be made directly from the definitions.

It is well known that the class of torsionless right jR-modules is closed
under taking submodules and direct product. In general extensions of tor-
sionless modules may fail to be torsionless. Is it true that essential extension
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modules of torsionless modules are torsionless ? In the following we shall
give an answer to the question.

If A is a right j?-module then E(A) will denote the injective hull of A,
and A 'DA 0 will signify that A is an essential extension of a submodule A0

of A (see B. Eckmann and A. Schopf [5]).

PROPOSITION 1. The following conditions are equivalent for any
ring R :

(1) Every essential extension of a torsionless right R-module is torsionless.
(2) 9Jίβ has a faithful, injective, torsionless right R-module.
(3) E(RR) is torsionless.

PROOF. (1) implies (2). E(RR) must be torsionless since E(RR)fDRR.
Thus E(RR) is faithful, injective, and torsionless.

(2) implies (3). Let M be a faithful, injective, torsionless right J?-module.
Since M is faithful,

RR Q Π M (a direct product of copies of M).

This implies that E(RR) C Π M since Π M is injective. Thus E(RR) is

torsionless since ]J M is torsionless by assumption.

(3) implies (1). Let A be a torsionless right R-module. We show that
E(Λ) is torsionless, which may imply (1). Since A is torsionless, using (1. 1)

(4), we have A Q Π RR. This implies

Thus E(Λ) is torsionless, since JJ E(Rκ) is torsionless by (3).

REMARK. L. E.T. Wu, H. Y. Mochizuki and J.P.Jans [20] have proved
the following equivalence for a left Artinian ring R :

(4) E(RR) is projectίve.
(5) Extensions of torsionless right R-modules are torsionless. More-

over if A 0cA (A0, A z f f l R \ A0*^0, then A*^0.
By a slight modification of their proof, we may establish the equivalence

of the statements (3) and (5) above for any ring R, making use of (1. 1) and
(1. 3).

2. S-rings and self-cogenerator rings. Following F. Kasch [11, p. 455]
and K. Morita [15], we call a ring R a left *5-ring if /(7)^0 for each right
ideal I^R. Similarly we may define a right 5-ring. An 5-ring is a left *S-ring,
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but a right 5-ring as well. The following equivalence (1) ̂ =^ (2) ̂ =Φ (3) is
well known (see J.P.Jans [8, Theorem 3.2] and K. Morita [15, Theorem 1]).

(2. 1) The following conditions on a ring R are equivalent :
(1) R is a left S-ring.
(2) R contains a copy of each simple right R-module.
(3) A* =£0 for every finitely generated right R-module A^O.

PROOF. Since (R/I)*zzl(Γ) for a right ideal /, the equivalence (1)4=4(2)
f=χ3) is clear.

For a further discussion of left 5-rings, we need a notion of cogenerators
in $ίlR. A right .R-module C is called a cogenerator in ϋDίΛ if, for each A £ 2ftΛ,
A can be imbedded in a direct product of copies of C. C is a cogenerator
in 9ft Λ if and only if, for each simple U € WIR, C contains a copy of E(LΓ)
(see B. L. Osofsky [16, Lemma 1]). R is called a right self-cogenerator ring
if RR is a cogenerator in fflΐβ.

PROPOSITION 2. The following conditions are equivalent for any
ring R :

(1) R is a left S-ring.
(2) E(RR) is a cogenerator in ΏIR.
(3) Every faithful injective right R-module is a cogenerator in W.R.

PROOF. (1) implies (2). By assumption R contains a copy of each simple
right .R-module, so does E(RR). Hence E(RR) is a cogenerator in W.R since
E(RR} is injective.

