Todhoku Math. Journ.
20(1968) 175-198.

PROPERTIES OF KERNELS FOR A CLASS OF
CONVOLUTION-TRANSFORMS

Z.DITZIAN AND A.JAKIMOVSKI

(Received November 5, 1967; revised January 5, 1968)

1. Introduction. In this paper the kernels for the class of convolution
transforms that was introduced by 1.I.Hirschman and D.V.Widder (see[2,p 696])
and was treated in many papers by Y.Tanno (see [4],[5] and [6]) will be
investigated.

A meromorphic function F(s) will be of class F if:

1. 1) Fs) = [ [(1—s/aexp(s/a)/(1—s/cexp(s/c)]

where Rea,=a;, Recy,=c,, 0=a,/c, <1,)_ ai*< oo and ¢, may be equal to
k=1
+oo in which case (1—s/c;)exp(s/c)=1.
The kernels of our transforms will be functions H(¢) satisfying for some
F(s)e F

oo

1. 2) Fliy) "' = j e dH(t).

—~00

Asymptotic properties of H(¢) and its derivatives will be found on basis of
zeros and poles, of F(s) which are analogous to those achieved by I.I.Hirschman
and D.V.Widder for the case where all ¢,==oc0. Also conditions for H(z) to
have derivatives are set and in Section 6, the strict positive character of H'(¢)
on at least half the real axis is established.

In the literature one can find treatments of F(s)=e"F(s) where F(s)e F
instead of F{s), this will represent only a shift of 4 in H(¢) and we shall
avoid it.

2. H(t) as a distribution function. In this section we shall relate to
F(s) a function H(¢) satisfying: H(¢) is non-decreasing, H(— co)= %im H(#)=0

and H{oo)= lim H(t)=1.

THEOREM 21. Suppose we have a function F,(s) such that
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Fy(s)= 11 (=s/aer] T (A=s/ce

k=1

0=a,/c. <1, Rea,=a, and Rec,=c¢,.
Then there exist H,(t) satisfying;
1)  H,@t) is a non-decreasing normalized function, H,(— c0)=0 and H,(oo)
=1,

(2)  H,(t) is continuous except at t,= »_ (az'*—cz') where it has a jump of

k=1

f[ aci's
k=1
®) Foyt = [ erdH @)
converges for a, < Re s < a,
and
H 1 l. d+iT est d
@ W)= lim Lw sFa(s) &
Jor 0 <d < a,
where
@1 a, =max {ar, — o0} and a,=mi . {ai, o°}.
< Ar>

To prove this theorem we shall need the following lemma.

LEMMA 22. Let ,F(s) be defined by
—_— —_ _S_ ay —_— _s_ ¢
2 2) F(s) = (1 5 ) & / (1 5 ) &

for 0 < a,/c, <1 and let h(t) be defined by

exp(—1+4a,ci'+a,t)(c,—ay)/c, t <ail—ci?
2. 3) hy(t)=1(2c;—a,)/2c, t=a'— ¢!

1 t>a'—cit
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when a;, > 0 and by
0 t <ail—c?
2. 4) h(@)= 1 a,/2c, t=a;i'—ci'
l—exp(—1+a;ci'+ait)c;—a;)/c; t > a;i'—cit

when a, < 0. Then:

oo

@ F(s)™ = f e~*tdh,(t)

converges for Re s < ay in case a; > 0 and or Re s > a; in case a; < 0.
13
ad+iT st

1 ..
(2) hi(t) = W lim ]';—”’ Si—F(S)_ ds

T—o0

Jor 0 <d <|a,l.

PROOF. Substitution of (2.3) and (2.4) yields (1) for >0 and a <0
respectively. Equation (2) follows from Theorem 5.6 [7, p. 242].

REMARK. When ¢=oo this reduces to the classical result (see [3, p. 24]).

We shall need also the following lemma, the proof of which we omit
being simple and straightforward.

LEMMA 2.3. Let hi(t) be a distribution function continuous in —oo < t
< oo except at t=a, where it has a jump of a,, then the function H(t)
defined by

HO = [ h—)dh

is a distribution function which has its only jump of a,-a, at a,+ a,.

