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1. Introduction. In this paper the kernels for the class of convolution
transforms that was introduced by I.I.Hirschman and D.V.Widder (see[2,p 696])
and was treated in many papers by Y.Tanno (see [4], [5] and [6]) will be
investigated.

A meromorphic function F(s} will be of class F i f :

(1. 1) F(s)= J [(l-s/ak)exp(s/ak)/(l-s/ck)exp(s/ck}]

00

where Reak=ak, Reck=ckί 0^ak/ck < 1, Σ ak2< °° and ck may be equal to

±00 in which case (1 — s/ck)exp(s/ck)^l.
The kernels of our transforms will be functions H(t) satisfying for some

00

(1. 2) F(iyYl = f e-iytdH(t\

Asymptotic properties of H(t) and its derivatives will be found on basis of
zeros and poles, of F(s) which are analogous to those achieved by I.I.Hirschman
and D.V.Widder for the case where all ck = ±oo. Also conditions for H(t) to
have derivatives are set and in Section 6, the strict positive character of H(t)
on at least half the real axis is established.

In the literature one can find treatments of Fl(s)=ebsF(s) where F(s)zF
instead of F(s\ this will represent only a shift of b in H(t) and we shall
avoid it.

2. H(t) as a distribution function. In this section we shall relate to
F(s) a function H(f) satisfying: H(t) is non-decreasing, //(•—<χ>)= Hm

and J/(oo)= Hm H(t)=l.

THEOREM 2.1. Suppose we have a function Fn(s) such that
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= Π (i - V«*X /α*/ Π (i -

(1)

(2)

έ Hn(t) satisfying-,
ί/n(ί) ί5 a non-decreasing normalized function, Hw(— oo)=0 and Hn(°°)

= 1,

ίn(ί) /5 continuous except at tn= ̂  (tf*1— cΐ1) where it has a jump of

Π

(3)

and

Γ(s)-=f"a ( ) L
converges for aγ < Re 5 < ctz

forO<d< Λ2,

(2. αfc, oo}.

To prove this theorem we shall need the following lemma.

LEMMA 2.2. Let ^(s) be defined by

for 0 < ajci < 1 and let At(ί) be defined by

exp(-]

(2. 3) At(ί)=

ί !> Λί *—c<x
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"when at > 0 and by

0 t <aϊl-cϊl

(2.4) ai/2cί

when ai < 0. Then :

(1) iF(sΓ = f e-'
J —00

converges for Re 5 < at in case ai > 0 α^J /or Re 5 > at in case ai < 0.

1 ΓMT est

(2) A4(ί) - ~ lim f -̂ - ̂ 5
ZTTZ j^oo Jd_<Γ 5^(5)

/or 0< d<\at\.

PROOF. Substitution of (2.3) and (2.4) yields (1) for a > 0 and a < 0
respectively. Equation (2) follows from Theorem 5.6 [7, p. 242].

REMARK. When c=°° this reduces to the classical result (see [3, p. 24]).

We shall need also the following lemma, the proof of which we omit
being simple and straightforward.

LEMMA 2.3. Let ht(t) be a distribution function continuous in — oo < t
<oo except at t = at where it has a jump of dί9 then the function H(t)
defined by

oo

H(t)= f
•'-co

is a distribution function which has its only jump of oc^oL2 at al }-az.

PROOF OF THEOREM 2.1. We define Hn(t) by induction as follows

(2.5) H.(ί)= Hn^(t^u)
J — 00

By induction one sees easily that Lemmas 2.2 and 2.3 yield (1) and (2) (we
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have to recall that ht(t) has by Lemma 2.2 its only jump oίai/Ci at afl—cϊl).
Now Theorem 16a of [7, p. 257] yields (3) and therefore Theorem 5.6 of
[7, p. 242] yields (4). Q.E.D.

COROLLARY 2.4. Hn(t) defined by Theorem 3.1 satisfies

(2. 6) H.W-H.ίO) = -±ϊ Jim £ -ggL Λ.

