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Introduction. Let R® be the n-dimensional Euclidean space whose
element will be denoted by x=(x,,---,z,). The length or norm of x is
denoted by |x|=[x}+ --- +22]2 By E, we denote the space L?(R")(1=p
< o) or Cy(R™). For a function f(x)< E, we consider a singular integral of
convolution type

A= P -
) K(z,p5.0)= gy [ Slx—9kExdy
where the kernel %(x) is radial and satisfies
) k(x) e L\R™) and f E(2)dz=(2m)"".
-

Then, by Jensen’s inequality, it is easy to see that
©) HK("P;f)_f(')HE—’O as p—oco.

Our object of this paper is to determine the optimal rate of approxima-
tion of flx) by K(x,p;f) and the non-trivial class & of functions for which
this rate is attained. This is called the saturation problem for the singular
integral K(x,p; f). ,

For the sake of completeness, we give here the exact definition of satu-
ration.

DEFINITION. Let flx)e E and (1) be a given singular integral with
kernel k(x) which satisfies (2). Suppose there exist a positive number » and a
class R E such that

(i) 1K, ps5f) — f(-)le=0(p™") asp— oo implies flx) =0 ae.
(ii) |KG,p; )—f(-)|e=O(p") as p— oo implies f(x) <€ & and vice versa.
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Then the singular integral K(x,p;f) is called to be saturated with the order
p~" in the space E and R is called its saturation class.

There are many contributions about this problem. P.L.Butzer [3] initiated
so-called Fourier transform method and studied the single variable case. P.L.
Butzer-R.J.Nessel and R.J.Nessel [4] applied this method to several variables
case. However these papers are restricted to the L?(1 = p= 2) norm. G.Suno-
uchi [8] applied the generalized Fourier transform of Bochner to the single
variable case and studied L? (1 =< p < o) approximation. Buchwalter [2] gave
a general theorem by distribution theory and E.Gérlich [6] applied this to
several variables case in L?(1 < p<< o) norm. However these papers are
somewhat inconvenient in particular, at the application to classical singular
integrals.

In this paper, we will give a general theorem by adjoint method. This is
essentially equivalent to Fourier transform method in distribution theory, but it
has an advantage of doing easy treatment of broader classes of functions. Next
we give a simple, nevertheless widely applicable criterion and solve saturation
problem for many classical singular integrals of a single variable and several
variables in L?(1 =< p<C o) norm and C, norm. Our method will also give .
an asymptotic approximation theorem and a saturation theorem of higher
order by singular integrals.

1. The general theorem for singular integrals in a single variable.
Let the Fourier transform £(v) of the radial kernel k(z) of a singular integral
(1), which is also a radial function (|v|) = k(v) say, satisfy the following
conditions ;

L1 lim'it)t-,——1=c#0

-0+

for a positive number 7, and

1 2) €21 (5,5,

ie., is a multiplier of class BV into class BV. Then (1.2) is equivalent to the
existence of a function H(x) of bounded variation such that

7a(v) -1

|v|”

=ﬁ(v)

where I:I('v) is the Fourier-Stieltjes transform of H(x). Therefore
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kw/p)=1 e o
(\‘Z/‘/P)T ‘_H(L/P) [H(P )(v)
and so

IH(p )l = O(1)

uniformly in p, and
f dH(pz) = f dH(zx)=c

say. We denote by ® the set of all infinitely differentiable functions with
compact support.

LEMMA 1. If o(x) €D and the kernel k(x) of a singular integral (1)
satisfies (1.1) and (1.2), then

H Kepsp=@(-) ¢ (_1)[; ](pm(.)

—0as p— oo
E

where @"(x) is () or (@) (x) according as r is even or odd.

PROOF. Since @(x) € D, we have by (1.2)

Kz, p;9)—plx) jz‘,? (_1)[2']¢(r1(x)

p—T

— _»_1_ ” k(v/P>:l T . —1vT _ C',,__ - [;—] T
= vz | olpy 1R o (G0 )

1 - ¢ (£

== [ e i (-0 s - (-0 e

~0 o [ e He - o).

