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Introduction. Let Rn be the n- dimensional Euclidean space whose
element will be denoted by x=(xl9 , xn). The length or norm of x is
denoted by \χ\=[χ\ + ... + -4]1/2. By E, we denote the space Lp(Rn)(l^ρ
< oo ) or Co(Rn). For a function f(x) £ E, we consider a singular integral of
convolution type

(1)

where the kernel k(x) is radial and satisfies

(2) k(x)zU(Rn) and Γ k(x)dx = (2ττ)n

JR"

Then, by Jensen's inequality, it is easy to see that

(3) |ί̂ ( , />;/)-/(• )IU-»0 as />

Our object of this paper is to determine the optimal rate of approxima-
tion of f(x) by K(x,ρ;f) and the non-trivial class S of functions for which
this rate is attained. This is called the saturation problem for the singular
integral K(x,ρ;f).

For the sake of completeness, we give here the exact definition of satu-
ration.

DEFINITION. Let f(x) € E and (1) be a given singular integral with
kernel k(x) which satisfies (2). Suppose there exist a positive number r and a
class ®cE such that

(i) !l̂ ( ,/>;/)-/( )IU = <>(/>-r) as/>-+oo implies f(x) = 0 a.e.

(ii) \\K( , />;/)—/( }\\E=O(p~r) as p — » oo implies f(x) z & and vice versa.
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Then the singular integral K ( x , ρ - , f ) is called to be saturated with the order
p~r in the space E and S is called its saturation class.

There are many contributions about this problem. P.L.Butzer [3] initiated
so-called Fourier transform method and studied the single variable case. P.L.
Butzer-R.J.Nessel and RJ.Nessel [4] applied this method to several variables
case. However these papers are restricted to the Lp(l ^p^2) norm. G.Suno-
uchi [8] applied the generalized Fourier transform of Bochner to the single
variable case and studied Lp (1 rg p < oo) approximation. Buchwalter [2] gave
a general theorem by distribution theory and E.Gδrlich [6] applied this to
several variables case in Lp(\ < p < oo) norm. However these papers are
somewhat inconvenient in particular, at the application to classical singular
integrals.

In this paper, we will give a general theorem by adjoint method. This is
essentially equivalent to Fourier transform method in distribution theory, but it
has an advantage of doing easy treatment of broader classes of functions. Next
we give a simple, nevertheless widely applicable criterion and solve saturation
problem for many classical singular integrals of a single variable and several
variables in Lp(l^p< oo) norm and C0 norm. Our method will also give
an asymptotic approximation theorem and a saturation theorem of higher
order by singular integrals.

1. The general theorem for singular integrals in a single variable.
Let the Fourier transform k(v) of the radial kernel k(x) of a singular integral
(1), which is also a radial function κ ( \ v \ ) = k(v) say, satisfy the following
conditions

(1. 1)

for a positive number r, and

i.e., is a multiplier of class BV into class BV. Then (1.2) is equivalent to the
existence of a function H(x) of bounded variation such that

where H(v) is the Fourier-Stieltjes transform of H(x). Therefore
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and so

uniformly in p, and

f dH(px) = ί dH(x)=c
J -00 J - 00

say. We denote by 3) the set of all infinitely differentiable functions with
compact support.

LEMMA 1. // φ(x) e φ α^ £/κ? kernel k(x) of a singular integral (1)
satisfies (1.1) αwJ (1.2), then

_ , _ — 0

where φ{r](x) is φ^n(x) or (φ)<ir)(x) according as r is even or odd.

PROOF. Since φ(x) 6 3), we have by (1.2)

K(x,p φ)-φ(x) __ c __ , -.U 1 {r},
p~r ^ }

= ~-^ \ [H(p . )](τ;) ( - l)lrf\φίr\ )\(v)dv - -

= (- ι)[H I -vfc- L φίrί(x - y}dH(py} ~ "vt
Hence by (3) we get the lemma.

Now we can prove the following general theorem.