PROOF OF THEOREM 2.1. We define H,(¢) by induction as follows
@. 5) \ H,@¢) = f H,_,(t—w)dh,(w).

By induction one sees easily that Lemmas 2.2 and 2.3 yield (1) and (2) (we
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have to recall that h,(¢) has by Lemma 2.2 its only jump of a;/c; at a;i'—c;Y).
Now Theorem 16a of [7,p.257] yields (3) and therefore Theorem 5.6 of
(7, p. 242] yields (4). QED.

COROLLARY 24. H,(t) defined by Theorem 3.1 satisfies

T—oo

@. 6) H,(t)— H,(0) = hmf F(s)

THEOREM 2.5. Let F(s) be defined by (1.1), then there exists a function
H(¢) satisfying;

@) H(t) is a normalized non-decreasing function, H(—o)=0 and
H(e)=1,
@ Jor —oo <y <eo

Fliy)" = f " et dH (),

—o0

® H(@) ~HO) = —lim [ £ %

PROOF. For every A>0
lim F,(iy)™* = F(iy)™

uniformly in —A =y = A where F,(s) are defined in Theorem 2.1. Therefore
by Theorem 2.1 here and Corollary 2.3 of [3, p.41] there exists a function
H,(t) satisfying: (a) Hy(¢) is non-decreasing, (b) H*(—OO) 0 and Hy(o0)=1,(c)

hm H ,(t)=H(t) in all points of continuity of Hy(t), (d) -+ F(zy) f e V' dH(t).

Using Theorem 4.5 of [8, vol.2, pp.259-260] we obtain that H(z)
derived from Hy(t) by normalization satifies assumption (1), (2) and (3) of our
theorem. Q.E.D.

For the following theorems let us recall the definition of N=N({a;}, {ci})
introduced in [1]

N=lim inf [N({a:},2)— N({c;}, D)) +lim inf [N({a,},2) = M{c:},©)]=N. + N,

where N({a,}, x) is the number of a,’s between zero and x.
We shall also need the following definition.

DEFINITION. The meromorphic function F(s)satisfying (1.1) will satisfy
condition A(n) if there exists a function yx(7) >0 such that f x(T)s T'dT << o0
0

and
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2.7 |Flo+ir)|7' = O(|7[~"x(7))  [r[—=00

uniformly in —R <o < R for any R.

THEOREM 2.6. If in addition to the assumption of Theorem 2.5 we
have that F(s) satisfies A(0) (as a special case we have N> 0) then we have
also:

) Fs)-'= f st dH(t) a, < Re s < a,,
= eids
®) Hi#)= f e frdld 0<d<a,

3t __
PROOF. Since—esFT)1 is regular in @, <Res << a, the residue theorem

yields for 0 < d < a,

J iT +iT a—iT a+iT et—1
0= _f +f +f —f ——ds=L+L+1I,+1,.
( —iT d—iT _ir o } SF(S) 1 2 3 4

Using Theorem 2.1 of [1] or (2.7) with =0 we have

lim /;=1im I, =0.

T—oo T—oo

The above calculation with condition A(0) imply

L e 1 e g
H(t)"‘H(O)— 2i j;_im sK(s) T 2w ]‘;_im sF(s) ~

A+to0
Letting ¢ »>—oco we have H(0)= Z}ri L . sgzs) and therefore conclusion

(5) is valid. A similar method will yield for ¢, < d, <0

1 (M et
@.98) Hp)~1=—— fd e

Combining (5), (2.8) and the condition A(0) we obtain for some positive K
2.9 Hif)=Ke" 0<d<a, and 1-H@t)=Ke" a,<d, <0

which implies (4). QED.
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REMARK. The condition A(0) is not fully required here, it is enough
for (2.7) to hold uniformly in @, < Re s < a,.

3. Continuity and differentiality of H(¢).
THEOREM 3.1. If F(s) satisfies condition A(n), H(t) € C"(— oo, o).

PROOF. One can easily see that for k=<n

1 T skds
(k) —_ .
3.1 H® ()= o j:_i@ SF(s) 0<d<a,
which immediatefy implies H(¢) € C"(— oo, o). . Q.E.D.

COROLLARY 32. If N,+N.>n then H(t)c C"(— o0, ) and if N,
+N_=o00 then H(t) € C~(— o0, o).