Hence by (3) we get the lemma.

Now we can prove the following general theorem.

THEOREM 1. Let f(x)€ E and the kernel k(x) of a singular integral (1)
satisfy (1.1) and (1.2). Then this singular integral is saturated with the

order p" in the space E with saturation class & such as
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if E=L",

‘ S (x)e BV (if r is even))V
= flo);
17 (Fye-v(2) € BVGS 7 is odd)

f={fln); frx)e L} if E=L'1<p< o),
f={fla); fM@) L} if E=C,

where f7(x) is () or (/) (x) according as r is even or odd?,

PROOF. (i) Suppose that
“K("P;f) "'f(')“E = O(P'T) as p— oo,

Then, for any @(x) €D, we have

On the other hand, by the fact that K(z,p; f) is of convolution type and by
Lemma 1,

f°° K(x,p;Pj?--—f(x\. q)(x)dx — fm K(x, P?P‘i—’z"¢($) f(x)dx

,

- T/%;: (—1)[2_]f () f(x)dx as p— oo

—oo

oo

Therefore

oo

[ ¢ @fadz=0

—oo

and so, in the sense of distribution, it can be written as

S7(x) =0.

Taking Fourier transform in the distribution sense, we get lv](f(‘v) =0

1) fr-b(z) (or ‘(7')(’"1)(::)) € BV means that f(x) (or ?(x)) coincide a. e. with a function
G(z) with G-V (x) € BV.

2) When E=C,, f(x) means a generalized conjugate function fy (z). (see remark at the end of
this section and N. J. Achieser [1], p.126-129).

3) In fact, f is a tempered distribution.
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and f is a polynomial. (see L. Schwartz [7], p.139). Since fe L?(1 =< p < o0)
or C,,

flx) =0 ae.

(ii) Next we suppose that
[K(p; )= f(+)ig=0(p") as p— oo,

We shall prove only when E=L!, since another cases may be treated by the
same idea. At first we discuss the case when r is even. Since the indefinite
integral of a function belonging to L' is absolutely continuous and so of
bounded variation, by the weak*-compactness of the unit ball of space BV,
there exist a tunction G(x)<€ BV and a subsequence p, such that -

j‘“ K(z, Pv;){‘;)_f(x) P(2)dx —r f " H@)dG(@) as p,—> oo

for any @(x)e®. On the other hand, by the convolution structure of
K(z,p;f) and by Lemma 1

f‘” K(x,p; f)—flx) P(z)dx = fm Kz, p; 9)—o(x) fx)dx
. P~ - P

~ D [ eo@Atnda as poco.

Therefore if we denote by G,_,(z) the (—1)th integral of G(x), we have

1 [ #0@G6 @iz == (-1 [ g,
By the same argument to the proof of part (i),
Sflx)= —'\/?27— (-1)" (¥ G,._.(x) ae.

and so

SY(x)e BV .

Next, we treat the case when 7 is odd. Similarly as above, we have
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-1y f PO@G, (D) = — e (- i f @O @f@)dx
[;' 2“ 7
- D [ e @fwde = (-0 60T

where the last expression is taken in the sense of distribution, because the
conjugate function f(x) of f(x)e L does not always belong to L'. Thus, in
the sense of distribution,

(16— 77 ) o
Hence,

«/ 2 -[5]

flx) = (-1 "G () ae

and so
(F)U=D(x)e BV .

(iii) Conversely, we suppose f(z)<€ L! and f~V(z) or (f)"(z)< BV.
Observing that

K(p; )= A Do _ ku/p-1 4

(] kw/p)—1

o (7] E(v/p)—1
=Dy

LFOmT) or (=1 oy [T

and noting that by (1.2) the last term is a Fourier-Stieltjes transform of
a function of bounded variation whose norm is uniformly bounded in p, we

have

oo

[ E2iD=IO gy [ s

or (-1)F [ (FY=>(x — y)dH(py)

and
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(<12 o

uniformly in p.