THEOREM 1. Let f(x) € E and the kernel k(x) of a singular integral (1)
satisfy (1.1) and (L2). Then this singular integral is saturated with the
order p~r in the space E with saturation class S such as



ON THE APPROXIMATION AND SATURATION 149

f r-l)(x) e BV (if r is even) "
); ~ if ε=Ll,

(/yr-u(.r) 6 BV(if r is odd)

where f [ r ] ( x ) is J*τ)(x) or (/*)(r)(X) according as r is even or

PROOF, (i) Suppose that

\\K( , p ;/)-/( )|U = o(p-r) as p -> oo .

Then, for any <p(X) € ®, we have

K(x,p;f)-f(x) , ,, Λ— \ ?r?^-/ — ̂ A_Z_ φ(χ)dx -> 0 as
I

Γ~I
J —o

On the other hand, by the fact that K(x,ρ\f) is of convolution type and by
Lemma 1,

as

r *(*./» ;?r-/fa> y(̂ = r
* —oo I •'—oo

~* ̂ 72T (~1)[Z~] f <f>lr]WfW
«/ —00

Therefore

oo

J φ^(x)f(x)dx = Q

and so, in the sense of distribution, it can be written as

/i"(α:) = 0.

Taking Fourier transform in the distribution sense, we get |z;|r%/(t/) = 03)

1) /(r-i)^) (OΓ OO^-DO)) ζβK means that /O) (or/(x)) coincide a. e. with a function
G(x) with G<r-*>(x)zBV.

2) When £ = C0, /(Λ:) means a generalized conjugate f unction /* (Λ:) . (see remark at the end of
this section and N. J. Achieser [1], p. 126-129).

3) In fact, / is a tempered distribution.
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and / is a polynomial, (see L. Schwartz [7], p.139). Since fzLp(l^p< oo)
or C0,

f(x) = 0 a.e.

(ii) Next we suppose that

We shall prove only when E=Ll, since another cases may be treated by the
same idea. At first we discuss the case when r is even. Since the indefinite
integral of a function belonging to L1 is absolutely continuous and so of
bounded variation, by the weak*-compactness of the unit ball of space BV9

there exist a function G(x) <= BV and a subsequence pv such that

Γ°° K(x,pv\f)—f(x) , λ , f°° / \jn \i v ,rv,jj J^ > φ(χ)dx - + I φ(x)dG(x) as pv -> oo
J-oo ΓV J.oo

for any φ(α:)€®. On the other hand, by the convolution structure of
by Lemma 1

/
XjkΛ >C« P « / ) T\0u) / \ 7 I -** V«^* 'ϊ P \ ^P ) ^P\^*^t /*s \ 7
—^— -̂̂ -̂  φ(x)dx= \ lr /( )̂̂

-00 ' «/—00 »

•/ —oo

Therefore if we denote by Gr^(x) the (r—l)th integral of G(x)y we have

By the same argument to the proof of part (i),

a.e.

and so

Next, we treat the case when r is odd. Similarly as above, we have
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-iy f φ^(x)Gτ.l(x)dx = — ̂ =(-l)[aL] Γ &)^(x)f(x}dx
J — 00 J —00

where the last expression is taken in the sense of distribution, because the
conjugate function f(x) of f(x) € Ll does not always belong to ZΛ Thus, in
the sense of distribution,

=0.

Hence,

a.e.

and so

(lύ) Conversely, we suppose f(x) € U and βr~l\x) or (f)(r~l\x) € J3K
Observing that

and noting that by (1.2) the last term is a Fourier-Stieltjes transform of
a function of bounded variation whose norm is uniformly bounded in p, we
have

J* K(y,P;f)-f(y) ^(-i/

or (-I)1*"1 Γ (^-"(a: -
•'-00

and
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= O(1) uniformly in p.
p~r

REMARK. When f(x) z C0, /(.z) does not always exist in the ordinary
sense. So, in this case, we consider as follows. If we put

/*(*) = (x - OUm. -^^ f (i sign v) /» *"»A;

where

then, f'*(x) and f'(x) have the same Fourier transform in the sense of distri-
bution. Therefore in this case we may interprete J*r)(x) as /*#(r)(.r).