DEFINITION. H'(t)=G(¢) if it exists.

THEOREM 3.3. If N,+N_=n then there exists a function h(t) of bounded
variation such that h(t)=H™(t) at all but a denumerable subset of (— oo, o)
at most.

PROOF. Rearranging the sequences {a,} and {c,} by a method similar
to that used in the proof of Theorem 2.2 in [9] we obtain for N.+ N_=n

F(s) = I=Il (I —s/ax ) exp (5/ara») I=I1 [(A—s/aw)/(A—s/ck)] exp (—sai+sct™)

= F\(s) - Fi(s),

where 0 < a,,/c¥ < 1. Define H,(¢) for [=1,2 by

iT st__
H(t)=HO0)+ =1 e -l

- lim ——m
271 1w J_,, SE(s)

ds

H,(t) is a distribution function by Theorem 2.5. H,(¢) is well known by
results on G,(¢) in [3, Ch. I1], G,(¢) defined by

H@t)= f t G,(v)dt
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where

1 - -st
75 =f—“e G,(t)dt .

By Theorems 6.3 and 82 of [3, p.25 and p.31] H,(¢) C*! and moreover
H,™(t) is continuous except at

3

i=1

where it is not defined. In fact by using Theorem 8.2 of [3, p.31] and a
simple calculation H,¢(¢) is of bounded variation with a single jump at ¢,.

H)= f H,(t—w)dHy(w).
The integral

wo= [ " H(—wdHyw)

is defined everywhere except at {¢,+ Py} where P,, is the set of discontinuities
of Hy(t) and by Theorem 12 of [7, p.250] A(¢) is of bounded variation in
(— oo, 00). Straightforward computation shows that at points different from
{ta+Pg} h(@t)=H™(t) and H™(¢) exist there. Q.E.D.

COROLLARY 34. If N.+N_=n=1 then there exists a normalized
Sunction G(¢), G@t)=H'(t) (at all but a denumerable set at most).

THEOREM 35. If for F(s) N,+N_.=2 then a density function G(t)
exists satisfying:

) -
Q) _F_(s)— = f_m e G()dt a, <Res < a,
1 [ et
@ CO="3i | TP
1 ioo s"est
n) —_ [, —_
3) G™(t) = oei ) . F(5) ds n=N,+N_-2.

PROOF. Theorem 3.1 yields G(t)e C and since H'(t)=G(t), G(¢t) = 0.
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Theorem 2.6 implies (1). Formulae (2) and (3) are immediate corollaries of (1)
and Theorem 2.2 of [1]. Q.E.D.

THEOREM 3.6. Suppose: (1) F,(s)e F. (2) An integer p exists such that
for all F.(s) N,4+N_=p+2=2 (3 H,@t)= 2}”. f : s;;:(s) ds satisfies
lim H,(t)=Ht) (at points of continuity of Hyt)). (4) There exists a
E; 0 independent of r such that

| F(iy)| = =< (1 + By -+8-)-1e, 7=0,1,2,---.

Then
lim |G, °@#)— G, (2)]..=0 1=0,1,++-,p

(where |f(z)|.=sup | A2)]).

PROOF. It would be enough to prove the theorem for /=p. By Theorem
2.2 of [3, p.14] and Theorem 2.1 of [1] we have

(3.2) lim F(iy)™=Fyiy)

uniformly for |y|= A for any positive A.
By (3) of Theorem 3.5 we may write

yoo Y d
F(iy) ~ Fy iy)l Y-

I6:2(0-GPwl. =5 [

One can easily conclude the proof splitting the integral into the following
three parts

DEE— + f + e e,
L=t oL
Estimating the first and the third by (4) and the second by (3.2). Q.ED.

REMARK. r may be both a continuous parameter or a sequence of integers.

REMARK. In Theorem 3.5 A(1) can replace the condition N, +N_=2 and
also the conditions of Theorem 3.6 can be reduced but we can use the
condition related to the zeros and the poles more readily.
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4. Asymptotic behaviour. Denote by p,+1 the number of a, equal to
a, and by p,+1 the number of a, equal to a,.

