Tôhoku Math. Journ. 20 (1968), 207-213.

A PROOF OF CARTAN'S THEOREMS A AND B

YUM-TONG SIU

(Received December 13, 1967)

In this note we give a new proof of the following theorems of Cartan:

THEOREM A. If \mathfrak{F} is a coherent analytic sheaf on a (reduced) Stein space X, then $\Gamma(X, \mathfrak{F})$ generates \mathfrak{F}_x for all $x \in X$.

THEOREM B. If \mathfrak{F} is a coherent analytic sheaf on a Stein space X, then $H^p(X,\mathfrak{F})=0$ for $p\geq 1$.

The known proofs of these theorems depend on one of the following: (i) Cartan's Lemma of invertible holomorphic matrices ([2], [3]), (ii) methods of partial differential equations ([5]), and (iii) methods of differential geometry ([1]). In the proof here essentially we make use only of Dolbeault's Lemma (I.D.3, [4]) and Schwartz's Theorem (App.B, 12, [4]). Theorem B is first proved and then Theorem A is derived from it.

NOTATIONS. ${}_{n}\mathfrak{D}$ =the structure-sheaf of the complex *n*-space C^{n} . For r > 0, B_{r}^{n} or B_{r} denotes the ball in C^{n} with radius r and centered at the origin. The boundary of a set E in C^{n} is denoted by ∂E . Suppose $g = (g_{1}, \dots, g_{p})$ is a *p*-tuple of complex-valued functions defined on a set K. Then $||g||_{K}$ denotes $\sup\{|g_{i}(x)| \mid 1 \leq i \leq p, x \in K\}$. If \mathfrak{U} is an open covering of a topological space, then $N(\mathfrak{U})$ denotes the nerve of \mathfrak{U} .

DEFINITION 1. Suppose $\gamma_i < \delta_i$ and $\delta_i > 0$, $1 \leq i \leq n$. The domain $\{z = (z_1, \dots, z_n) \in \mathbb{C}^n | \gamma_i < |z_i| < \delta_i, 1 \leq i \leq n\}$ is called a *polyannulus*.

In this definition γ_i can be negative. Hence a polydisc is a polyannulus.

DEFINITION 2. Suppose p_j , $1 \leq j \leq n+r$, are polynomials on \mathbb{C}^n such that $p_i = z_i$ for $1 \leq i \leq n$. Suppose $\alpha_j < \beta_j$ and $\beta_j > 0$, $1 \leq j \leq n+r$. The domain $D = \{z \in \mathbb{C}^n \mid \alpha_j < |p_j(z)| < \beta_j, 1 \leq j \leq n+r\}$ is called a *polynomial polyannulus*. Suppose (k_1, \dots, k_{n+r}) is a permutation of $(1, \dots, n+r)$ such that $\alpha_{k_j} \geq 0$ for $1 \leq j \leq m$ and $\alpha_{k_j} < 0$ for $m < j \leq n+r$. The polynomials p_{k_j} , $1 \leq j \leq m$, are called essential defining polynomials for D.

Trivial modifications of the proofs of I.D.1, 2, 3 in [4] give us:

(1) Suppose P is a polyannulus in C^n . If q > 0 and ω is a $C^{\infty} \overline{\partial}$ -closed

(0, q)-form on a neighborhood of P^{-} , then there is a $C^{\infty}(0, q-1)$ -form η on P such that $\overline{\partial}\eta = \omega$.

By using (1) instead of I.D.3, [4], we can easily modify the proof of I.F.5, [4] to obtain:

(2) Suppose D is a polynomial polynomial in \mathbb{C}^n . If q > 0 and ω is a \mathbb{C}^{∞} $\overline{\partial}$ -closed (0,q)-form on a neighborhood of D^- , then there is a \mathbb{C}^{∞} (0,q-1)-form η on D such that $\overline{\partial}\eta = \omega$.