2. Applications of the general theorem to special singular integrals.
When we apply the general theorem to special singular integrals, it is some-
times difficult to verify the condition (1.2). We give here a simple but widely
applicable criterion for verifying (1.2).

THEOREM 2. //, for the Fourier transform k(v) of radial kernel k(x)9

there exists a radial Fourier-Stieltjes transform m(v) of a function of
bounded variation m(x) 'which satisfies

t
(2. 1) ϊc(t} - 1 = r ί μJ(τ)τr-1 dτ

•Ό

where ίc(\v\) = k(v) and μ(\v\) = m(v) then, the condition (1.2) is satisfied.

PROOF. In the formula (2.1), if we change the variable r —> ίr, then

*$± - r jf ίc^x-* - to -̂  ,| ;(< -L.) ,-.
= limjfe,(ι.) (ί=|»|)

jff-*oo

say, by the definition of integral of Riemann sense. Denote by \\Ry\\ and \\m\\
the total varktion of RN(x), m(x), then
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m.

Hence the norm \\R&\\ is uniformly bounded and so the uniform limit of
V

R*f(v) is also representable by a Fourier-Stieltjes transform of a function of
bounded variation.

Now we pass to applications.
(1) The singular integral of Gauss- Weierstrass. It is defined by

Hence, we need only to check the conditions (1.1) and (2.1). Since

k(x)=+/~2 e-lxlszLl(-oo9 oo), Γ k(x)dx=«/~2x,
J -00

-J.|t>|

k(v) = e = κ(H)

ί-o+ t

κ(t) - 1 = 2 ί
•̂n

where

and μ(\vI) is a Fourier-Stieltjes transform, every hypothesis of the general
theorem is satisfied. So we get the following saturation theorem.

PROPOSITION (2.1). The singular integral of Gauss-Weierstass is satu-
rated with the order p~2 and with the classes

BV} ifE = L\

ft = {/W ;/"(*) € L^} £/ £ = L'(

(2) The singular integral of Cauchy-Poisson. It is defined by
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Hence,

~ ~ 1 / °°
j - . eLl(-*o,oo\ /
i-f |α; | J_o

-l = Γ K
Jo

where

and the conditions (1.1) and (2.1) are satisfied and so we get the following
saturation theorem.

PROPOSITION (2.2). The singular integral of Cauchy Poisson is saturated
with the order p~l and with the classes

z/

«= (/(*) /'(*) ^ ̂ ) if

where f*(x) is a generalized conjugate function of f(x).

(3) The singular integral of Bochner-Riesz of order cL > 1. This singular
integral does not form a semi-group. It is defined by

J f(

Hence,

^- 00,00) for
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J k«(x)dx = ^2π,

10 if | t > |

lim ~ =

)-l = 2 Γ Kτ)τJτ
Jo

where

(1- |V I')-1 if M^

0 if \v\ ^

and

^-X^c) € L\- oo, oo) for Λ > 1,

so we get the following saturation theorem.

PROPOSITION (2.3). The saturation strucure for the singular integral of
Bochner-Riesz is the same as the singular integral of Gauss-Weierstrass.

3. The general theorem for singular integral in several variables.
Similarly as 1-dimensional case, let the Fourier transform k(v) of the radial

kernel of a singular integral (1), which is also a radial function κ ( \ v \ ) = k(v)
say, satisfies the following condition,

(3. 1) lim κ(t}~1 =c^Q
ί->0+ t

for a positive number r, and

(3.2) -τ—e(S,S),

i.e., is a multiplier of class S into 5°. Then (3.2) implies the existence of a
bounded measure Λ such that

1) S means the set of bounded measures.
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and so

-

where A(v) is the Fouiier-Stieltjes transform of Λ. Therefore

)IU= O(l) uniformly in />,

I dΔ(px) = I <fΛ(:ε) = c' say.
Jgn Jgn

Let 3) be the set of all functions with compact support and all of
whose derivatives exist and are finite. Then, for any φ(x) <Ξ ®, putting

(3.3) φ"(x)=.