THEOREM 4.1. If F(s)e F has infinitely many zeros and N,.+N_ =2,
then for all n satisfying 0=n=<=N,+N_—2 or if condition A(n+1) is
satisfied, one has

A. a, >—oc implies
Gm@)=[e"'p()” + O(e*') t— oo

for any k satisfying max {a,, —|a, <0,a,>xa,} <k<a, and p(t)
is a real polynomial of degree u,.
B. a,=—oc0 implies

G(")(t) = O(ekt) t — oo

Sor every negative k.
C. a, < o implies

G(t) = [eg (DI + O(e) £ ——oo

for any k satisfying a, <k <min {a;, —|a, > 0,a,>xd,} and q(t)
is a real polynomial of degree p,.
D. a,=oco implies

G(")(t) = O(ekt) f— —oo

for every positive k.

The proof is standard following that of I.I. Hirschman and D.V.Widder
(see [3, p.108]) and was used on many occasions. The estimations of F(s)
used are mainly those of [1].

REMARK. In case there are some (or infinitely many) different negative
zeros of F(s) we can define A, by A,=a,,

Ak:max {an_oo lar<'0’ arﬁ\_‘Ap 1 _ﬁ_ P< k}

and if there are at least m finite A.’s

G@) = i P(t)e*+0(e*) t— oo

where A satisfies max {a,, —oo|a, <0, a,5xA4,, 1< p=m} <A< A,, and a
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similar result is achieved in case F(s) has a number of different positive
Zeros.

5. Asymptotic estimates in case F(s8) has only positive zeros. The
restriction is really that either all a, are positive or all are negative and in
the second case treat G(—¢) (which has positive a;’s).

For F(s) e F we shall define;

i r = r
®.1) h(r)=kz=l aap+7) - kz=1 ciley+r)
= 1 1 ke
5-2) "(”)=L=,<(ak+r>2 - o))
and
(5.3) A@r) = e ™e(r)F(— r)]™".

These definitions are analogous to those of 1.I. Hirschman and D.V.Widder
see [3, p.111].

DEFINITION. Suppose F(s)<€ F, a;,>0and N,=oc then the corresponding
G(¢) will belong to class B it there exists a subsequence {a,} of {a;}
satisfying :

(1) Nu(x)=N({ai}, x)— Naw}, x)— N{ce}, ) 2 0 for >0,

@) i (r+ai)? > ao{r)?

i=1

for all  and for some fixed @,0 < a <1,
3 > (r+ay)*=0(c(r)?) r— oo,
i=1

To show that not all those G(¢) for which a, > 0 and N, =oo are of class
B we will show that there exists a function F{(s) for which ¢, >0, 0=a,/c, <1,
N,=0c0 but no subsequence of {a,} satisfies both (1) and (2) (each assumption
alone is easily satisfied).

EXAMPLE 5.1. Let F{(s) be defined by a

n—-1 n
a,=2" for D2 +(m-1)=k< > . 2+n

=0 r=0
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and
=2011-2"m  for U=k

for n=1.

It is easily seen that in order that (1) be satisfied and Y (r+a;)™? be the

i-1 i=1
greatest possible k, = 2"+i—1 and a,,=2%

7=0

. - n 1
olr) = 2 Z (r+2")2 +22 {(1'—1-2"“)2 (r+2m+t—

=1

2—2”)2 }

1
+Z (r+2")2 *or+2y

v

=1

1< 2™
_Z_Z r+2n)2 Z (r+2n+l)(r+2n+l 2-2n)
1

2

%

Z=: r+2")2 ’

It is obvious that

:g(r+ak,)'2 = é(r+2")—z <Z (r+2")2 ) =0(o‘(r)2) F— .

We also can see that (3) is satisfied. One can also mention that in this

example Y (a;,'—c; )=00.

