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ON THE ENESTROM-KAKEYA THEOREM

N. K. GOVIL AND Q. I. RAHMAN

(Received September 19, 1967)

The following result is well known in the theory of the distribution of
zeros of polynomials.

n

THEOREM A. (Enestrόm-Kakeya). // p(z) = Σ a*zk *5 a polynomial of
fc = 0

degree n such that

Λn^Λn-l^tfn-S ^ ' ' ' ̂  <*1 ̂  <*>* > 0, (1)

then p(z) does not vanish in \z\ > 1.

We may apply this result to p(z/a) to obtain the following more
general

n

THEOREM B. If p(z) = Σ akzk is a polynomial of degree n such that
k=Q

for some a > 0

an ̂  aan., ̂  α2αn_2 ̂  ^ an~la, ̂  anaQ > 0 , (2)

then p(z) does not vanish in \z\ > 1/α.

This is a very elegant result but it is equally limited in scope. The
hypothesis is very restrictive and does not seem useful for applications. Our
aim is to relax the hypothesis in several ways. In the literature there already
exist ([1], [2, Theorem 3], [3]) some extensions of the Enestrόm-Kakeya
theorem. In connection with Theorem A or the more general Theorem B the
following questions appear to be very natural to ask.

Q.I. Can we drop the restriction that the coefficients are all positive and
instead assume (2) to hold for the moduli of the coefficients ?
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Q.2. Can we allow the polynomial of Theorem B to have gaps if the
non-vanishing coefficients satisfy (2) ?

As an answer to Q.I we prove the following

THEOREM 1. Let p(z) = ̂  akz
k^0 be a polynomial of degree n with

fc=0

complex coefficients such that for some a > 0

|αn | ^αlα.-J ^α2 |αn.2 | ^ ^α-'lαj ^an\a0\ . (3)

Then p(z) has all its zeros in \z\^ί - j Kl9 where K^ is the greatest

positive root of the trinomial equation

Kn+ι _ 2κ
n + 1 = 0. (4)

PROOF. If

an^zn~l + an-2z
n~* + + a,z 4- a0 =

then for \z\ = Λ > - -

Hence for every real θ

>0

if
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Since |aw /(α|α n _! |) Ξg 1 by hypothesis, we conclude that
if

(aRY(aR - 1) > (aR)n - 1.

Replacing aR by K we get the result.

The example

p(z) = (az)n - {(az)"-1 + (az)n~\ + + az + 1}

shows that the result is best possible.

It is clear that the conclusion of Theorem 1 remains true if the poly-
nomial has gaps and the non vanishing coefficients an,anι,ant, satisfy

\an\ ^an~n>\anι\ ^an~^\anί\ ^.- .

Next we prove the following generalization of Theorem A.

THEOREM 2. Let p(z) = Σ ^kz
k^Q be a polynomial of degree n with

fc=0

complex coefficients such that

|arg ak- β\ ^a^τt/2, k = 0, 1, 2, - ,n

for some real β, and

|αJ^ |β«-ι |^ |α. l t l^ ^ | Λ β l , (5)

then p(z) has all its zeros on or inside the circle

•
z =

For a = β = 0, this reduces to the Enestrδm-Kakeya theorem.

PROOF OF THEOREM 2. We may plainly assume β = 0. By geometrical
considerations it is very easy to prove that for k = 1, 2, , n

(6)
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To verify it analytically let arg ak = otk, arg ak_λ = oίk-ι. Then

+ \ak^\2 -2\ak\\ak.l\ccs((tk-ak_l)

^ K I 2 + |**-ι I 2 - 2\ak\\ak_l\cos2a

= (\ak\- lα^D'cos'Λ + d^l + | ak.λ \ )2sin2α:

and (6) follows.
Now consider

n

g(z) = (!-«) p(z) = - anz
n+l + £ (α, - α fe_,

fc = l

= — αn 2:n + 1 + P(2:) say.

For \z\ = 1, we have

lβ.! (by (6))
Λ=l fc=l

/w~1 \
= I αw I (cosΛ + sinα) + 2 ί^ | ak \ \ since — | α0 1 (cosα + sinΛ — 1)

= '

Hence also

(7)

for |2:| = 1. By the maximum modulus theorem (7) holds inside the unit

circle as well. If R > 1 then -̂ - e~ίθ lies inside the unit circle for every

real θ and from (7) it follows that

I P(Reiβ) I ^ { I an I (costf + sinrt) +

for every R ̂  1 and ί real.
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Thus for \z\ =R>1

\g(z)\ = I -anz"+1+P(z)\

^ I a J Rn+1 - { \an I (cosrt + sinrt) + 2

>0

if

£ > (cosα + sinα). + - Σ, \a,\.
\an\ k=0

From this the theorem follows.