THEOREM 2.5. Let F(s) be defined by (1.1), then there exists a function
H(t) satisfying',

(1) H(t) is a normalized non-decreasing function, //(—oo)=0 and

(2) for -oo <3/<oo

F(iy)~1= ί e~iytdH(t),
J-oo

1 ΓίT St 1

(3) H(t) — H(0) = ——— lim I — .̂ ds.

PROOF. For every A > 0

lim FH(iy)-l=F(iy)-1

uniformly in —A ̂ y^ A where Fn(s) are defined in Theorem 2.1. Therefore
by Theorem 2.1 here and Corollary 2.3 of [3, p. 41] there exists a function
H#(t) satisfying: (a) H*(t) is non-decreasing, (b) H*(— oo)=0 and ίίH.(oo) = l,(c)

1 Γ°°
lim Hn(ί)=H*(ί) in all points of continuity of H*(t), (d) ^ . . = I e~ίytdH^(t).n-*°° "(ty) j_oo

Using Theorem 4. 5 of [8, vol. 2, pp. 259-260] we obtain that H(t)
derived from H*(t) by normalization satifies assumption (1), (2) and (3) of our
theorem. Q.E.D.

For the following theorems let us recall the definition of N=N({ak}> {ck})
introduced in [1]

ΛΓ=liminf[ΛΓ({αΛ,α:)-^
x— κx> rr-*— oo

where N({ak},x) is the number of aks between zero and x.
We shall also need the following definition.

DEFINITION. The meromorphic function F(s) satisfying (1.1) will satisfy

condition A(n) if there exists a function %(τ) > 0 such that I χ(τ) τ~1dτ<oo
Jo

and
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(2.7) \F(σ + iτ)\-*=0(\τ\-nχ(τ)) |τ|-»oo

uniformly in —R<σ<R for any R.

THEOREM 2.6. If in addition to the assumption of Theorem 2.5 we
have that F(s) satisfies A(0) (as a special case we have N> 0) then we have
also :

(4) F(sΓl= f e-stdH(t) oc, < Re s < Λ2,
t/_00

(5) H(t)= " - for all d, 0<d<ct,.

e —
PROOF. Since — j-y > is regular in a^ < Re 5 < <22 the residue theorem

5>Γ \S)

yields for 0 < d < <X2

*-iT *+iT t

J "/ K^^-^J -iT JiT ' *Γ^J

iT

°= ~ + +

-iT

Using Theorem 2.1 of [1] or (2.7) with n=0 we have

lim 73 = lim 74 = 0.
T^oo Γ->oo

The above calculation with condition A(0) imply

1 Γ '̂̂ *00 ds

-. d+ioo j-

Letting ί-*— oo we have H(0) = -̂ -̂  ί ~κfγ anc^ therefore conclusion
*d— ioo V /

(5) is valid. A similar method will yield for Λx < Jj < 0

(2.8)

Combining (5), (2.8) and the condition A(0) we obtain for some positive K

(2.9) H(t)^Kedt 0<d<a2 and l-/f(f) ^K*« ^ < ̂  < 0

which implies (4). Q.E.D.
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REMARK. The condition A(0) is not fully required here, it is enough
for (2.7) to hold uniformly in aγ < Re s < cc2.

3. Continuity and differentiality of H(f).

THEOREM 3.1. If F(s) satisfies condition A(n\ H(t) £ Cn(- oo, oo).

PROOF. One can easily see that for k^n

(3.1) H M ^ - , °«*<"

which immediately implies //(£)€ C^—oo, oo). Q.E.D.

COROLLARY 3.2. // N++N. > n then H(t)zCn(-°°, oo) and i/ JV+
- oo, oo).

DEFINITION. H'(t)=G(t) if it exists.

THEOREM 3.3. If N+ + N. ̂  n then there exists a function h(t) of bounded
variation such that h(t)=H^n)(t) at all but a denumerable subset of (—00,00)
at most.

PROOF. Rearranging the sequences [ak] and {ck} by a method similar
to that used in the proof of Theorem 2.2 in [9] we obtain for N+ + N_^n

αA<0) Π [(l-5/
J=l

F2(s) ,

where 0 ̂  α^/c^ < 1 . Define Ht(t) for 1 = 1,2 by

is a distribution function by Theorem 2.5. H ί̂) is well known by
results on G^t) in [3, Ch. II], G^t) defined by

H,(t)= f G,
J-oo
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where

By Theorems 6.3 and 8.2 of [3, p. 25 and p. 31] H{(t) £ Cn l and moreover
H{

w(t) is continuous except at

where it is not defined. In fact by using Theorem 8.2 of [3, p.31] and a
simple calculation H^n)(t) is of bounded variation with a single jump at tn.