REMARK 52. If F(s)e F, a, > 0 and N,=co then the existence of {a;}
satisfying (1) of the definition of class B and

4 i r+a) > 8 i (r+a;)?

for all » > 0 and for some 8 > 0 implies conditions (1) and (2) of class B.
Condition (4) obviously implies condition (2) since by (1)

o(r) < i (r+ap)

N, =oc implies ra(r) — oo and since o(r)? > >_ (r+ay,)"* we have
i=1
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_ 1
o‘(r)3 L(r+ak) 7'0'(7){ o’(r)2 Z(r+ak) }

r— oo,

= ro'(r) B=o0(1)

REMARK. It is not hard to see that if a, >0, F(s)€ F,a, = Kn" y>1/2
and K,n" =<c, for n=n, where ¥, =¥ and when 7,=v, K, > K then both
N,=o and G(¢) belongs to B. In fact all the above mentioned transforms
satisfy (4) of Remark 5.2 not only (2) and (3) of the definition of B. The
same is true if we mix two or more sequences of a,’s and c¢,’s respectively of
the type mentioned above. It seems to us that the transforms that were dealt
with as a special case of the class F of convolution transforms are of the

above mentioned type (as a matter of fact Y=v,=1).

THEOREM 5.3. If G(¢) belongs to class B then for n=0
GDINND] ~ Cr) ™ (—=r)"A(r) r— oo

PROOF. Since N,=occ we obtain by substitution for all » >0

5. 4) Gy =~

1 7+1i00

=5 f (s—r)eC [ F(s—r)]'ds.

21

Using the Residue theorem on the rectangle +iR, r=iR, and since F(s—r)™'
is regular in this rectangle (for all R) we have

G™(u) = rre * " [F(s—r)]"'ds
_e =t 1 s N e s AT
=) omi ). (1= ) ™ F5 r)| .
Define now
(5.5) A ()=o) a,+r) and Cyr)=oc(r)cr+7).

Therefore by a similar method to [3, p.112]

P =) = F=n) JT =5/ Ao expts/ae - ) IL =3/ Clrexptsc - o)
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= exp(r )/t =) IT (1=s/ A expls/ Ao I =5/ Cuexals/Cutr)
= exp(Mr)s /o D= PIF).

From which follows

oo o | (17 potey) BN - exp( 05 et .

(5.6) G™(u)=

Substituting «=2A(r)

{00

GO =M=V L =AN =1 = [ [FAs)ds.

2m

By (5.2) and (5.5) one can see that

5.7) S A= 3 Gyt =1,

k=1

Choose the sequence a;, as in the definition of class B and define

ay(t) = i (ay,+7)72.

Obviously lim 7%¢y(r)’=cc and since o,(r)* < o(r)? we have lim 7%(r)*=oo.

Denote
5.9) A() = olr)Xr+an).
Recalling the inequality

log {(1—s)exp(s + - ')} | =21s1* for |s] <—-

(see [3, p.113]) we obtain for |s| = %A(r)



188 Z.DITZIAN AND A.JAKIMOVSKI

6.9 [log{F(9e) |=215]* (T A+ 5 G )

=A4[s]* 30 Ar).
k=1
Writing (3) of the definition of class B we have
(5.10) > AU =0(1) r— oo,

This yields
(5.11) limF,(s)=e "

uniformly in every disc |s|= K (K < o).
For every N> 0 and all real y

-1

(5.12) exp<_ _é‘ (iy)2>-2 - (1 N I% §2 )

Denoting o,(r)’ = Z (ay,+7r)% we shall prove that since Z [o(r)a,+7)]72
=1 < oo there ex1sts for every integer N, a constant B(N), B(N)>0
independent of r such that

(6.13) |F (i)~ = [1 +B(1\7)y”]‘1

|F (i)~ = [ I (1 & (iy/otrXat+r) |

k 1 A—2y/a(r)(ci+1))

tf(f)(ak.

where{a}} and {c¥} are subsequences of {a,} and {c;} such that a} =af,,
¢t = cta; {ak} is the sequence {a,} from which {a;} were omitted and {c}}
is the rearranged sequence {c;} from which at most infinite +oco terms were
omitted. Obviously 0 =< af/c¥ <1 and 0=(af+7r)/(cf+7r)<1 and by Theorem
2.1 of [1]

i (1- (5 %) )

i=1 a(r)ag,+7)

-2

- ay( )
|F(iy)|* = — I_[ (1 ( ¢r(7‘) )

"o (X ag,+1)?