Δm(V = Δ -1 C*0 if r = 2m + 1

where φ}(x) O' = l, « ,n) is y-th conjugate function of ^>(α;) and Φ(:r) =
( ι̂(^), , φ*(*)\ we know that

Through this section we can discuss similarly as 1-dimensional case and
so give results analogous to Lemma 1 and Theorem 1 and 2 without proof.

LEMMA 2. If φ(x) z S) and the kernel k(x) of a singular integral (1)
satisfies (3.1) and (3.2), then

\K( ,p;φ)-φ( )

\ P~r

JH • 0 as p

where φ(r](x) is defined by (3.3).

Hence, we have the following general theorem in several variables.
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THEOREM 3. Let f(x) z E and the kernel k(x) of a singular integral (1)
satisfy (3 1) and (3.2). Then, this singular integral is saturated with the

order p~τ in the space E with saturation class & such as

® = I f(χ) f f{r\χ)dx € S for every measurable set MΪ if E = L1 ,

«= {/(*) /r}(*) « L*} *fE = Lp(l < p < oo),

where f{r](x) means such as (3.3) and differential operators Δm, d/dxj (j — 1,

• , n) and, when E = CQ, conjugate functions f}(x) 0" = 1, , ft), tfre gener-
ally taken in the sense of distribution.^

Before we pass to applications, we give the criterion for the condition
(3.2).

THEOREM 4. If, for the Fourier transform k(v) of radial kernel k(x),

there exists a radial Fourier- Stieltjes transform m(v) of a bounded measure
m(M) which satisfies

(3. 4) *(*) -T= r [ μ(τ)τr~ldτ
Jo

where κ(\v\) = k(v) and μ(\v\) = m(v), then, the condition (3.2) is satisfied.

(1) The singular integral of Gauss- Weierstrass :

W(x, P f ) = -^γίί 2nl* f __ f(* ~ y)e-^' dy.

Hence, since

k(x) = 2W/2 e-w € L1^), ί k(x)dx = (2τr)w/2,
JRn

Γlim

1) Gϋrlich [6] shows that the differential operation is in ordinary sense if 1 < p <
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Γ *
κ(t) -1 = 2 1 μ(τ)rdτ

•Ό

where

every hypothesis of Theorem 3 is satisfied. So we get the following theorem.

PROPOSITION (3.1). The singular integral of Gauss-Weierstrass is satu-
rated with the order ρ~2 and with the classes

$ = (f(x)', I Δ(f)(x)dx £ S for every measurable set M] if E = L1,
JM

e L"} if E = L (l < p <oo),

where Laplace operation Δ is taken in the sense of distribution.

(2) The singular integral of Cauchy-Poisson :

Λ P" 2T((»
P(*.Pi ί ) = - 5 / Γ -

Hence, since

2n/2Γ(n + 1)
~ ~

I

where
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then we get the following theorem by Theorem 3.

PROPOSITION (3.2). The singular integral of Cauchy-Poίsson is satu-
rated with the order p'1 and with the classes

®—{f(χ}> I (V f)(x)dx € S for every measurable set M] if E — L1,
JM

) (V f )(*) e L"} if E = L»

* = f /<X> : (V fl(*) € L-} i/ E = C0

where differential operator d/dx^ and when f(x) € C0, ίί5 conjugate function

fi(x) (j = 1, , n) , αre ίαfew m ί/ie 5^W5β of distribution.

(3) The singular integral of Bochner-Riesz of order ct>(n— l)/2 + 1:

Hence, since

( Λ € L1^ for

Γ k"(x)dx = (2π)n/2 ,

^ »

if
if |v| ̂

=_

X v

/c«(t) -1 = 2 μ(τ)τdτ
Jo

where

(I- H')-1 if

0 if
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and

ka~\x) € L\Rn) for a>(n- l)/2 + 1,

then we get the following theorem.

PROPOSITION (3.3). The saturation structure for the singular integral
of Bochner-Riesz of order oί > (n — l)/2 + 1 is the same as the Gauss-
Weίerstrass singular integral.