By using (2) instead of I.F.5,[4], we can easily modify the proof of I.F.8, [4] to obtain:

(3) Suppose D is a polynomial polynomials and p_k , $1 \le k \le m$, are essential defining polynomials for D. Let $G = \{z \in C^n \mid p_k(z) \ne 0, 1 \le k \le m\}$. Then any holomorphic function on D can be approximated uniformly on compact subsets of D by holomorphic functions on G.

DEFINITION 3. Suppose \mathfrak{F} is a coherent analytic sheaf on a σ -compact complex space (X, \mathfrak{O}) and K is a compact subset of X. Suppose $\varphi : \mathfrak{O}^p \to \mathfrak{F}$ is a sheaf-epimorphism such that φ induces an epimorphism $\widetilde{\varphi} : \Gamma(X, \mathfrak{O}^p)$ $\to \Gamma(X, \mathfrak{F})$. For $f \in \Gamma(X, \mathfrak{F}), ||f||_{\mathfrak{K}}^{\mathfrak{g}}$ is defined as $\inf\{||g||_{\mathfrak{K}} ||g| \in \Gamma(X, \mathfrak{O}^p), \widetilde{\varphi}(g) = f\}$.

LEMMA 1. Under the assumptions of Def. 3, the norms $\{\|\cdot\|_{K}^{\varphi}|K \text{ is a compact subset of } X\}$ define a Fréchet space topology in $\Gamma(X, \mathfrak{F})$.

PROOF. Let $\Re = \text{Ker } \varphi$. $\Gamma(X, \Re)$ is a closed subspace of the Fréchet space $\Gamma(X, \mathfrak{O}^p)$ with the topology of uniform convergence on compact subsets (cf.VIII.A. 2, [4]). The surjectivity of $\widetilde{\varphi}$ implies that the topology defined by the norms $\|\cdot\|_{\kappa}^{\varphi}$ in $\Gamma(X, \mathfrak{F})$ is identical with the quotient topology induced by $\widetilde{\varphi}$ and that the quotient topology is a Fréchet space topology. q.e.d.

This Fréchet space topology of $\Gamma(X, \mathfrak{F})$ is independent of the choice of φ and hence is canonical.

PROPOSITION 1. Suppose $\varphi^{(1)}, \dots, \varphi^{(m)}$ are real-valued C^{∞} functions on C^n satisfying:

$$(*) \qquad |\varphi_{ij}^{(k)}(z)| < (6n^2)^{-1} \text{ and } |\varphi_{ij}^{(k)}(z) - \delta_{ij}| < (3n^2)^{-1}$$

for $z \in \mathbb{C}^n$, $1 \leq i, j \leq n$, and $1 \leq k \leq m$, where δ_{ij} is the Kronecker delta,

$$\varphi_{ij}^{(k)} = \frac{\partial^2 \varphi^{(k)}}{\partial z_i \partial z_j}, \text{ and } \varphi_{ij}^{(k)} = \frac{\partial^2 \varphi^{(k)}}{\partial z_i \partial \overline{z}_j}. \text{ Suppose } D = \{z \in \mathbb{C}^n \mid \varphi^{(k)}(z) < 0, 1 \leq k \leq m\}$$

208

is a bounded domain. Then $H^p(D, {}_n\mathfrak{L})=0$ for $p \ge 1$.

PROOF. First we prove that

(4) for $z^0 = (z_1^0, \dots, z_n^0) \in \partial D$, there exists a polynomial f such that $f(z^0) = 0$ and f is nowhere zero on D.

Fix $z^0 \in \partial D$. Then $\varphi^{(k)}(z^0) = 0$ for some k. Define a polynomial f(z)= $\sum_{i=1}^n \frac{\partial \varphi^{(k)}}{\partial z_i}(z^0)(z_i - z_i^0)$. Then $\varphi^{(k)}(z) = 2\operatorname{Re}\left(f(z) + \sum_{1 \leq i, j \leq n} \varphi^{(k)}_{ij}(z^*)(z_i - z_i^0)(z_j - z_j^0)\right)$

+ $\sum_{1 \leq i, j \leq n} \varphi_{ij}^{(k)}(z^*)(z_i - z_i^0)(\overline{z_j - z_j^0})$ for some z^* depending on z. (*) implies that

$$\varphi^{(k)}(z) \ge 2\operatorname{Re} f(z) + \frac{1}{3} \left(\sum_{i=1}^{n} |z_i - z_i^0|^2 \right).$$
 Hence f is nowhere zero on D .