Now we have by the argument used in [3, pp. 64-65, pp.111-113]
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2

I (1 + T
i=1

[oy(r)ar,+1)] ) = 1+ B,(Ny™*

(in fact B,(N) is as near tol—\%— from below as we wish). Choosing B(N)

=B,(N)a*® we complete the proof of (5.13).

Using Theorem 3.6 where Gy(¢)= 4/27 e "2 and Fy(s)=e"? we get

i _1__ " ﬂ — i " ~1/2 ,~u2/2
1,1_1.2 2ni [, Fy(s) ds—(du> (27) ™6™ Dumo-
We have
1 - - m ~1,s8
I= 57 m§=o (—ra-(r))""(n)f_tws F(s) et ds

but since 7o(r) — oo
1
(5.14) I = :/—2_7 (1+0(1)) r—o0,

Combining (5.6) and (5.14) we complete the proof. Q.E.D.

6. The positive character of G(f). It is known that G(¢) as described
in the former sections satisfies G(¢) = 0. It is interesting to know if G(¢)>0
(at least on a ray) which will generalize results by Hirschman and Widder
and permit us to treat more asymptotic properties in the next section.

We define three classes of kernels:

F(s) e F belongs to class I if there exist 2 and j such that a,-a; <O.

F{(s) ¢ F belongs to class II if a, >0 for all £ and

oo

> (ait—cit)=co.

k=1

F(s) e F belongs to class III if @, > 0 for all £ and

2 (ai*—cit) <oo.

k=1

" Either F{s) or F{—s) is in one of these classes. One can assume a; = a;,,
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and ¢, = c;,, for convergence or divergence of ) (az'—ci') since F(s) as a
meromorphic function for which the order of zeros and poles is not important,
one can also show that changes in order of a,s and c¢,’s that preserve
0=<a,/c; <1 preserve the sum.

THEOREM 6.1. If F(s)e F and F(s) belong to class I then H(t)is strictly

monotonic.

LEMMA 62. Let —oco <V, <a, <0 and 0 < a, <V, <oo and

_ (—s/a,1=s/a,)
Fi(s)= A=s/7)A—s/7,)

then
72;2“2 ;‘—:(Z‘l:z‘e +1) et t<0
(6.1) h(t) = %(ﬁ (Vs — aty)+ @) £ =0
1= T (1= B T e 10
satisfies

oo

Fi(s)' = f e~*tdh(t).
PROOF. Since

o= [ | b

where
0 u<0
o, /2, u=0
hi(u) =
1-— %,Y;j“‘ e u>0

and



KERNELS FOR A CLASS OF CONVOLUTION-TRANSFORMS 191

Yo—CQ&s
l T, e u>0
hy(u) =
1 —d2/2')’2 U = 0
0 u>0
the proof is just straight forward calculation. Q.E.D.

LEMMA 63. Let a, <0, 0 <a, <Y, < oo and

_ (A—s/a)1=s/a,)
BO="0 s m)
then
Yo—ay, A et t<0
rYg dl -—d2 =
(6.2) h(t) =
Yo —ay a, ot
1—(1— v dl_az)e t>0
satisfies
F(s)! = f et dh(?).
PROOF. Simple calculation. Q.E.D.

PROOF OF THEOREM 6.1. Define @, and a, as in (2.1) and v,, i=1,2
as follows

(6.3) 'Yl=maX{Ck, _°°|Ck<0}, 'Yg=min{ck,°°lck>0}.
If ¥,=—o0 and ¥,=o0 our theorem is the classical result of Hirschman and

Widder. Define A(z) as in Lemma 6.2 in case ¥, > —o0, ¥, <<oo and in Lemma
6.3 when v,= —o0, ¥, <oco. In these cases

H(t) = f " Hy(t—w)dh()= f " Wt —w)dHiw)

where H,(u) satisfies
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oo

Fyiy)™ = f eVt dH(t)

and
F(s)=F\(s) - Fy(s).

