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1. Introduction and notations. The purpose of this paper is to review
the inequalities established earlier by the author. The aim was to study the
rates of growth of the Ahlfors-Shimizu characteristic function of a meromorphic
function f(z) and the area function of the image of the disc | z \ < r on
the Riemann sphere under the mapping f(z) by using a general kind of
comparison function which on specialization gives all previously known results.
That study resulted in a set of inequalities (Cf. sec. 2). In the present paper
we try to sharpen those and establish some new ones. This attempt culmi-
nates in the establishment of two basic independent inequalities, and a Tau-
berian-type theorem as their by-product which is the main result of this
paper.

Let f(z) be meromorphic and non-constant in the open complex plane.
Following Hayman [2,ρ.ll], we write

*(r, a) = (l/2ττ) Γ
Jo

m(r, a) = ττ og {(£(/(*), α))-1}^ , z=reiθ,

where k(w, a) denotes the chordal distance on the Riemann sphere of the two
points which project to w and α, and

A(r,f) = A(r) = (1/ττ) { \ f ' ( z ) \ 7(1 + \f(z) \2)2} ududθ ,z =

Clearly enough ττA(r) gives, with due regard to the multiplicity, the area of
the image of \z\ <r onto the Riemann sphere under the mapping f(z).
Evidently, A(r) = 0 if and only if f(z) is constant, otherwise A(r,f) is non-
negative, non-deer easing and continuous function of r [8, p. 125]. This being
so, A(r,f) represents the behaviour of the growth of f(z) on \z\ — r. In fact,
if n(r,a) denotes the number of α-points of f(z) in \z\ rg r, then A(r,f) is
the average value of n(r,ά) as a moves over the Riemann sphere.
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Below is the statement only of the first fundamental theorem of Nevan-
linna in the form of Ahlfors [1] and Shimizu [8], which is frequently used
hereafter.

THEOREM: [2, p. 12; 5, p. 166] Suppose that f(z) is meromorphic in the
open disc \z\ < R, 0 < R <oo . Then for every a, finite or infinite, and
0 < r < R ive hav

(1.1) f (A(t)/t)dt = N(r, a) + w*(r> a) - m*(o, a),
Jo

provided f(0)^a, and N(r9a) has the usual meaning assigned in the
Nevanlinna theory of meromorphic functions. (Iff(0) = a, a slight modification
is necessary).

The integral in the left side of (1.1) will be called the Ahlfors-Shimizu
characteristic function of f(z) and subsequently will b$ denoted as T*(r,f)
= T*(r). Nevanlinna [5, p. 167] calls T*(r,f) "spherical normal" form of his
characteriatic T(r,/). For non-constant meromorphic functions, it is clear that
T*(r) is a positive, strictly increasing and convex function of log r. Also it
can easily be shown [2, p. 13] that T(r,/) and T*(r,f) differ by a bounded
function of r. However, T*(r) gives a very elegant geometrical interpretation
of the Nevanlinna's characteristic.

We get for all r> 1, since A(r) is increasing, T*(r)>A(l)logr; and hence
lim infr_ooT*(r)/log r > 0, unless f(z) is constant. If f(z) is a rational function
as the quotient Pm(z)/Pn(z), of two polynomials of degree m and n re-
spectively, then A(r,/) = O(l) and conversely. In fact [8, p. 131] A(r,/) =
Max (m, tt)-f O(l). By fairly elementary methods it can be shown [7,8] that
for a meromorphic function of order p and lower order λ we have, as
r-> oo lim sup [inf] log T*(r)/logr = p[λ] = lim sup [inf] log A(r)/log r.

For our use we set the following notations:

lim sup [inf^T^r,/)//* = T[ί],

lim sup [inf]r_A(r,/)/r> =A[α].

Wherever it appears, exp(^c) = ex.

2. Comments and statements of results. The following inequalities
were established [6] among these numbers A, α, T and t.

(2.1) a ̂  A exp((α/A) - 1) ̂  pT ̂  A ̂  epT, t <oo ,

(2.2) a^pt ^aΛog(eA/a)^ A, α ̂  0, t <oo ,

(2. 3) A + a ̂  epT ,
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(2. 4) A = a if and only if a = pT .