REMARK. When f(z) € C,, f{x) does not always exist in the ordinary
sense. So, in this case, we consider as follows. If we put

f;(x) =(x— i}l.(j;ri}. ﬁf_a (i sign v) f‘l(v) e’ dv

where

f (x) f(x) € LZ,
then, f.(z) and f(z) have the same Fourier transfofm in the sense of distri-
bution. Therefore in this case we may interprete fi”(x) as fi‘”(x).

2. Applications of the general theorem to special singular integrals.
When we apply the general theorem to special singular integrals, it is some-
times difficult to verify the condition (1.2). We give here a simple but widely
applicable criterion for verifying (1.2).

THEOREM 2. If, for the Fourier transform kA(v)vof radial kernel k(x),

there exists a radial Fourier-Stieltjes transform m(v) of a function of
bounded variation m(x) which satisfies

@ 1) kt)—1=r f t wx)yr 1 dr

where £(|v|) = k() and ;u(lvl) = m(v) then, the condition (1.2) is satisfied.

PROOF. In the formula (2.1), if we change the variable v — ¢7, then

N

______rc(t) 1 f ,u,(t'r)v" dr = llm rZ ;»(t
ve=l
=lim R,»)  (e=Iv])

say, by the definition of integral of Riemann sense. Denote by |Ry| and m|
the total variation of Ry(x), m(x), then
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r2_ mly = = |m].

v=1

IRy =

1
Nr

Hence the norm |Ry| is uniformly bounded and so the uniform limit of

RN.('U) is also representable by a Fourier-Stieltjes transform of a function of
bounded variation.

Now we pass to applications.
(1) The singular integral of Gauss-Weierstrass. It is defined by

Wz psf)=—b= [ fla—yremrdy.
Hence, we need only to check the conditions (1.1) and (2.1). Since

B(z) =/ 2 e € L{(— oo, o), f " k@ydz =

1
s T
k(v)=e  =x(|v])
k-1 _ 1
M = = =0,

©(t) —1=2 fo t plryrdr

where

Wlol) =— —— " = - —— k)

and ;L(l'vl) is a Fourier-Stieltjes transform, every hypothesis of the general
theorem is satisfied. So we get the following saturation theorem.

PROPOSITION (2.1). The singular integral of Gauss-Weierstass is satu-
rated with the order p~* and with the classes

® = {flx); f(x) e BV} if E=L",
f={flx);f(@el?} if E=LQA<p<oo),
&= {fl); /(@)L}y if E=G,.

(2) The singular integral of Cauchy-Poisson. It is defined by
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Pz, p; f) = z=Y) l+|Py|2
Hence,
k(x) = 2 1 e L'(—o0,00) ) kx)dx=A/27,
7 1+ |x|? ) ’
ko)=e"=x(|v|),
t—0+ t
A t v
k(@) —1= f w(rdr
0
where

p(lv]) =— e =— k(v).

and the conditions (1.1) and (2.1) are satisfied and so we get the following
saturation theorem.

PROPOSITION (2.2). The singular integral of Cauchy-Poisson is saturated
with the order p~' and with the classes

f={flz); flx)e BV}  if E=L},
R={A2); f(@eLl?} if E=L*1l < p<),
f®={fx); fulx)e L=} if E=C,

where fy(x) is a generalized conjugate function of f(x).

(3) The singular integral of Bochner-Riesz of order a > 1. This singular
integral does not form a semi-group. 1t is defined by

Bz, p;f) =~ o= 2@+ D) [ fla—5)V,, (Ipy)) dy.

Hence,

F(@)=2T(@+ )V, _(|z]) € L'(—c0,0) for >0,
2



ON THE APPROXIMATION AND SATURATION 155

[ #@dz = vox,

. A== if |v| =1, ,
=] , (o)),
0 if |[vj=1
hmm =_a:0
0+ t? ’
A L v
/c“(t)-—1=2f p(r)rdT
0
where
§ A=Tlo)*tif jv| =1 .
Wieh = e , }=—awﬂm
0 if |v]=1
and

kY (x) e LY(— o0, 00) for a > 1,
so we get the following saturation theorem.

PROPOSITION (2.3). The saturation strucure for the singular integral of
Bochner-Riesz is the same as the singular integral of Gauss-Weierstrass.