There exists a constant A such that

“ 1
[ =5,

-4

H(t+h) — H@t) = f "kt — ut ) — h(t — w)dHy )
> f U — u B — Wt — wdEL(w).

One can see from (6.1) and (6.2) that A(¢) is strictly monotonic and therefore
exists a constant (¢, A, 2)> 0 such that

h(t—u+h)—h(t —u)y=m(t, A,h)>0 for —A<u<A
and therefore
H(t + )~ H)Z - mlt, A, 1) >0,

If ¥,> —oc0 and V,=co we shall treat H(—¢) instead of H(2). Q.ED.

COROLLARY 64. If F(s)e F and class I; and N.=1 then —;——(G(t+)
+ G(t —)) > 0 (where G(txh) — G(t+)=0(1) h|0).

For the next positivity theorem we need the following lemmas.

LEMMA 6.5. Let ¢,>a,>0, F(s)= Il [(Q—s/a)/(1—s/ci)l, then the
k=1
corresponding H,(t) is strictly increasing in t <0 and 1 for t > 0.

PROOF. For n=1 this is a simple corollary of 2.1. Assume it for n=[—1.

Ht) = f " H,\(t—w) dhw)
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where

o

(A =s/e)/d=s/a) = [ e rdhu).

—o0

For t <0 choose 0<h << —1t/4
H(t + h)—H@) = f (H,o(t + b —u) — H,_(t — 0)|dhy(x)

0 t/2
.Zf [H,_(t+h— w)y— H,_,(t — u)]dhz(u)gf [Hz—l(t‘"u+h)"Hz-x(t—u)] dh,(u)
= m[hl(t/Z) - hl(t)]
where
m=inf [Hc-l(t —u+h)— Hl—l(t —u)].

t=<u=t/2

One can see m>0; assume m=0 then a sequence u,, u,—u,=t/2 exists

such that [H,_,(t —u, + h) — H,_,(t —u,)] < % from which one can see

Hz-1<t_un + _Z’—h) —-H,_, (t—-un-l-ji—h) < %—

and therefore

1

A=I-I,_1(t—uo+%-h> —-H,_, <t—uo+ Th) <% for all n=n,

and this yields A =0 but on the other hand strict monotonicity of H,_,(t)
in <0 contradicts A =<0. Now we have

Hyt + h) — H(t) = m(h(t/2) — h(t))>0.
For t>0
Ht) = f : H,_(t—w)dh(u)= fo _H\(t—u)dh ()= f : dh(u)=1.
DEFINITION. The n-th moment of H(z):

6.4) M, = f " tdH(t) and M,= f " —MyrdH|D).
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LEMMA 6.6. Let F(s)e F, N,+N_=1 then for the H(t) corresponding
to F(s), M,=0 and

M Z (ak —Ck
PROOF. The standard proof used by Hirschman-Widder, Tanno and

others applies here where N, +N_=1 implies convergence via (2.9). Q.E.D.
LEMMA 6.7. Let F(s)e F and N,+N_=1 then

Hi)=— t2 Z(a,c —ci?) for t <0
k=1
1—-H(t) g%z 2—ci?) for t>0.
k=1

PROOF. For t <O

H(t) = f _dH@)= f dH(w) = —tl— f : wdH(?)

[ui>1e]

O
o (et e

k=1

IA

For ¢ >0 the proof is similar. Q.E.D.
THEOREM 6.8. If F(s)eF N, +N_gl and a, >0 then
Q/2)(GE+H)+GCE—)N>0 in —c0 <t < Z(ak —ci') when F(s) is of class 111
and (1/2) (G(t+)+G(E—))>0 always if F(s) is of class 1I.
PROOF It is enough to show that H(¢) is strictly increasing for
t<Z(ak —ck’) or always if F(s) belong to classes III or II respectlvely
k=1

For every ¢t < Z (ag*—ci?') there exists a 8 such that £+28 < Z(a —cih).

k=1 k=1

Choose 7 so that

Z (ai® —ck2)<L and t+28<Z(a,, —ciY).

k=n+1 k=1

Let Fy(s) be defined by



KERNELS FOR A CLASS OF CONVOLUTION-TRANSFORMS 195
F(s)= Tl [A—s/a.) exp (s/ar)/(1—s/ci) exp (s/ci)].
k=1
Define Fy(s) by Fiy(s)=F(s)/F(s). Define H(s) by

Fy(s)™! =f es'dH () i=1,2.