Consequently equality can not hold simultaneously in (2. 3) and (2. 4). and
hence 'a fortiori' it can never hold simultaneously in the inequalities A ^ epT
and a^pT provided T > 0. We also observe that if A = 0 then T = 0 and
conversely. If a =00 then t =00; and if £ =00 then A = 00. Thus A is finite
and non-zero if and only if T is finite and non-zero. Furthermore, if t = 0
then a = 0; and if a = 0, A <oo then t = 0. If £ <oo then either A = T=oo
or A = T = 0 or 0 < A <oo, 0 < T <oo. Thus 0 ̂  α ̂  A ^oo if and only

The inequalities (2.1) — (2.4) were established by comparing the functions
T*(r) and A(r) with a more general function rpL(r) where L(r) is a 'slowly
changing' function in the sense of Karamata; that is^ L(r) > 0 and continuous
for r>r0 and L(kr)~~L(r) as r— »oo : for every & > 0. It is remarked that
these results hold if we use rp(r) as a comparison function, where p(r) is the
Lindelόf s proximate order of f(z). In fact, rp(r)~p is a slowly changing function
[3]. In this paper, for the sake of simplicity, we confine ourselves to the
function rp but the results and the arguments hold also with reference to the
function r+L(r).

It is clear that if a ̂  0 and t < °o? then the in-equalities (2.1) and (2.2)
give us the following set of inequalities

(2. 5) a ̂  pt ̂  pT ̂  A ,

(2.6) A/pT^exp {1 - (α/A)},

(2.7) a/pt^{I

Therefore the existence of the limit of the ratio A(r)/rp, as r— »°o implies
that the limit of the ratio T*(r)/r* exists and is equal to A/ p. We now
raise the question, which might well be raised for any Tauberian theorem,
that does the existence of the limit of the ratio T*(r)/r* as r— » °o imply
that of the ratio A(r)/r+, and will it be equal to the number pT ? The
problem would rather be better appreciated if we reduce it to the form; Do
there exist unique functions (say) g and h of the parameters T and t such
that g(T, t) ̂  A/pT ^ 1 ̂  a/pt ^ h(T, t); and as t -> T, both the functions g
and h approach to unity? In spite of the simplicity of the problem, it does
not seem possible to solve it, in any manner, from the set of the inequalities
proved earlier. Nevertheless, the answer to the problem is in the affirmatve
and the Tauberian theorem we propose to prove may well be stated as
follows.

THEOREM 1. // 0 < t = T <oo, then 0 < a = A = pT.
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Among several other examples to support the theorem we pick the
following [4, p. 15] doubly-periodic Weierstrass ^-function.

t(z) = (z)~* + Σm, n{(z + m + in)-2 - (m + in)-2},

(m,n = ±1, ±2, ±3, -.)

T*(r, f (*)) — 7ΓΓ2 + B(r), where J3(r) - O(l),

The results cited below in Theorem 2 are basic for the subsequent and
contribute to the proof of Theorem 1.

THEOREM 2. For any non-constant meromorphic function f(z) of finite
non-zero order p,

(2.8) pT

(2. 9) pT ̂  a exp((/tf/α) - 1).

It should be observed that neither (2.8) nor (2.9) could be deduced from
the previous results (2.1), (2.2) and (2.3). On the contrary, by a few easy
calculations it can be seen that the inequalities (2.8) and (2.9) respectively
sharpen the middle part of the inequalities (2.1) and (2.2). Moreover, from
(2.8) one easily gets that epT ̂  Aexp(p£/A), and since for any real x, exp (x)
Ξ^l + α:, we finally get, eρT^A + ρt which is a strengthening of (2.3).
Furthermore, from (2.9) we obtain pt ̂  α(l + log(f>T/α)) and now, since for
all x^l. \ogx^x/e,we have 0 ̂  (pt — a) ̂  (pT)/e. We collect all these
deductions, and the changes produced by (2.8) and (2.9) in the previous
results, in the form of the following corollaries.

COROLLARY 1. For t <oo, a ±? 0, A ̂  0, we therefore have

(2.10) a ̂  Aexp((α/A) - 1) ̂  Aexp((/tf/A) - 1) ̂  pT ̂  A ̂  epT,

(2.11) a ̂  pt $ a(l + log(pT/α)) ̂  α(l + log(A/α)) ̂  A.