Construct open subsets P_k of D, $1 \leq k < \infty$, such that (i) P_k is a union of topological components of a polynomial polynomial whose essential defining polynomials are nowhere zero on D, (ii) $P_k \subset CP_{k+1}$, and (iii) $\bigcup_{k=1}^{\infty} P_k = D$. This is possible by (4).

Now by using (2) and (3) we can complete the proof in almost the same way as the proof of I.D.5, [4]. q.e.d.

COROLLARY. Suppose \mathfrak{F} is a coherent analytic sheaf on D admitting a finite free resolution. Then $H^p(D, \mathfrak{F})=0$ for $p \ge 1$.

PROPOSITION 2. Suppose \mathfrak{F} is a coherent analytic sheaf defined on an open neighborhood G of B_r^- in \mathbb{C}^n . Then dim_c $H^p(B_r, \mathfrak{F}) < \infty$ for $p \ge 1$.

PROOF. Choose in \mathbb{C}^n balls $U_k \subset \subset V_k \subset \subset G$, $1 \leq k \leq m$, such that (i) $\partial B_r \subset \bigcup_{k=1}^m U_k$, and (ii) \mathfrak{F} admits a finite free resolution on V_k . Let ψ_k be a \mathbb{C}^∞ non-negative function on \mathbb{C}^n such that $\psi_k \equiv 0$ outside V_k and $\psi_k > 0$ on U_k . $1 \leq k \leq m$. Let $\varphi^{(0)} = \sum_{i=1}^n |z_i|^2 - r^2$. Choose positive numbers λ_k , $1 \leq k \leq m$, so small that $\varphi^{(k)} = \varphi^{(0)} - \sum_{i=1}^k \lambda_i \psi_i$ satisfies (*) for $z \in \mathbb{C}^n$, $1 \leq i, j \leq n$ and $1 \leq k \leq m$. Let $D_k = \{z \in \mathbb{C}^n | \varphi^{(k)}(z) < 0\}$, $0 \leq k \leq m$. Then $D_0 = B_r \subset \mathbb{C} D_m$, $D_k = D_{k-1} \cup (D_k \cap V_k)$, and $D_{k-1} \cap V_k = D_{k-1} \cap (D_k \cap V_k)$. By Cor. to Prop. 1, $H^p(D_{k-1} \cap V_k, \mathfrak{F}) = 0$ for $p \geq 1$ and $1 \leq k \leq m$. From the exactness of the Mayor-Vietoris sequence $H^p(D_k, \mathfrak{F}) \to H^p(D_{k-1}, \mathfrak{F}) \oplus H^p(D_k \cap V_k, \mathfrak{F}) \to H^p(D_{k-1} \cap V_k, \mathfrak{F})$, we conclude that $H^p(D_k, \mathfrak{F}) \to H^p(D_{k-1}, \mathfrak{F})$ is surjective for $p \geq 1$ and $1 \leq k \leq m$. Hence Y.-T. SIU

(5) the restriction map $H^p(D_m, \mathfrak{F}) \to H^p(B_r, \mathfrak{F})$ is surjective, $p \ge 1$.