)

One can see easily by Lemma 6.5 that H,(¢) is strictly increasing for

<Y (@it —ciV)=t,.

k=1

Choose & so that z+3h < ¢,.

H(t+h)— H(t)= f " HL(t—u+h)— H(t—)|dH(w)

t+8

= f [H(u+h)— H(w)ldHy(t — h)

= inf [Hu+h)—H@w)- f 6 dH,(t)

T t-8=<u=<t+d
2S m
= o — 7 )\ > 7
=m (1 5t )= 3
By considerations similar to those of Lemma 6.5 m > 0. Q.E.D.

7. More Asymptotic estimates. Section 6 permits us to write at least
in case N,+N_=2 G(t)=e¢*® where F(s) is of class I or II and G(¢)=¢*x®

for t <~ (az'—ci?) where F(s) is of class IIL

k=1

Theorem. 5.1 with the above notation yields

(7.1) X (Mr)) ~7, r— oo where F(s)eclass B.
Define the function M(t) when F(s) € class III by

(7.2) t= S (MO +a) —M+e),  1>0.

Define the function L(z) when F(s)€ class II by
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(7.3) t =2 L@)(aac+ L) —(culea + LE)™, ¢ >0.

THEOREM 7.1.  Let F(s) belong to class B then:
(a) F(s) belongs to class III implies

(7.4) x (3 (et =it~ t) ~ M) t10,
k=1
(b) F(s) belongs to class II implies

(7.5) X'(£) ~ L(t) t— oo,

PROOF. We shall prove (a) ((b) is similar)

S (@' =)t =3 (@i = ci') — 3 [(M+an) —(M+cp) 1=MM()).

k=1 k=1 k=1

Since x'(Mr)) ~ r (r — o0) and since M(t) — oo when ¢ |0 we obtain
X (E_: (ai'—ci 1)—t) =x' (MM(2))) ~ M(¢t), t | 0. Q.ED.

THEOREM 7.2. If F(s) belongs to class Il and to class B, then

X'(¢) = L(t + o(1)) t— oo,

PROOF. The proof is analogous to that of Theorem 3.4 of [3, p.116].
Define

Hw= g [ (EOIeds
where Ay (r)=(ac + o(r), Cur)=(c, + )a(r) and
E)= I =5/ A exp (5/ A/ =5/ Clr) exp (5/ .
Via the proof of Theorem 5.1 we know

e X = [T %:—(—:;(Q>/ o(r)F(—7).
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F(s) € class B implies

(7.6) lim |Hy™ () — H, ()] =
where
(7.7) Hyu) = 2n)Vie /2,

It is clear that H/(0)=0, H(—n)=—Hi(n)= —fs—e " H ()= 7;_—;@2 —1)ee
1

and therefore for — —;— <u< -

H{(w)=

e—1/2

2«/
We have

Hy (—}1—) n,\/él"- e and Hy (— 'i) = ané;t— e~V

and therefore for each n we can choose » = r, > r, so that by (7.6)

(=)= g o () =

and also for —1/n=u=1/n

-1
H, (u)§2«/§7;— eV <0,

From these inequalities the existence of one and only one 2(r) in [-1,1}
such that for r=r,, —1/n < 2(r) <1/n H/(2(r))=0 follows. Since

=t 2580

, ) _ 1 o u—Nr)
(f—x (u))e = F(——r)o'(r)“’ Hr ( 0‘(7‘)

r=x'(u) for 2(r) = _u_;—(:;(_r) and

X(Mr) +o(nz(r) =r.
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Since 2(r) is continuous for » =, and defining r(¢) by t=Nr)+a(r)z(r)

X (&) =7(t)

r(t)— o whenever t — o

t = Mr(2)) + o(r(£)z(r(2))

and therefore

Ht) = L(t — o(r(®)=(r (1))
and hence '

X () = L(t + o(1)) r— 00, Q.E.D.
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