H(t)= Γ H,(t-u)dH,(u).
J —00

The integral

h(f)= f H^\t-u)dH,(u)
J —00

is defined everywhere except at {t^Λ PHt} where Plh is the set of discontinuities
of H2(t) and by Theorem 12 of [7, p. 250] h(t) is of bounded variation in
(—00,00). Straightforward computation shows that at points different from

h(t)=Hw(t) and Hw(f) exist there. Q.E.D.

COROLLARY 3.4. // N+ + N-^n^l then there exists a normalized
function G(i), G(t}—H'(i) (at all but a denumerable set at most),

THEOREM 3.5. If for F(s) N++N-^2 then a density function G(t)
exists satisfying:

(1) -~y- = Γ e~stG(t)dt a, < Re 5 < a,,

(2)

(3) Gw(t) =

PROOF. Theorem 3.1 yields G(t)zC and since H'(ί) =
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Theorem 2.6 implies (1). Formulae (2) and (3) are immediate corollaries of (1)
and Theorem 2.2 of [1]. Q.E.D.

THEOREM 3.6. Suppose : (1) Fr(s) <= F. (2) An integer p exists such that
1 f*~ est

for all Fτ(s) N++N. ̂  p+2 ̂  2. (3) Hr(f)= . I —„, . ds satisfies
J-ioo •*• τ\ /

lim Hr(t)=H0(t) (at points of continuity of H0(t)\ (4) There exists a

B > 0 independent of r such that

I Fr(iy)I -1 ̂  (1 + β^+^-)-v*. Λ=0,1,2, - .

TΛew

lim ||G/ί>(0-G0<
ί>(OIU=0 Z=0, !,•••,/>

(wA^ ||/(^)IU=sup|/(^)|).
X

PROOF. It would be enough to prove the theorem for /=/>. By Theorem
2.2 of [3, p.14] and Theorem 2.1 of [1] we have

(3.2) lim Fr(iy)-*=F*(iy)

uniformly for |3>| = A for any positive A.
βy (3) of Theorem 3.5 we may write

yp yp -
Ύ&y) " ~Wϊy) dy'

One can easily conclude the proof splitting the integral into the following
three parts

ί-HΓ+Λ/Ί -
J-oo l J _ o o J-A JA

Estimating the first and the third by (4) and the second by (3.2). Q.E.D.

REMARK, r may be both a continuous parameter or a sequence of integers.

REMARK. In Theorem 3.5 A(l) can replace the condition N++N.^ 2 and
also the conditions of Theorem 3.6 can be reduced but we can use the
condition related to the zeros and the poles more readily.
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4. Asymptotic behaviour. Denote by μ-ι + 1 the number of ak equal to
<#! and by //2 + l the number of ak equal to <X2.

THEOREM 4.1. IfF(s)zFhas infinitely many zeros and
then for all n satisfying 0 ±g n ̂  JV+4-ΛL — 2 or if condition A(/ί + l) is
satisfied, one has

A. ciγ > — oo implies

/or α/iy £ satisfying max {αr, — oo | αr < 0, α^α^} < k < Λ t αnJ />(£)
is a real polynomial of degree μt.
B. Λ l = — oo implies

/or e^ r̂3/ negative k.

C. Λ2 < °° implies

/or αn3/ ^ satisfying oί2 <, k <. min {αfc, — oo |αΛ > 0,
is α raz/ polynomial of degree μ2.

D. ^2 = °° implies

for every positive k.

The proof is standard following that of I.I. Hirschman and D.V.Widder
(see [3, p. 108]) and was used on many occasions. The estimations of F(s)
used are mainly those of [1],

REMARK. In case there are some (or infinitely many) different negative
zeros of F(s) we can define Ak by A1 = Λ1,

and if there are at least m finite Afc's

where A satisfies max [αr, — oo \aτ < 0, αr^Ap, l^/>^m} <A< Am, and a



184 Z. DITZIAN AND A. JAKIMOVSKI

similar result is achieved in case F\s) has a number of different positive
zeros.