Choose two finite collections of balls in G, $\{\widetilde{U}_{j}^{i}\}_{j=1}^{l}$, i = 1, 2, such that (i) $\widetilde{U}_{j}^{1} \subset \subset \widetilde{U}_{j}^{2}$, (ii) $B_{r} \subset \bigcup_{j=1}^{\iota} \widetilde{U}_{j}^{1}$, (iii) $D_{m} \subset \bigcup_{i=1}^{\iota} \widetilde{U}_{j}^{2}$, and (iv) on \widetilde{U}_{j}^{2} we have a sheaf-epimorphism $\xi_j : {}^{J=1}_{n} \mathfrak{D}^{p_j} \to \mathfrak{F}$ which is part of a finite free resolution. Let $U_{j}^{1} = \widetilde{U}_{j}^{1} \cap B_{i}, U_{j}^{2} = \widetilde{U}_{j}^{2} \cap D_{m}, \text{ and } \mathfrak{l}_{i} = \{U_{j}^{i}\}_{j=1}^{l}, i = 1, 2. \text{ Fix } p \ge 1. \text{ Since } H^{1}(U_{j_{0}}^{i})$ $\cap \cdots \cap U^i_{j_0}$, Ker ξ_{j_0})=0 by Cor. to Prop. 1, the map $\Gamma(U^i_{j_0} \cap \cdots \cap U^i_{j_0}, {}_n\mathfrak{D}^{p_{j_0}})$ $\rightarrow \Gamma(U_{j_0}^i \cap \cdots \cap U_{j_q}^i, \mathfrak{F})$ induced by ξ_{j_0} is surjective for $l \geq j_0, \cdots, j_q \geq 1$ and i=1, 2. By Lemma 1 $\Gamma(U_{j_0}^i \cap \cdots \cap U_{j_0}^i, \mathfrak{F})$ has a canonical Fréchet space topology. $Z^{p}(N(\mathfrak{U}_{i}),\mathfrak{F}), i=1,2, \text{ and } C^{p-1}(N(\mathfrak{U}_{1}),\mathfrak{F}) \text{ can be given Fréchet space structures}$ canonically. Let $\rho: Z^p(N(\mathfrak{U}_2),\mathfrak{F}) \to Z^p(N(\mathfrak{U}_1),\mathfrak{F})$ be the restriction map and δ : $C^{p-1}(N(\mathfrak{U}_1),\mathfrak{F}) \to Z^p(N(\mathfrak{U}_1),\mathfrak{F})$ be the coboundary map. Since $H^s(U^i_{j_0} \cap \cdots)$ $(\cup U_{j_q}^i, \mathfrak{F}) = 0$ for $s \ge 1, i = 1, 2, l \ge j_0, \dots, j_q \ge 1$ by Cor. to Prop.1, $H^p(N(\mathfrak{U}_1), \mathfrak{F})$ $\approx H^p(B_r, \mathfrak{F}) \text{ and } H^p(N(\mathfrak{U}_2), \mathfrak{F}) \approx H^p(D_m, \mathfrak{F}). \text{ By } (5) \ \rho \oplus \delta: \ Z^p(N(\mathfrak{U}_2), \mathfrak{F}) \oplus C^{p-1}$ $(N(\mathfrak{U}_1),\mathfrak{F}) \to Z^p(N(\mathfrak{U}_1),\mathfrak{F})$ defined by $(\rho \oplus \delta)(a \oplus b) = \rho(a) + \delta(b)$ is surjective. Since $U_i^{i} \subset \subset U_i^{i}$, the map $\rho \oplus 0$: $Z^{p}(N(\mathfrak{U}_{2}), \mathfrak{F}) \oplus C^{p-1}(N(\mathfrak{U}_{1}), \mathfrak{F}) \to Z^{p}(N(\mathfrak{U}_{1}), \mathfrak{F})$ defined by $(\rho \oplus 0)(a \oplus b) = \rho(a)$ is compact. By Schwartz Theorem (App.B, 12, [4]), $0 \oplus \delta = \rho \oplus \delta - \rho \oplus 0$ has finite-dimensional cokernel. Hence δ has finite-dimensional cokernel. dim_c $H^p(B_r, \mathfrak{F}) < \infty$. q.e.d.