(3)' The singular integral of Cesaro-Riesz of order a >(n — l)/2 4- 1.

It is defined by

dy
V^'V J R*

where

/(I- \v\-ry if \v\ ^1)
k"(v) = \ \ = <(M).

I 0 if H^l j

It is known that the summability by means of k*(v) is equivalent to the

summability by means of k"(v) in (3). (see. K.Chandrasekharan and S.Mina-
kshisundaram [5], ρ.35). So by the uniformly bounded theorem of Banach-
Steinhaus and by example (3), we have

Ll(Rn) for Λ>(Λ-

Moreover

ιc"(t) — 1 = γ I /λ(τ)τ7~1 dτ
Λ

where
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- - 1 i f ^
XM) = -rt ,

0 if _

and

kΓ\x) € L'CR") if Λ >(w - l)/2 + 1.

Hence, when γ is a positive integer, the singular integral of Cesaro-Riesz of

order oί>(n— l)/2 4-1 is saturated with the order ρ~7.

(4) Spherical average of first order:

Max, />;/)= -/2^/Γ 2n/2 Γ(Λ/2 + 1) [ ffr-y) dy

where

if ί x \ ̂

if \x\^

/•

JRn

We note that

i,(ί) - 1 = 2 Γ
Λ

where

and
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(»/2 + l) [Vn,2+l(\ - |)] (*)

2"/2-1Γ(w/2 + l) 4-(l-|α;|2) if \x\ ^

0 if \x\ ^

Hence this singular integral is saturated with the order f>~2.

(5) Spherical average of second order :

, />;/)= (2.)n/2 f(x - y)k2(py) dy

where

*»(*) = (2*)M/, J *,(* -

Γ ^(ΛjΛc = (2*)-/».
JΛ n

We note that

= t^ι(v)]1 = {2Λ/2 Γ(n/2 + 1)} 2 {F , ( I u \ )} 2 = *f ( I v | ) ,
2

i,(ί) - 1 = 2 f μ2(r)τdr
Jo

where

^(|v|) =- {2»<*Γ(n/2 + l)}«V.(|
2~

(6) Spherical means:

5(*. /»;/)= (2̂

 2(""2)/2

where k(x) is a bounded measure with total measure (2τr)7l/2 which is distri-
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buted on the unit sphere \x\ = 1 uniformly. As we shall mention in Remark 1,
our argument is valid for the singular integral with Stieltjes convolution.
We note that

k(v) = 2^-

say,

r κ
l im— ̂
z-»o+ t

- 1 = 2 I
i/O

where

and

f-2(w-2)/2-1Γ(/z/2) if k l ^ l ) Λ

- 2(n-*>/2-1 Γ(Λ/2) Vn/2( μ I ) = (Λ) €
( 0 if \x\>l)

Hence Spherical means is saturated with order ρ~2 .

(7) The singular integral of Picard :

On θ(n-2)2 -p/^ /o\
= _ " __ - _ ι\n/Δ)

where

Oίn-2)/2

-'"

f ^(α;)ίίj:=:(27r)n/2.
J»

We note that
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P
hm Λ0 ,

i(f)-l=2 f XT)T
Jn

where

and

Π 4- I r I V-l^l € /
( ' ' j

Hence the singular integral of Picard is saturated with the order p~2.

4. Asymptotic approximation and saturation of the higher order for
singular integrals. At firtst, we state the asymptotic approximation theorem.

THEOREM 5. Let f(x)zLp(Rn) (1 <ρ<°°) and k(x) satisfy (3.1) and
(3.2). If f(τ](x) exists and belongs to Lp, then

- 0 as p —>oo

PROOF. For any € > 0, we choose φ(x) <Ξ 3) such that

\\f(•) ~ 0>( )IUp <£ an<i ll/ t r }( ) — <p{r}( )IUp<£•

Then, by (3.2) and Lemma 2, as /> —> oo

K ( ; p m , <p)-
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so we get Theorem 5

165

Applying the above theorem to special singular integral given before, we
have the following theorem.