5. Asymptotic estimates in case F(s) has only positive zeros. The
restriction is really that either all ak are positive or all are negative and in
the second case treat G(—t) (which has positive ak's).

For F(s) € F we shall define

(5 2) *
and

(5.3) Δ(r) = e~rλ(r>[σ(r)F(- r)]-1 .

These definitions are analogous to those of I.I. Hirschman and D.V.Widder
see [3, p.lll].

DEFINITION. Suppose F(s)zF, αA>Oand N+ = °° then the corresponding
G(t) will belong to class B if there exists a subsequence [akl] of {ak}
satisfying :

(1) N^(x)=N({alc},x)-N([akί},x)-N,{ckt},x) ^ 0 for x > 0,

(2) Σ (r+α*,)-2 > ασ(r)2

t = l

for all r and for some fixed a, 0 < a < 1,

(3)

To show that not all those G(£) for which ak > 0 and N+ = oo are of class
jB we will show that there exists a function 5̂) for which ak > 0, 0 rg d^/Cj. < 1,
jV+ = oo but no subsequence of [ak] satisfies both (1) and (2) (each assumption
alone is easily satisfied).

EXAMPLE 5.1. Let F(s) be defined by a

n-l n

ak=2» for 2 r + i - l ^ £ < T
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and

n— 1

for Σ,
r=0

for n ̂  1.

00

It is easily seen that in order that (1) be satisfied and^ (r+afc<)~2 be the
*-ι i=ι

greatest possible &i = X^2r + z — 1 and aki=2\
r=0

2n 1 ]
" ~ "+I-2-2B)2 )-FT (r+2«γ (r+2"+I)2 ~ (r+2

^τ-r-^—--^

= 2 ̂  (r+2n)2 '

It is obvious that

<) r —> oo .

We also can see that (3) is satisfied. One can also mention that in this

example ^Z (tfλΓ1 — ̂ "1)— °°

REMARK 5.2. If F(s)s F, ak > 0 and N+ = oo then the existence of {akt}
satisfying (1) of the definition of class B and

(4) y^ (r+<2fct)~2 > β E (r-f dk)~z

i=I k=l

for all r > 0 and for some β > 0 implies conditions (1) and (2) of class B.
Condition (4) obviously implies condition (2) since by (1)

+ = oo implies rσ(r) —> oo and since <r(r)2 > ̂  (r+α*t)~2 we have
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REMARK. It is not hard to see that if an > 0, (̂5) zF,an^ Kn7 γ> 1/2
and K^n7' ̂  <;„ for rc ̂  n0 where 7t ̂  Ύ and when ^=7, K^> K then both
N+ = oo and G(£) belongs to jB. In fact all the above mentioned transforms
satisfy (4) of Remark 5.2 not only (2) and (3) of the definition of B. The
same is true if we mix two or more sequences of αfc's and cfc's respectively of
the type mentioned above. It seems to us that the transforms that were dealt
with as a special case of the class F of convolution transforms are of the
above mentioned type (as a matter of fact 7=7j=l).

THEOREM 5.3. // G(t) belongs to class B then for n^O

G«[λ(r)] ̂  (2π)-l/\-r)nA.(r) r-+oo.

PROOF. Since N+ = oo we obtain by substitution for all r > 0

(5.4)

Using the Residue theorem on the rectangle ±i.R, r±iR, and since F(s— r)"1

is regular in this rectangle (for all R) we have

1 Γίo°
(w) = -£-r- \ (s-r)ne-(s-r}u[F(s-r)Yl

^ni J_ioo

_ _
- σ(r) 2 « _ 1 . r<τ(r)

Define now

(5. 5) Afc(r) = σ(r)(ak + r) and Ck(r) = <τ(r)(ck + r) .