PROPOSITION 3. Under the assumption of Prop. 2, $H^p(B_r, \mathfrak{F}) = 0$ for $p \ge 1$.

PROOF. By shrinking G, w.l.o.g. we can assume dim Supp $\mathfrak{F} < \infty$. Fix $p \geq 1$. Use induction on dim Supp \mathfrak{F} . The case dim Supp $\mathfrak{F} = 0$ is trivial. Suppose the proposition is true for dim Supp $\mathfrak{F} < d$. Now assume dim Supp $\mathfrak{F} = d > 0$. Let Supp $\mathfrak{F} = (\bigcup_{i \in I} X'_i) \cup (\bigcup_{j \in J} X_j)$ be the decomposition into irreducible branches, where dim $X'_i < d$ and dim $X_j = d$. Let $\pi : \mathbb{C}^n \to \mathbb{C}$ be the projection $\pi(z_1, \cdots, z_n) = z_1$. After a linear coordinates transformation in \mathbb{C}^n we can assume that no X_j is contained in $\pi^{-1}(a)$ for any $a \in \mathbb{C}$. Let M be the set of entire functions on C. Take $f \in M - \{0\}$. Let $\varphi_f : \mathfrak{F} \to \mathfrak{F}$ be the sheaf-homomorphism defined by multiplication by $f \circ \pi$ and let $\mathfrak{R}_f = \operatorname{Ker} \varphi_f$ and $\mathfrak{L}_f = \operatorname{Coker} \varphi_f$. Then dim Supp $\mathfrak{R}_f < d$ and dim Supp $\mathfrak{L}_f < d$. By induction hypothesis

(6)
$$H^{q}(B_{r}, \mathfrak{R}_{f}) = H^{q}(B_{r}, \mathfrak{L}_{f}) = 0 \quad \text{for} \quad q \geq 1.$$

The exact sequence $0 \longrightarrow \Re_f \xrightarrow{\alpha} \Im \longrightarrow \Im/\Re_f \longrightarrow 0$ (where α is the inclusion) implies that $H^p(B_r, \Im) \xrightarrow{\approx} H^p(B_r, \Im/\Re_f)$ by (6). The exact sequence $0 \longrightarrow \Im/\Re_f$

210

 $\begin{array}{c} \xrightarrow{\boldsymbol{\beta}} & & \\ \xrightarrow{\boldsymbol{\mathfrak{F}}} & \xrightarrow{\boldsymbol{\mathfrak{P}}_f} & \\ \xrightarrow{\boldsymbol{\approx}} & H^p(B_r, \mathfrak{F}) \text{ by (6). Hence } \varphi_f \text{ induces an isomorphism} \end{array}$

(7)
$$\varphi_f^* \colon H^p(B_r, \mathfrak{F}) \xrightarrow{\approx} H^p(B_r, \mathfrak{F}).$$

Suppose $0 \neq \omega \in H^p(B_r, \mathfrak{F})$. Define $\Phi: M \to H^p(B_r, \mathfrak{F})$ by $\Phi(f) = \varphi_f^*(\omega)$ for $f \in M - \{0\}$ and $\Phi(0) = 0$. Then Φ is a linear injection by (7). dim_c $H^p(B_r, \mathfrak{F}) \ge \dim_c M = \infty$, contradicting Prop.2. q.e.d.

A proof similar to [6] gives us

COROLLARY 1. Under the assumption of Prop.2, \mathfrak{F} is generated on B_r by $\Gamma(B_r, \mathfrak{F})$.

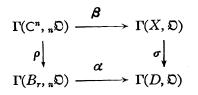
COROLLARY 2. Suppose \mathfrak{F} is a coherent analytic sheaf on a Stein space X and G is a relatively compact open subset of X. Then \mathfrak{F} is generated on G by $\Gamma(G, \mathfrak{F})$.

PROOF. Follows from the fact that some open neighborhood of G^- in X is biholomorphic to a subvariety of a ball in a complex number space.

q.e.d.