3. The general theorem for singular integral in several variables.
Similarly as 1-dimensional case, let the Fourier transform £(v) of the radial

kernel of a singular integral (1), which is also a radial function /2(|v|)=ie(v)
say, satisfies the following condition,

G 1) tli?:% =0
for a positive number 7, and
(. 2 0L s.9,

ie., is a multiplier of class S into SP. Then (3.2) implies the existence of a
bounded measure A such that

1) S means the set of bounded measures.
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ko)-1 4
|v|” =A(v)

where A(v) is the Fourier-Stieltjes transform of A. Therefore

kw/p—1
(|v]/p)" =A(v/p) =[Ap )] (v)

and so

[A( +)|s=OQ1) uniformly in p,
f dA(px) = f dA(z) = say.

Let ® be the set of all functions with compact support and all of
whose derivatives exist and are finite. Then, for any @(x) € D, putting

n 82 m .
AMP@D = | X | @@ i r=2m
3.3 P"N(x) = ? L=1 axj] ®

P \(x) if r=2m+1

where ;,(x) (j=1,---,n) is j-th conjugate function of @(x) and (x) =
(@:1(2), * + +, Pa(x)), we know that
[pT) = (= Do) ().

Through this section we can discuss similarly as 1-dimensional case and
so give results analogous to Lemma 1 and Theorem 1 and 2 without proof.

LEMMA 2. If ¢p(x) €D and the kernel k(x) of a singular integral (1)
satisfies (3.1) and (3.2), then

—0 as p— oo
E

‘ K(- ap;i)_¢( ) _ ,\/527 (_1)[2_] P"(+)

where @'Y (x) is defined by (3.3).

Hence, we have the following general theorem in several variables.
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THEOREM 3. Let f(x)c E and the kernel k(x) of a singular integral (1)
satisfy (31) and (3.2). Then, this singular integral is saturated with the

order p~" in the space E with saturation class ® such as

R= {f(x);f Sf"x)dx € S for every measurable set M} if E=L",
f= {flx) ; ff=x)el?} if E=L*(1<p< o),
R= {flx) ; f"(x)e L} if E=C,

where " (x) means such as (3.3) and differential operators A™, 3/2z; (j =1,
.-+, n) and, when E=C,, conjugate functions fy(x) (j=1,---,n), are gener-
ally taken in the sense of distribution.”

Before we pass to applications, we give the criterion for the condition
(3.2).

THEOREM 4. If, for the Fourier transform k() of radial kernel k(z),

there exists a radial Fourier-Stieltjes transform m(v) of a bounded measure
m(M) which satisfies

ST b
3. 4 kt)—1l=r f w(ryr ~dr

where x(|v|) = k(v) and ,Zo(\vl) =7;L(v), then, the condition (3.2) is satisfied.

(1) The singular integral of Gauss-Weierstrass:
Wiz, p; f) = -(2’;7,7 A .[R,. Sflx— y)e 1" dy.
Hence, since

() =2 e-1%" ¢ LY(R™, f Kax)dz = 2r)",

R

1-|v|c

bo)=e+"" =4(|v)),

lim _____fc(t) —1
t0+ 2

1
=— 5 =%

1) Gérlich [6] shows that the differential operation is in ordinary sense if 1 < p < .
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A t v
k(@t)—1=2 f w(r)yrdT
0
where

Mol == e = ),
every hypothesis of Theorem 3 is satisfied. So we get the following theorem.

PROPOSITION (3.1). The singular integral of Gauss-Weierstrass is satu-
rated with the order p~* and with the classes

® ={flx); j;{ A(f)x)dx e S for every measurable set M} if E= L',

f={flx)y ANH@ L} if E=L(1 < p<oo),
&={flx); A(NH@ <L} if E=C,

where Laplace operation N\ is taken in the sense of distribution.