Therefore by a similar method to [3, p. 112]

- r) = F(-r)l (l-5/A,(r))exp(5/αfc . σ(r))Π (l-s/C,(r))exp(5/ct
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= exp(λ(r>Mr))F(-r) Π (l-s/Λ(r))exp(5/A*(r))/Π (l-5/Cί(r))exp(s/C,(r))
k=l I k=l

= exp(λ(r>MrM-r)Fr(s).

From which follows

Substituting w = λ(r)

G*">(λ<r))=Λ(rX-r)»/r = Λ(rX-r)" ~^ f"

By (5.2) and (5.5) one can see that

(5.7) ΣA(r)-2-έQ(r)-2 = l.
k=l k=l

Choose the sequence aki as in the definition of class B and define

Obviously lim rV!(r)2 = oo and since σ^r)2 < σ(rf we have lim rXr)2

r— ><» r- +00

Denote

(5.8) A(r)=Ξσ(r)

Recalling the inequality

for IsK-g-

(see [3, p. 113]) we obtain for \s\ ̂  - A(r)
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I ̂  2 1 5 1 )

Writing (3) of the definition of class B we have

(5.10) r—> oo.

This yields

(5.11)
r-*oo

uniformly in every disc 1515g K (K < oo) .

For every N> 0 and all real y

(5.12)

Denoting σ^r)2 = ̂ Z (αA<+r)~2 we shall prove that since ̂  [σ^rXα^+r)]"
i=l i=l

=1 < oo there exists for every integer N, a constant B(N), B(N) > 0
independent of r such that

(5.13)

Π(ι-
i=ι \

π

where {a*} and {c*} are subsequences of {ak} and {cfc} such that α*^
c* ^^*+ι; {#*} is the sequence {aA} from which [akt] were omitted and {c*}
is the rearranged sequence [ck] from which at most infinite +00 terms were
omitted. Obviously 0 ̂  aϊ/cϊ <1 and 0^(α?+r)/(c?+r)<l and by Theorem
2.1 of [1]

fi (1-
i-i V *i(

Now we have by the argument used in [3, pp. 64-65, pp.111-113]
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(in fact B^N) is as near to -̂ =- from below as we wish). Choosing B(N)

we complete the proof of (5.13).

Using Theorem 3.6 where G0(ί)= ^e~^ and Ή>00=<?s'/2 we get

We have

Λ = -g^- έ ("̂ ^
but since r<r(r) — > oo

(5.14) jr. = - = . (i+0(i)) r->oo

Combining (5.6) and (5.14) we complete the proof. Q.E.D.

6. The positive character of G(f). It is known that G(ί) as described
in the former sections satisfies G(t) g: 0. It is interesting to know if G(t} > 0
(at least on a ray) which will generalize results by Hirschman and Widder
and permit us to treat more asymptotic properties in the next section.

We define three classes of kernels :
F(s) Ξ F belongs to class I if there exist k and j such that ak a} < 0.

€ F belongs to class II if ak > 0 for all k and

belongs to class III if ak > 0 for all k and

Either J^^) or J?X—5) is in one of these classes. One can assume ak :g ak+l
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and ck ^ckJrl for convergence or divergence of Σ (α*1 — ck l) since F(s) as a

meromorphic function for which the order of zeros and poles is not important,
one can also show that changes in order of aks and cks that preserve
0 ̂  ak/ck < 1 preserve the sum.

THEOREM 6.1. // F(s) € F and F(s) belong to class I then H(t) is strictly
monotonic.

LEMMA 6.2. Let — oo < γ1 < #v < O and 0 < ccz < Ύ2 <oo and

then

(6.1) h(t) =

satisfies

PROOF. Since

where

f\(5)-' = f

h(ί)=[S }.
J -00

0

Λ./2Ύ, = 0

and
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?•-<

Λ,(tO =

e"zu

u = 0

0

the proof is just straight forward calculation.

LEMMA 6.3. Let a^ < 0, 0< α:2 < Ύ2 < oo and

(1-5/7.)

then

(6.2)

satisfies

ocl—
,

t(5)-'= f e-'
«/ -00

PROOF. Simple calculation.

191

Q.E.D.

Q.E.D.