(2) implies (3). Let M be a faithful injective right .R-module. Then the
same argument as in the proof of Proposition 1 shows that E(RR) Q JJ M by
the faithfulness and the injectivity of M. Thus, by (2), JJ Mis a cogenerator

in WtR) or equivalent ly, M is a cogenerator in WR (see K. Sugano [17, Lemma

U).
(3) implies (1). Since E(RR} is faithful and injective, E(RR) must be a

cogenerator in 9JIR by (3). Let U £ $ΪΛ be simple. We may assume U7c E(RR}
since E(RR) is a cogenerator in 9JίΛ. Then UnR^Q since E(RRy^>R. Thus R
contains UΓιR = U. It follows from this and (2.1) that R is a left 5-ring.

We are now in a position to characterize a ring R with the property
that each right .R-module is torsionless. Such a ring is indeed a right self-
cogenerator ring as is easily seen. First we define a right .R-module C: let
[Ui] be the family of all non-isomorphic simple right jR-modules, and let C
be the direct sum of the family {E(Ui)}.
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PROPOSITION 3. The following conditions are equivalent for any
ring R :

(1) R is a cogenerator in SDΪΛ.
(2) C is torsionless.
(3) E(Rχ) is torsionless and R is a left S ring.
(4) E(RR) is a torsionless cogenerator in BΪΛ.
(5) 3RR has a torsionless cogenerator in 2JΪΛ.

PROOF. (1)=K2) is clear.

(2) implies (1). Since C is torsionless, C Q JJ RB. Thus J[ RR is a cogene-

rator in ΏIR, or equivalent ly, R is a cogenerator in 2KΛ, since C is a
cogenerator in 3ΆR by its definition.

(1) =4 (3) =^ (4) =^ (5) is clear by Proposition 2.
(5) implies (1). Let C0 be a torsionless cogenerator in -Bΐβ. Since C0 is

torsionless, C0 CΠ RR Then the same argument as in the proof (2)= (̂1)

above shows that R is a cogenerator in SOΐβ.

REMARK. K. Sugano [17] has proved the equivalence of the following
statements :

(1) R is a cogenerator in ^ΰlR.
(2') C is projective.
(6) Every faithful right R-module is a cogenerator in 331R.
We take an interest in the equivalence (5)̂ = (̂6) above.

3. The main results. In this section we study rings R such that R is
an injective cogenerator in %RR. We begin our study with the following
lemma which is analogous to H. Bass [3, Theorem 5.4] or K. Morita [15,

Theorem 1].

LEMMA 1. Let R be a right S-ring. Then every finitely generated
projective submodule of a torsionless right R-module is always a direct
summand.

PROOF. Let 0— »P->A be an exact sequence of right R-modules with
P finitely generated projective and A torsionless. Then we have the dual
exact sequence

for a suitable choice of a finitely generated left ^-module B. Dualizing this
sequence again, we get the commutative exact diagram
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0 - β* -P ** - A**

δP I)

0 -P A

0.

Thus J3*=0. But this implies, using the fact that B is a finitely generated
left jR-module and that R is a right S-ring, 5=0 by (2.1). Hence the epimor-
phism A*—>P*->0 above splits by virtue of the projectivity of P*. So does
the first exact sequence 0—>P—>A, since P is reflexive and A is torsionless.

We are now ready to prove our main result.

THEOREM 1. The following conditions on a ring R are equivalent:
(1) R is an injective cogenerator in 9JίΛ.
(2) E(RR) is torsionless and R is an S-ring.
(3) Every factor module of RR®RR is torsionless and R is a right

S-ring.
(4) R is a cogenerator in 2JίΛ and there are only finitely many non-

isomorphic simple right (or left) ideals.

PROOF. (1)=<2), (3), (4) is found in B. L. Osofsky [16].
(2) implies (1). Let E(RR) be torsionless and R an S-ring. Then R is

a cogenerator in 5DΪΛ by Proposition 3. Next, making use of the above lemma,
we conclude that RR is a direct summand of E(RR\ or equivalently, R is
right self-injective since E(RR) Ί)R.