(2) The singular integral of Cauchy-Poisson:

n n/2
P(z, p; )= (2,;>n/2 2 F((n+1)/2) '[e" flx

) T e -

Hence, since

2" P(n + 1 1
) = e <L),

k(x)dx = 2n)"2,

R®

ko) = e =k(|v]),

lim ———-;C(t)_ 1 =
-0+ t

an—1=fL@¢-

— 10,

where
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o)) ==e =~ k),
then we get the following theorem by Theorem 3.

PROPOSITION (3.2). The singular integral of Cauchy-Poisson is satu-
rated with the order p~' and with the classes

fR={flx); j}; (V-Fx)dzxeS for every measurable set M} if E=L",

f={fx); (V-F)@)e L?} if E=L" (1 <p< o),
f={fx); (V- @) e L=} if E=C,

where differential operator 9/3x; and when f(x) < C,, its conjugate function
@) (j=1,---,n), are taken in the sense of distribution.

(3) The singular integral of Bochner-Riesz of order @ >(n—1)/2 + 1:

Bz, p; ) =gy 2@+ D) [ A=)V, (Ipy]) dy.

o r
Hence, since
k4 (x) = 2°T(a+1) Va, (|z])e LA(R™) for a >(n—1)/2,
2 @

f ke (x)dx = (2r)”,
1—lo|»)= if |v| =1

b =| , = w(lol),
0 if |v|j=1
lim “Q =~ a0,

/Ac“(t) —1= 2/ ;L(T)Td'r

where
A= |ov|»*t if |v| =1 .
{ =— ak*(v)

o)) =—a
0 if |[v|=1
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and
Y x)e L\R™) for a>n—1)/2+1,

then we get the following theorem.

PROPOSITION (3.3). The saturation structure for the singular integral
of Bochner-Riesz of order a>mn—1)/2+1 1is the same as the Gauss-
Weierstrass singular integral.

(3)" The singular integral of Cesaro-Riesz of order @ >(n — 1)/2 + 1.
It is defined by

Cita.p3 )= oy f flx— y)ks(py) dy
where

. 1L —Jo|)= if |v| =1
k:(v>={

}=é:(|vl>.

0 if |[v|=1

It is known that the summability by means of £%(v) is equivalent to the

summability by means of 2%(v) in (3). (see, K.Chandrasekharan and S.Mina-
kshisundaram [5], p.35). So by the uniformly bounded theorem of Banach-
Steinhaus and by example (3), we have

ki(x)e LY(R™) for a>(n—1)/2.
Moreover

limi(tt)f—lz—aa;o,

1—~0+

L
) —1=y f ;:,('r)-r"1 dr
0

where
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, A=lol)= i o] =1
wieh=—al

f = — aki(v)

if |lvi=1
and

k‘;‘-l(x) eL\RY if a>(n—1)/2+1.

Hence, when v is a positive integer, the singular integral of Cesaro-Riesz of

order a >(n—1)/2 + 1 is saturated with the order p.

(4) Spherical average of first order:

M(z,p; f)= (2 )n/2 S 2T (n/2 + 1) Sflxz—y) dy
lyl=1/p
where
2" Mn/2+1) if jz|=1
k(x) = { } € L'(R"),
if |z| =1

k(x)dx=(2m)"2.

-
‘We note that
ky(v) = 20(n/2 + 1)V, (Jv]) = my(|v]),
2

e®-1 _ 1
e =~ Sty =0

/::,(t) —-1=2 f ;LI(T)Td'T
where
p(lv]) =— 2 T/2 + )V, ((9])

and
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=27 (/2 +1) [Vapa(l - DI"(@)

_2ﬂ/2—11‘(n/2+1)-%(1—lxl‘z) if x| =1
— I e LY(R™).
0 if |z|=1

Hence this singular integral is saturated with the order p~2.