PROOF OF THEOREM 6.1. Define aλ and ct2 as in (2.1) and Ίi9 i = l,2
as follows

(6.3)

If 7! = —^ and Ύ2 = °o our theorem is the classical result of Hirschman and
Widder. Define h(t) as in Lemma 6.2 in case Ίl > — oo, γ2 <CXD and in Lemma
6.3 when ^ = —00, γ2 <oo. In these cases

= f H,(t-u)dh(u)= f h(t-u)dH,(u)
''-oo ''-oo

where H^u) satisfies
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l = Γ
J — 0

and

There exists a constant A such that

H(t+h) - H(t) = Γ [h(t -u+h)- h(t - u)

^ Γ [h(t -u + h)-h(t-u)}dHt(u).

One can see from (6.1) and (6.2) that h(t) is strictly monotonic and therefore
exists a constant m(t, A, A)> 0 such that

h(t-u + h)-h(t-u)^m(t,A,h)>0 for -A<u<A

and therefore

H(t + Λ) - H(t)^-m(t9 A, h) >:0 .

If Ύ!> -oo and 72 = oo we shall treat H(-t) instead of H(f). Q.E.D.

COROLLARY 6.4. If F(s}zF and class I\ and N+^l then -\-(G(t+)
Δi

+ G(t -)) > 0 (where G(t±h) - G(ί±)=o(l) A j 0).

For the next positivity theorem we need the following lemmas.

n

LEMMA 6.5. Let ck>ak>0, F(s)= Π [(l—s/ak)/(I—s/ck)], then the
Jc=l

corresponding Hn(t) is strictly increasing in t < 0 and 1 for t > 0.

PROOF. For n = l this is a simple corollary of 2.1. Assume it for n=l — l.



KERNELS FOR A CLASS OF CONVOLUTION-TRANSFORMS 193

where

[(1 - 5/<r,)/(l - sΛO] = f e-'dhfc) .
J-oo

For t < 0 choose 0 < h < - ί/4

[H^C* + h - u) - H^t - u)}dhL(u)

r° rt/z

^ I [H^(t + A - «)- H^t - u}]dht(u)^ / [H^t-u + fy-H^t-u)] dhL(u)

where

^i^ —u+K)— H^t - M)] .

One can see ra>0; assume m— 0 then a sequence ww, un^>uQ^t/2 exists

such that [H^t — un + h) — H^t — WΛ)] < - from which one can see

HM(t-un + -|-A) - Ht.^t-Un + ̂ -h) < -i-

and therefore

-u0+h<— for all w^

and this yields A±gO but on the other hand strict monotonicity of
in ί<0 contradicts A^O. Now we have

,(ί -h K) - Hf(ί) ̂  m(ht(t/2)

For ί>0

H,(ί)= Γ H/.1(ί-«>ίAl(«)= f° Hl.1(ί-ιιXAI(«)= Γ° (̂11) =
•7-00 J-00 J-00

DEFINITION. The n-th moment of H(ί):

(6.4) M = r ίJ//(ί) and MΛ= Γ (t-
J —00 J— 00
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LEMMA 6.6. Let F(s) zF, JV++ΛL ̂  1 then for the H(t) corresponding
to F(s\ Mx=0 and

PROOF. The standard proof used by Hirschman-Widder, Tanno and
others applies here where A^+A^^l implies convergence via (2.9). Q.E.D.

LEMMA 6.7. Let F(s)zF and N++N-^l then

H(t) =g -r £ (^ -O fort<0
L fc=l

1 -H(t) ^ ~ Σ fe2-^-2) for t > 0 .
k=ι

PROOF. For t < 0

H(t) = I dH(u) ^ Γ dH(u) ^ -̂  Γ w

For ί > 0 the proof is similar. Q.E.D.

THEOREM 6.8. // F(s)zF ΛΓ+ + ΛL^1 αwί/ α f c >0 then

(l/2)(G(£ + ) + G(£-))>0 ίw -oo <ί <]Γ(α^1-^1) wA^n F(̂ ) £5 o/ class III

αrcd (1/2) (G(ί + ) + G(ί-))>0 always if F(s) is of class II.