COROLLARY 2. Under the restrictions of corollary 1, we

(2.12) (a + A) ̂  A + pt^epT,

(2.13) 0 ̂  (pt - a} ̂

From corollary 2 without any efforts we obtain
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COROLLARY 3.

(2.14) (A - eά) ^ p(l + e)(T - t).

From Theorem 2 we also deduce the theorem cited below, which with
the aid of (2.4) proves the assertion claimed in Theorem 1.

THEOREM 3. For any non-constant meromorphίc function f ( z ) of finite
non-zero order p,

(2.15)

(2.16) (A/pt) ^ (A/pt) rg g(T/t) ,

where both the functions h and g are unique and continuous', h(T/t) ap-
proaches to unity as (T/t) — > 1, and it decreases from unity to zero as the
ratio T/t increases from unity to infinity. The funtion g(T/t) approaches
also to unity as (T/t) —+ 1, but it increases from unity to infinity as the
ratio T/t increases from unity to infinity. In fact, when T/t is large g(T/t)
— e(T/t}\ h(Tjί) = o (eT/t). While, when T/t is close to unity we have

g(T/t) - 1 +V2((T/0 - 1) - h(T/t).

In the light of Theorem 3, we further state the following

COROLLARY 4.

(2.17) pT ̂  A ̂  ptg(T/t) ^ ptg(A/pt\

(2.18) pth(T/t) ^a^pt.

We observe that the two pairs of inequalities {(2.9), (2.15)} and {(2.8),
(2.16)} yield easily that a ̂ Max {pth(T/t),pt(l + log(pT/a)-1} and A^
Min [ptg(T/t), ρTexp(l — (pt/A))}. But we present the following precise
order relations between these numbers.

THEOREM 4. For any non-constant meromorphic function f(z) of finite
non-zero order p,

(2.19) a

(2.20) A

3. Subsequently we shall need the following simple lemma.
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LEMMA. Given the function

(3. 1) ey = xexp(l/X), 0 < x <oo,

there do exist two unique real-valued inverse functions x=g(y) and x = h(y)
defined for 1 ̂ y <°°, "which are positive, continuous, g (l) = l = /ι(l) and
both of them satisfying the relation (3.1). Furthermore,
( i ) g(y) increases steadily from unity to infinity, and h(y) decreases

steadily from unity to zero,
(ii) both the functions g[y) and h(y) are differentiable in a finite open
interval (1,3>0)

 and

g(y) = g(y)(g(y) - i}-1. exp (i -

same for h(y) with g(y) replaced by h(y) in the above expression,
(iii) when y is large, g(y) — ey; h(y) = o(ey\
(iv) when y is close to unity, g(y) — l + *J2(y— 1) — h(y\

PROOF OF LEMMA. The proof is based upon the elementary techniques
of calculas. First, consider (3.1) for all x ̂  1. We notice that for x ̂  1, y(x) is
positive, continuous and y(ί) = l. Its derivative y'(x)= {1 — (!/#)} exp ((I/x) — 1)
remains positive for all x ̂  1. Hence y(x) increases steadily from unity
to infinity for x ̂  1. Therefore there exists a unique inverse function, say,
g(y) defined for y ̂  1, continuous, positive, #(1) = 1 and differentiable for
(1,3Ό),JΌ <°° Clearly g(y) satisfies the equation ey=g(y) exp(l/jr(y)). More-
over, since the derivative

/(y) = g(y)[g(y) - ij^expα - (i/g(y»

stays positive for all y > 1, hence </(y) increases from unity to infinity. Obvi-
ously, for large y, g(y) — ey. Thes proves (i), (ii) and (iii). To prove (iv), we
observe that for x=l+£, £>0 and arbitrarily small

y = (l+ £)exp{(l + S)'1 -!}=(!+ £)eχp{- 8 + £2 - £3 + - •}

= (!+£){!-£+ (3/2)82 4- O(£3)} =1 + (l/2)£2 + O(θ3)

= 1 + (1/2)(Λ - I)2 + O(x - I)3.