(5) Spherical average of second order :
M@ 3 )= g [ fia=Dhslon) dy
where
@ =—a [ % E(y)dy « LR
o(x) = (2n)" .L. (x — yk(y)dy € L'(R™),
f Ey(x)dz = @ry™.
R
‘We note that
k(©) = [m@)F = {2 (/2 + DY V. (D} = sl [v),

lim @t __ 1 g

-0+ t n+2
o) —1=2 fo t po(7yrdr
where
pn([0]) == 2 T@/2 + D)V, (1))V, |, (10]) = = 5 &([9Dnlv]) € LR,
(6) Spherical means:

S(x,p5 )= g2 Ty2) [

R

"f(x—y) dk(|py|)

where k(x) is a bounded measure with total measure (27)”* which is distri-
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buted on the unit sphere |x| =1 uniformly. As we shall mention in Remark 1,
our argument is valid for the singular integral with Stieltjes convolution.
We note that

E(v) = 2092 D(n/2)V sy |0 ) = (| 0])

say,
k-1 _ 1
zl.l.fyr»fl t? =T o 0,
(3
/Vc(t) —-1=2 f ;L('T)'Td"l‘
0
where
p(|v]) = — 20221 0(n/2) Vo (|0])
and

—20-D2-1T(p /2) it |z|=1)"
— 2(=2/2=1 (5 /2) Vp/2( |z|)= {

}(x) < L(RR).
if |[z]>1

Hence Spherical means is saturated with order p~2.

(7) The singular integral of Picard:

Clx,p; f)= (2;1;7;/2 2("'2)21_‘1(‘1(51/2) Ln fzx—y)e P dy

where

20D TY(p/2)

k(x) = ) ee LYR™),

k(x)dx = (2n)™

Rl
‘We note that

k('v) = {1+|x|12} (n+1)/2 =/2'(|°0|),
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. k®)—-1 _ n+l
M T =0
A lv .
@t)—1=2 J. w(r)rdr
0
where
v __ n+l 1
l"(lv])— ) {1+ lvlz}(nn)/ul
and
ntl ! iy N il ¢ TR
5 |y | = gy O+l e LR

Hence the singular integral of Picard is saturated with the order p~

4. Asymptotic approximation and saturation of the higher order for
singular integrals. At firtst, we state the asymptotic approximation theorem.

THEOREM 5. Let f(x)e L*(R*) (1 < p <o) and k(x) satisfy (3.1) and
3.2). If f'"N(x) exists and belongs to L*, then

K(-,p H-S(- i r
|| Com D=R) e (_DLUM(.)!

—0 as p—oo.
?

PROOF. For dany & > 0, we choose @(x) € ® such that

IAC) =@(llr <& and | f7(+) — (- )]r <E.

Then, by (3.2) and Lemma 2, as p — >

HK(-,p;Pp—f(-)_ o () Forc L)

é” K(',P;f'—Pfl_’z—(f—‘P)(') _ ch(—l)[;](f—¢)[rl(.) L
K(-p: @)—a - ’ T
+| (- p P?T) o(-) /\/c27 (_1)[ [‘pm(,') 2

= ANSIC) =2 ()le(Als +1) + 6(1) = A€,
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so we get Theorem 5.

Applying the above theorem to special singular integral given belore, we
have the following theorem.

PROPOSITION (4.1). Let flx)e LP(R") (1 < p << o0).

(i) If A(f)x)< L, then

|W(”P;)_{)—.f(')_aé(f)(.)u! —0 as p— .

for some constant a and this limit operation holds for BX(x,p; f), M\(x,p; ),
My(z,p; ), Sz, p; f) and Uz, p; f).

(i) If(V -fXx)e L, then

— 0 as p— o
P

’P('vp;’{:)l_f(') —a(V’fS(')

for some constant a.

Next we pass to saturation of the higher order and only give the
following saturation theorem, which may be proved by the same methods as
before.

THEOREM 6. Let f(x)e E(R") and the radial kernel k(x) of singular
integral (1) satisfy the following conditions:

N
k()= at™
m

1 zl_l.o+ t,(";ﬂl) =cx0 for some positive number r,
A ud N ¢ v »
@ 2) = T o =r [ (¢ =oy ket dr
v=0 0

where N is any given non-negative integer and k(v)=«(|v|), ;u(|vl) is a
radial Fourier-Stieltges transform of a bounded measure. Then

(71

() |KCop = e (=1 ()

if and only if — fUeem(z)=0.