(3) implies (1). We first show that R is right self-injective, that is,
E(RR)=R. Suppose on the contrary that a^R for some a <Ξ E(RR). Since R+aR
is an epimorph of RR®RR, R-\-aR is torsionless by (3). In view of the above
lemma, RR is a direct summand of R + aR, since R-\-aR is torsionless and R
is a right S-ring by (3). This contradicts the fact that E(RR) '^)R+aR'l}R,
a<£R. Thus R is right self-injective. It follows easily that R is a left S-ring,
since each cyclic right jR-module (which is, in fact, an epimorph of RR®RR)
is torsionless by (3). Thus R is an injective cogenerator in SUίβ.

(4) implies (1). Let R be a cogenerator in 9JίΛ. Then R has the same
number of simple left ideals as simple right ideals, up to isomorphism (see
[12, Theorem 1] or K. Sugano [17, Remark 1]). Now let [Ul9 ••-,[/„} be
the full set of non-isomorphic simple right ί?-modules. Note that R is a
cogenerator in 9JIΛ if and only if each E(Ui) is finitely generated projective.

Therefore C= 0 E(CΛ) is projective (and injective), and ΈX1J^/ΈXJJ^J9 ,
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E(Un)/E(Un)J is a complete set of non-isomorphic simple right Λ-modules,
where and throughout this paper J denotes the Jacobson radical of R (see C.
Faith and E. A. Walker [6, p. 214] and B. L. Osofsky [16, p. 375]). Thus each
simple right jR-module is an epimorph of C and hence C is a generator in
9)ίΛ (see G. Azumaya [2, Theorem 1]). Since 9JI.R has an injective generator
(indeed C), this implies the injectivity of RR (see Y. Utumi [19, 3.3]).

REMARK. A ring R is called right PF if every faithful right ^-module
is a generator in 9Kβ. Azumaya-Utumi's theorem states that R is right PF if
and only if R is right self-injective, R/J is Artinian, and each right ideal ̂ 0
contains a simple right ideal. The rings characterized in the preceding theorem
coincide exactly with right PF-rings.

As an immediate corollary to the preceding theorem we have the follow-
ing.

COROLLARY. The following conditions on a ring R are equivalant:
(1) R is an injective cogenerator both in $& and in $RR.
(2) E(RR) and E(RR) are torsionless and R is an S-ring.
(3) Every factor module of RR®RR and of RR@RR is torsionless.

REMARK 1. Let A be a right ^-module. Following J. Dieudonne [4] we
say that A has perfect duality if

(i) A is reflexive,
(ii) the dual map A* ->A0* is an epimorphism for any submodule A0

of A, and A**—>β0* is also an epimorphism for any submodule BQ of A*,
(iii) every factor module of A and A* is torsionless.
The major unsolved problem concerning perfect duality is whether both

conditions (i) and (iii) imply perfect duality. Our theorem may give an
affirmative answer to this problem for a free .R-module A of a rank ^ 2.

REMARK 2. The author [12] has obtained a further result concerning
the above equivalences, namely, as follows :

(3.1) The following conditions on a ring R are equivalent:
(1) R is an injective cogenerator both in Λ9Jl and in W,R.
(2') E(RR) and E(RR} are torsionless and R is a right (or left) S-ring.
(4) E(U) and E(V) are torsionless for any simple left R-module U and

any simple right right ideal V.

REMARK 3. K. Morita [13, §2] has proved the following equivalences:
(1) R is an injective cogenerator both in ΛSDΪ and in %RR.
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(5) The class of reflexive left R-modules is closed under taking sub-
modules and factor modules, and so is the class of reflexive right
R-modules.

(6) Every finitely generated left, and every finitely generated right,
R-module is reflexive.

(7) Every cyclic left, and every cyclic right, R-module is reflexive.

4. Remarks on duality. Let us consider the following condition:

(a) The dual of any simple right R-module is zero or simple.

This type of duality has been studied by a number of authors, namely,
G. Azumaya [1], J. Dieudonne [4], K. Morita and H. Tachikawa [14] and H.
Tachikawa [18] under finiteness assumptions on a ring R. In the following
we deal with the condition (a) for general rings R.