COROLLARY 3. Suppose D is an open subset of a Stein space (X, \mathfrak{D}) and $\varphi: X \to \mathbb{C}^n$ is holomorphic such that (i) for some open neighborhood G of $D^- \varphi$ maps G biholomorphically onto a subvariety of some open subset H of \mathbb{C}^n and (ii) $\varphi(D)$ is a subvariety in a ball B_r in H. Then $\Gamma(X, \mathfrak{D})$ is dense in $\Gamma(D, \mathfrak{D})$ with the topology of uniform convergence on compact subsets.

PROOF. Let \mathfrak{F} be the ideal-sheaf of $\varphi(G)$ on H. Since $H^{1}(B_{r},\mathfrak{F})=0$, the natural map: $\Gamma(B_{r},\mathfrak{F}) \longrightarrow \Gamma(B_{r},\mathfrak{F})/\mathfrak{F})(\approx \Gamma(D,\mathfrak{O}))$ is surjective. This means that the map $\alpha: \Gamma(B_{r},\mathfrak{F}) \longrightarrow \Gamma(D,\mathfrak{O})$ induced by $\varphi \mid D$ is surjective. Let $\beta: \Gamma(\mathbb{C}^{n},\mathfrak{F}) \longrightarrow \Gamma(X,\mathfrak{O})$ be induced by φ .



is commutative, where ρ and σ are restriction maps. Since $\Gamma(\mathbb{C}^n, \mathbb{Q})$ is dense in $\Gamma(B_r, \mathbb{Q})$ (I.F.9, [4]), $\Gamma(X, \mathbb{Q})$ is dense in $\Gamma(D, \mathbb{Q})$. q.e.d. Y.-T. SIU

PROOF OF CARTAN'S THEOREM B. Suppose \mathfrak{F} is a coherent analytic sheaf on a Stein space (X, \mathfrak{O}) . We construct open subsets X_k and holomorphic maps $\varphi^{(k)}: X \to \mathbb{C}^{n_k}, 1 \leq k < \infty$, such that (i) $X = \bigcup_{k=1}^{\infty} X_k$, (ii) $X_k \subset \subset X_{k+1}$, (iii) $\varphi^{(k)}$ maps X_{k+1} biholomorphically onto a subvariety of an open subset of \mathbb{C}^{n_k} , and (iv) $\varphi^{(k)}(X_k)$ is a subvariety in a ball of \mathbb{C}^{n_k} . By Cor.2 to Prop.3, there exist sheaf-epimorphisms $\psi^{(k)}: \mathfrak{O}^{r_k} \to \mathfrak{F}$ on X_k for $k \geq 1$. By Prop. 3, $H^1(X_k, \operatorname{Ker} \psi^{(k+s)}) = 0$ for $k \geq 1$ and $s \geq 1$. Hence

(8) $\widetilde{\psi}_{k,s} \colon \Gamma(X_k, \mathfrak{Q}^{r_{k+1}}) \to \Gamma(X_k, \mathfrak{F})$ induced by $\psi^{(k+s)}$ is surjective for $k \ge 1$ and $s \ge 1$.

By Lemma 1 $\Gamma(X_k, \mathfrak{F})$ has a canonical Fréchet space structure for $k \ge 1$. For $k \ge 1$ and $s \ge 1$,

is commutative, where the horizontal maps are restriction maps. By (8) and Cor. 3 to Prop. 3,

(9) $\Gamma(X_{k+s}, \mathfrak{F})$ is dense in $\Gamma(X_k, \mathfrak{F})$ for $k \ge 1$ and $s \ge 1$.

By Prop. 3 $H^p(X_k, \mathfrak{F})=0$ for $p \ge 1$ and $k \ge 1$. Let $\mathfrak{X}^{(k)}=\{X_m\}_{m=1}^k$ for $k \ge 1$, and $\mathfrak{X}=\{X_m\}_{m=1}^\infty$. Then $H^p(N(\mathfrak{X}^{(k)}), \mathfrak{F})=0$ for $k \ge 1$ and $p \ge 1$, and $H^p(X, \mathfrak{F}) \approx H^p(N(\mathfrak{X}), \mathfrak{F})$ for $p \ge 1$.