PROOF. It is enough to show that H(t) is strictly increasing for

t < Σ (ak1— ̂ fc1) or always if F(s) belong to classes III or II respectively.
fc=l °° °°

For every t < £ ( ί̂"1-^1) .there exists a δ such that £+2δ <
k=l ,

Choose /x so that

5Λ= £ (a;*-c^<-~ and

fc=n+l °

Let Fi(s} be defined by
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n

Ft(s)= Π [(!-*/«*) exp (s/ak)/(l-s/ck) exp (s/ck)} .
k=ι

Define F2(s) by FΛ(s)=F(s)/F1(s). Define Ht(s) by

One can see easily by Lemma 6.5 that H\(t) is strictly increasing for

Choose A so that

H(ί+λ)-H(f)= f [Hάt-u+fy-H^t-ufldHάu)

t+δ

= Jt-δ

inf

By considerations similar to those of Lemma 6.5 m > 0. Q.E.D.

7. More Asymptotic estimates. Section 6 permits us to write at least
in case N++N.^2 G(t) = e~X(t) where F(s) is of class I or II and G(ί)=<rx(ί)

for t < ]P (^fc1— Cfc1) where F(s) is of class III.
fc=l

Theorem. 5.1 with the above notation yields

(7. 1) %XλW) ~~ f> r -> oo where F(s) € class β.

Define the function M(£) when F(s) € class III by

(7.2) ί = [(Λf(ί)+«*)-1-(M(ί)+c»)-1L 00.
fc=l

Define the function L(t) when F(̂ ) € class II by
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00

(7. 3) ί = Σ L(t){(ak(ak + L(t))Γ-(ck(ck+L(ty)n ί > 0.

THEOREM 7.1. Let F(s) belong to class B then :
(a) F(s) belongs to class III implies

(7. 4) %'(E (α,-1-^-1)- * ) - M(f) t 1 0 ,
\fc=ι '

(b) jFl(s) belongs to class II implies

(7.5) X(t}^L(t) *->oo

PROOF. We shall prove (a) ((b) is similar)

Since χXλ(r)) ̂  r (r — > oo) and since M(t) -> oo when t [ 0 we obtain

00

X' (Σ (βϊ1-^1)-') =χ'(λ(M(ί))) ~ M(t), no. Q-E.D.

THEOREM 7.2. // F(s) belongs to class II and to class B, then

%'(*) - L(t + o(l)) t -> oo .

PROOF. The proof is analogous to that of Theorem 3.4 of [3, p.116].
Define

where At(r)=(αjt + r)α(r), C^(r) =(<:»; + rXr) and

oo

Fr(5) = Π t(l -s/Ak(r)) exp (5/A,(r))/(l -s/C,(r)) exp (
fc = l

Via the proof of Theorem 5.1 we know
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F(s) € class B implies

(7. 6) lim \\H^n\u) - Hr<»\u)\\m = 0
r-»oo

where

(7.7) /ί ;»-(2τr)-1/V-^2.

It is clear that //i'(0)=0, H»(-η)= -Hi'(?) = ~~ e-^\H'Q"(u) =

and therefore for -- ~- < u < ~̂ -

We have

H»(— \ = — i <r1/2nί and HJ' (~ — Λ = L~ ^'1/2nί

\ n / nv2τr V Λ / ^v 2π-

and therefore for each n we can choose r g: rw > rt so that by (7.6)

/7" / __ LΛ > _ ± _ ,,-1/2 tj" /" ^ Λ <: ~-^ ,,-1/2
^ ^ V n / - 2*V2^ e ' t±r \ n ) ~ 2nV2τΓ e

and also for — 1/τι ̂  w ̂  l//ι

U'"(ii\ <C "" ^>-1/δ «< 0
^r W^2V2iΓ <

From these inequalities the existence of one and only one z(r) in [ — 1,1]
such that for r^rn, — 1/n < z(r) < 1/w //ί.'(z(r))=0 follows. Since

C> — vYα'iV"-'""' = _ - _ H" / u-\(r)
Cr XW^ F(-rXr)2 Λ' V β(r)

'/ \ r / \ M — λ(r) ,r=χ (M) for z(r) = ,S and
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Since z(r) is continuous for r^rλ and defining r(f) by

r(t)— * oo whenever t

and therefore

and hence

%'(*) = L(f + o(l)) r-> oo . Q.E.D.
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