LEMMA 2. The following conditions on a ring R are equivalent :
(1) R satisfies (a).
(2) // aR, azR, is simple then l(r(άj)=Ra.
(3) Exti(/?/i7,/2)=0 for each simple right ideal U.

PROOF. (1) implies (2). Let R satisfy (a) and aR, a € R, be simple.
Then

is simple by (a). Thus l(r(a))—Ra.
(2) implies (1). Assume (2) and let U be a simple right Λ-module such

that £7*^0. Then U^aR for some a € R. Now; l(r(a)) is simple. In fact, let
l(r(ά)}^bΦQ. Then r(a) = r(b) since r(a) is maximal. Hence bR^R/r(b)
=R/r(ά)=aR is simple, and l(r(b)}=Rb by (2). Thus l(r(a))=l(r(b))=Rb, and
hence l(r(ά)) is simple. Since U*^(aR)*^(R/r(a))*^l(r(a)\ U* is simple.

(2) implies (3). Note that Exti(Λ/ί7, R)=Q if and only if each homomor-
phism from U to R may be given by the left multiplication of an element
of R, where U is a right ideal of R. Now let aR, a € R, be simple and let
/ be a map from aR into RR. Clearly r(α)cr(/α). Hence, by (2), Ra=l(r(ά))
D/(r(/α)) 5/α. Thus / may be given by the left multiplication of an element
of R and hence Exi^R/aR, Λ)=0.

(3) implies (2). Assume (3) and let aR, azR, be simple. Let b £ l(r(ά)).
Then r(b)θr(a) and hence the mapping ar-^br, rzR, from aR into R is
well defined. By assumption, this map may be given by the left multiplication
of an element of R and hence b € Ra. This implies l(r(a))=Ra.
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REMARK. If U is a simple right ideal, then either [72 = 0 or U=eR,
e=e2zR (see N. Jacobson [10, Proposition 1, p. 57]). Hence the condition (3)
is equivalent to the following condition :

(3') Eκtl

R(R/U,R)=Q for each nilpotent simple right ideal U.
By the proof of the above lemma, if R satisfies one of the equivalent

conditions in the above lemma, the simplicity of aR, α £ jR, implies that of
Ra, consequently, the left socle of R contains the right socle (see N. Jacobson
[10, p.65]).

In what follows, we denote by [A] the composition length of a (left or
right) ^-module A when A has a composition series. Now, let us assume (a),
and let A be a right J^-module of finite length. Then, using the induction
on the length [A] of A, we see easily that [A*]:g[A]. We shall use this
fact to show the following which is essentially the same as J. Dieudonne [4,
(3.4)] or as K. Morita and H. Tachikawa [14, Theorem 1.1].

PROPOSITION 4. Let R satisfy the condition (a) and its left analogue.
Let A be a torsionless right R-module of finite length and let A0 be any
submodule of A. Then A/A0 is always reflexive.

PROOF. By the fact mentioned above, [A**] ̂  [A*] ̂  [A]. But, since A
is torsionless, [A]^[A**]. Thus [A**] = [A*] = [A], and A is reflexive. Also,
AO is reflexive since A0 is a torsionless module of finite length. Moreover
the dual sequence

0 - - (A/Ao)* - - A* - - AO* - - 0

is exact by virtue of [A*] = [A]. Dualizing this sequence we have the following
commutative exact diagram

0 - - AO** — A** - - (A/Ao)** — *• 0

[

o — -AO — - A — - A/AO — -o

by the same argument as above. Thus A/A0 is reflexive.

REMARK. Let the assumptions and the notations be as in the preceding
proposition. Then A has perfect duality in the sense of J.Dieudonne [4] by
the above proof.

If we combine Lemma 2 with Proposition 4, we can easily deduce, in
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view of Remark 3, a result of M. Ikeda [7, Proposition 3].
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