=o(p"*P) as p—> oo
E
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e

= O~ ) as p— o
E

(ll) K( P05 f) - ;aup_w(—l)
if and only if

f fraa(xydxe S for every measurable set M, if E= L',
M

fromy e Lr  if E=L? (1< p< o),
f{r(N'l'l)](x) c L°° lf E = Co

where fU¥Y(x) is taken in the sense of distribution.
Moreover, if flx)e L (1 < p< ) and fUrF+DYx) exists and belongs
to L*, then

K(-,p; f)— 2 ap™(— 1)[§]ffm( )
(iil) v=0 — bf{r(lﬁ-l)) ( . ) — 0 as P s 00

—7(N+1)
P ®°

for some constant b.

For example, if Av) is a function of |v|” and differentiable and if its
derivative is a radial Fourier-Stieltjes transform of a bounded measure, then
the conditions (4.1) and (4.2) can be verified by means of Taylor expansion of

k(v).

¥ ¢
I;:(t) => at”+r f @ =) [I('T)’T"l dr,
0

v=0

where ;;,(lvl) is a radial Fourier-Stieltjes transform of a bounded measure

m(M).

Change the variable 7 — ¢7,

‘ v 1 v
r [ @ =yt de = e [ Trye e,

] 0

By the definition of Riemann integral,
1 R r\N
T FV r—1 — 17 r — _1’_ v _ll_ r—1

rjo. A=) ut)r""dr E\g&—RT E{l (R)} ,u,( R)v

and the total variation of the bounded measure which has this formula as
its Fourier-Stieltjes transform is less than
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RT; g {1 - (_;é‘> } [m|sv ' =|m|s £,- E v = | mlls.
So

k() — 3 apt™
w0 (5,9).

tr(N+1)

In particular,

(1) The Gauss-Weierstrass kernel :

‘iulv “_>"2” N+1)‘f(t 2)'(‘“‘) Cet v,

v=0

Hence we need only to put

M)
W)= Tl\ﬁll)—' (— *i—)N“ T LY(R™.

(2) Cauchy-Poisson kernel :
#(t) = €=
_z '( 1)t+(N+1)| f (t —7)"(—1)"*'e-dr.

v=0

Hence we need only to put

a, = VL' (__1):;,
19D = T (FD" e < LY.

(3) The Bochner-Riesz kernel of fractional order a >(n—1)/2+1+N.
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For0=t=1,

w(z)=(1—t*)"
= ¥ (- 1ya@—1)- - (@ — v+ 1
+ i | @ = D=1 @ = NYL =y

Hence we need only to put
- 1y 1
@ =S (~1ya@—1)---(@—v+1)

oy = [T (D7 =Ty —NXL= o]y if || =1

0 if |v] =1

e LY(R") for a >(n—1)/2+1 + N.

REMARK 1. We assume that the singular integral of convolution type is
defined by the kernel k(x)< L'. However, as in Theorem 6, it is sufficient to
assume that the convolution is defined in distribution sense. In particular, we
may consider the kernel of bounded variation and whose Fourier-Stieltjes

transform is radial. That is to say,

KGe.pi )= 7 [ Sl = Liey)

where the condition (1.1) and (1.2) are assumed in the same type for I:('u)

= A(|v]). Then all results are valid.
For example, we consider

& Ve +p)+ flz =) = [ flz—3)dLiw)

where
0 ifx<—-1
L(z)= —é— if —1=z<1

1 if z=1.
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Then

I:(v) = %(e“’ + e7),

lim Il(t_):_l
t—0+ z

_ 1
==

A@)—1= f (t—T)Lﬂ“z"'idf.
0

Hence, in the same way as the proof of Theoiem 6, (1.2) is proved. So
1/2 {lx+p )+ fx—p)} is saturated with order p=2 This is generalized to
the higher order difference formula or the mixed formula with differences
and derivatives.

REMARK 2. P.Malliavin showed to the one of the authors that (1.1) does
not always imply (1.2). That is, there exists a function of bounded variation

such that lim A(It)—[_i =cx0 and% is not Fourier-Stieltjes transform
t—0
of any function of bounded variation.
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