Hence g(y) ~~ l + V2(y—1). This proves all the assertions made for g(y). The
assertions connected with h(y) can similarly be proved by considering the
relatien (3.1) on the interval 0 < x ̂  1. This completes the proof of the
Lemma.
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4. Proof of Theorems. We begin by proving Theorem 2. The proof of
Theorem 1 has already been furnished in the comments right after the
corollary 3.

PROOF OF THEOREM 2. The proof is straightforward. Pick a number
A'>0 such that A-A'=£>0. Suppose Afc) > A'rf, where r1=rl(A). Then
by Ahlfors-Shimizu theorem, since A(r) increasing, we have for all r > rλ

T(r) ΞΞ Γ(rO + A V / + 0(1),

(4. 1) = T(r.) + A'nφogtr/r,)} + O(l) .

Also, it is possible to choose rt such that T(r,)> ί'r/ with ί — ί' = θ. There-
fore from (4.1) for all r>rt we obtain

(4. 2) T(r)/r> > (r,/r)' {f ' + A'logCr/r,)} + o(r») .

Now, by usual mathods of calculus we maximize the first term of the right
hand side of (4.2). We find that its maxima is attained for that value of r
which satisfies the relation

(4. 3) r/n = exp{(A' - pt')/PA'}

and that maximum value is (A'/p)exp {(/#' — A')/ A'} Therefore from (4.2) we
finally get,

(4. 4) T(r)Λ* ̂  (A'/p)exp {(/>*' - A) /A] + o(r*)

for r satisfying (4.3). We may take r such that rγ -> oo. In that case, r satis-
fying (4.3) tends to infinity and we see that pT g: A'ex.p{(ρt'/A) — 1)}.
Now, since A can be picked arbitrarily close to A and £' arbitrarily close to
ί, we immediately deduce from (4.4) the required result, namely pT ̂  A exp
{(pt/A) — 1}. This proves (2.8). The inequality (2.9) may be proved in a similar
manner. This completes the proof of Theorem 2.

PROOF OF THEOREM 3. With the aid of the lemma, the proof is simple.
The inequality (2.8) yields

(4. 5) T/t ^ (A//tf)exp {(pt/A) - 1} .

Let us consider the function (3.1)
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with x=A/ρt^\. Then, in view of the conclusions made in the lemma,
there exists a unique, continuous and steadily increasing function #(3;) such
that g(y)~A/pt. But from (4.5) T/t^y and hence, since g is increasing, we
finally get

This proves (2.16). The proof for (2.15) also depends on the lemma and is
similar to that of (2.16). This proves Theorem 3.

PROOF OF THEOREM 4. The proof of (2.19) is based upon the fact that
(2.15) of Theorem 3 holds. In fact, we try to show that (2.15) is a necessary
and sufficient condition for the validity of (2.19). So we begin with (2.15). We

have

(4.6) a^

and hence

(T/t)/h(T/t)^PTJa.

Since the function h satisfies the relation (3.1), we obtain

(T/t)/h(T/f) = exp{(l/Λ(T/f))-l} ^ PT/a .

Therefore, we finally get

(4. 7) pt h(T/t) ^pt{l + log(pT/α)} -' .

On the other hand, by retracing the steps, (4.7) leads us back to (4.6) from
which we now deduce that

(4. 8) h-\a/pt)/(a/pf) ^ PT/a .

Since h~\x) = y = x exp{(l/.r) - 1], (4.8) yields

(pt/a)(h-\a/pt)) = exp{(pί/α) - 1} ^

that is,

(4.9) a
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Again by retracing the steps we observe that (4.9) leads us back to (4.6). In
fact, from (4.9) we can also deduce the relation

T/t g h'l(afpt),

and since h is decreasing, therefore

a ̂  pt - h(T/t),

which, in turn, as shown above gives us (4.9). This completes the proof of
the inequality (2.19). The arguments to prove (2.20) run parallel to that of
(2.19) and details may be omitted. In fact, now one tries to show that (2.16),
namely A rg ptg(T/t) is a necessary and sufficient condition for the validity of
the inequality (2.20). Thus Theorem 4 is completely proved.

The author is indebted to the late Professor A. J. Macintyre for his sug-
gestions during the preparations of this paper. Also the author wants to
acknowledge the suggestions of the referee to help improve the manuscript.
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