PROPOSITION (4.1). Let f(χ) € Lv(Rn) (1< /><*>) .

(i) IfΔ(f)(x)zLp,then

\Λ/ί /"I T I __ Tl m I

—> 0 as p —» oα

for some constant a and this limit operation holds for B"(x, p; f), Mt(x, p f),
M2(x, p /), S(x, p /) and C(x, p f).

(ii) //( V •• O<X> « L", then

> 0 as p

for some constant a .

Next we pass to saturation of the higher order and only give the
following saturation theorem, which may be proved by the same methods as
before.

THEOREM 6. Let f(x) € E(Rn) and the radial kernel k(x) of singular
integral (1) satisfy the following conditions:

(4. 1)

(4.2)

£r(Λr+l)

JV

— = c ̂  0 /or some positive number r,

v f1 = r I (ίr - τry*μ(τyrr-1 dτ

where N is any given non-negative integer and k(v)—/e(\v\\ μj(\v\) is a
radial Fourier-Stieltges transform of a bounded measure. Then

(i) K( ,p; /)-

= 0,
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(ii) K( p /) - Σ aj(rn (-1) 2 J/«™J(. ) = O(/>-^+1>) as p -> oo
v=Q E

if and only if

/
f[r(N+ί^(x)dx^ S for every measurable set M, if E = L1,

_f
/crc^+i)}^) € Lp if E = Lp (1< p < oo),

where f[r(ir+1)](x) is taken in the sense of distribution.
Moreover, if f(x) € Lp (1 < /> < oo) αwJ /{r(JVP+1)}(α:) exists and belongs

to Lp, then

(iii)

for constant b.

For example, if y£(t;) is a function of |t;|r and differ entiable and if its
derivative is a radial Fourier-Stieltjes transform of a bounded measure, then
the conditions (4.1) and (4.2) can be verified by means of Taylor expansion of

= Σ <^r"

where μ{\v\} is a radial Fourier-Stieltjes transform of a bounded measure
m(M\

Change the variable r - *tτ,

r* C1

rf (tr-τr]*ι4τy-ldτ = rtr(N+l) \ (\-
JQ Λ

By the definition of Riemann integral,

r/ α-r

-1 dτ .

and the total variation of the bounded measure which has this formula as
its Fourier-Stieltjes transform is less than
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r
w

So

In particular,

(1) The Gauss-Weierstrass kernel :

Hence we need only to put

i / i

(2) Cauchy-Poisson. kernel :

(5
V ?

-
± _ Γ

+1)! J0

Hence we need only to put

(3) The Bochner-Riesz kernel of fractional order a >(n —1)/2 4-14-Λr.
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For 0 ̂  t ̂  1 ,

JL
v\

Hence we need only to put

aυ = - -

0 if

/OR") for rt >(Λ - l)/2 +1 4- AT.

REMARK 1. We assume that the singular integral of convolution type is
defined by the kernel k(x) £ ZΛ However, as in Theorem 6, it is sufficient to
assume that the convolution is defined in distribution sense. In particular, we
may consider the kernel of bounded variation and whose Fourier-Stieltjes
transform is radial. That is to say,

K(X,P; f)= —4= f(x-y)dUj>y)

where the condition (1.1) and (1.2) are assumed in the same type for L(v)

= A(|τ;|). Then all results are valid.
For example, we consider

- = Γ f(* -
J — 00

where

JL
2
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Then

_ _
2!

Λ

Hence, in the same way as the proof of Theoiem 6, (1.2) is proved. So
1/2 {/(^+p~1)+/( r~P~1)} is saturated with order p~2. This is generalized to
the higher order difference formula or the mixed formula with differences
and derivatives.

REMARK 2. P.Malliavin showed to the one of the authors that (1.1) does
not always imply (1.2). That is, there exists a function of bounded variation

V V

such that lim—Mη =r^0 and—M-j is not Fourier-Stielties transform
«-»o 1 1 1 \t\

of any function of bounded variation.
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