Fix $q \ge 1$ and $\sigma \in Z^q(N(\mathfrak{X}), \mathfrak{F})$. Let $\sigma^{(k)} = \sigma | N(\mathfrak{X}^{(k)})$. Then $\sigma^{(k)} = \delta \alpha^{(k)}$ for some $\alpha^{(k)} \in C^{q-1}(N(\mathfrak{X}^{(k)}), \mathfrak{F})$. $\alpha^{(k)} - \alpha^{(k-1)} \in Z^{q-1}(N(\mathfrak{X}^{(k-1)}), \mathfrak{F})$.

Case q=1. Construct by induction on $k \ \beta^{(k)} \in C^{0}(N(\mathfrak{X}^{(k)}),\mathfrak{F})$ such that $\delta\beta^{(k)} = \sigma^{(k)}$ and $\sup_{\substack{3 \leq j \leq k \\ j \leq k}} \|\beta^{(k)} - \beta^{(k-1)}\| X_{j-1} \|_{X_{j-1}}^{\psi^{(j)}} < 2^{-k}$: Choose $\beta^{(1)} = \alpha^{(1)}$. Suppose we have chosen $\beta^{(1)}, \dots, \beta^{(k-1)}$. Then $\alpha^{(k)} - \beta^{(k-1)}$ is a section of \mathfrak{F} on X_{k-1} . By (8) and (9) there exists $\tau \in \Gamma(X_k,\mathfrak{F})$ such that $\sup_{\substack{3 \leq j \leq k \\ 3 \leq j \leq k}} \|\tau - (\alpha^{(k)} - \beta^{(k-1)})\| X_{j-1} \|_{X_{j-1}}^{\psi^{(j)}} < 2^{-k}$. Set $\beta^{(k)} = \alpha^{(k)} - \tau$. The construction is complete. Define $\beta \in C^{0}(N(\mathfrak{X}),\mathfrak{F})$ by $\beta(X_k) = \lim_{n \geq k} \beta^{(m)}(X_k)$. It is easily verified that β is well-defined and $\delta\beta = \sigma$.

Case q > 1. Since $\alpha^{(k)} - \alpha^{(k-1)} \in Z^{q-1}(N(\mathfrak{X}^{(k-1)}), \mathfrak{F})$, there exists $\beta^{(k-1)} \in C^{q-1}(N(\mathfrak{X}^{(k-1)}), \mathfrak{F})$ such that $\delta\beta^{(k-1)} = \alpha^{(k)} - \alpha^{(k-1)}$ on $N(\mathfrak{X}^{(k)})$. Define $\gamma \in C^{q-1}(N(\mathfrak{X}), \mathfrak{F})$ by $\gamma = \alpha^{(k)} - \delta\left(\sum_{m < k} \beta^{(m)}\right)$ on $N(\mathfrak{X}^{(k)})$. γ is well-defined and $\delta\gamma = \sigma$. q.e.d.

PROOF OF CARTAN'S THEOREM A. Follows from Theorem B by [6]. q.e.d.

212

References

- A. ANDREOTTI AND E. VESENTINI, Les théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, Séminaire Charles Ehresmann, 4(1962), 1-31.
- [2] H. CARTAN, Séminaire Henri Cartan de l'École Normale Supérieure, 1951-52.
- [3] R.C.GUNNING, On Cartan's theorems A and B in several complex variables, Annali di Mat. pura ed appl., 55(1961), 1-12.
- [4] R. C. GUNNING AND H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
- [5] L.HÖRMANDER, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, N. J., 1966.
- [6] Y.-T.SIU, A Note on Cartan's Theorems A and B, Proc. Amer. Math. Soc., 18(1967), 955-956.

MATHEMATICS DEPARTMENT UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA, U.S.A.