If ak = 0 for k = 0, 1, , m then arg αfc is not defined for each of these
ak. However, it is clear that the theorem holds if | arg ak — 0 \ ̂ a^ ττ/2
for the non- vanishing coefficients and (5) is satisfied.

We may apply Theorem 2 to znp(l/z) to get the following

n

COROLLARY 1. Let p(z) = ]P akz
kφO be a polynomial of degree n with

fc=0

complex coefficients such that

jarg ak - β\ ^Λ^ττ/2, k = 0, 1, 2, , n

for some real /9, and

kol ^ ^il ^ !^ 2i ^---^ |αn | ,

then p(z) does not vanish in

\z\ < {cos* + sin* +

We shall briefly indicate how we can prove the following more general
result.

THEOREM 3. Let f(z) = Σ akz
kφO be analytic in \z\ ̂  1. //

fc=0

|arg ak\ ^ct^π/2, k=0,l,2, -

and
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2sin oL

does not vanish in

i i r\z\ < [cosa + sine* 4-

PROOF OF THEOREM 3. It is clear that lim ak = 0. Consider

z H- (αt -
say.

We wish to show that h(z0) ^ 0 if \ZQ\ < {cosa + sinrt H

Obviously h(0) ^ 0. Hence we may suppose that ZQ ^ 0 and consider

0 r/ \ , / \ ^>
= — " - ί(^o - αO + (Λ! - α2>0 4- •}

say.

From (6) it follows that

OO

l^o)l ^ Σ (i«* i - |β*+ι|)oosα

Hence

>0

if

sinrt) 4- 21 }__, \ak\ ] sin a.
^λ=l

From this the conclusion follows immediately.

We also prove

αt
I j sin a}
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n

THEOREM 4. Let p(z) = Σ akz
k^0 be a polynomial of degree n. IfReak

k=o

= oίk, Im ak = βk for k = 0, 1, 2, , n and

oίn ^ <*„_! ̂  - ^ a, ̂  a, ̂  0 , tfw >0 , (8)

then p(z) does not vanish in

This is clearly a generalization of the Enestrόm-Kakeya theorem.

PROOF OF THEOREM 4. Geometrically it is obvious that

\ak-ak^\ ^fo-Λ^O + (l&-ι I + 1/3,1), A = l,2, ..,n. (9)

Hence again, if

71

<7(*) = (1 - z)p(z) =- αn%"+l + E (Λ» - «*_,)«* + «.
fc=l

= - ΛTO^ + 1 +/>*(«)

then for \z\ =1

k^\ + \βk )} + #0 + I A I

and as in the proof of Theorem 2

!/>*(*)! ^(Λ»+2f; 1^|)Λ-
jfe=0

for |z| = J? ̂  1. Consequently

^Λ,Λ"+1 - \P*(Reiβ)\

^anR
n+1-(ari + 2Σ,

Λ=0

>0
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if

and the theorem follows.

Refinement of Enestrδm-Kakeya theorem : In a recent paper Rubinstein
[4, Theorem 1] has proved t hie following interesting result.

THEOREM C. Let the function h(z) = ]P akz
k be analytic in \z\ ig li If

max I h (z) \

max | Λfc) | = | h(eiΛ) \ then h(z) does not vanish in the disc

Whereas it is obvious that Λ(z) does not vanish near the point eia it is
not at all clear that h(z)^Q in the region indicated in Theorem C. This is
what makes the above theorem interesting. Although not explicitly mentioned

Deίa

before it is immediate that h(z) does not vanish in the disc z /r> , ι\

< /n . Ί v as well. To see this we consider the function H(z)—h(zeίOL) which

satisfies the hypothesis of Theorem C with <2=0. Hence H(z)^Q in z —

< I/CD + 1) and so h(z) = H(ze~ia) ^ 0 in \ze~i0ί - D/(D + 1) | < 1/(D + 1).
This is equivalent to our assertion.

Rubinstein applied Theorem C to obtain the following [4, Corollary ί]
refinement of Theorem A.

TO

THEOREM D. Let p(z) — Σ akz
k be a polynomial of degree n. If

an ̂  αα_! ̂  — ̂  aλ ̂  a0 > 0 ,

α// ίΛ^ zeros of p(z) lie in the complement of the open disc
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with respect to the unit disc.

If max.\p(z)\ is attained at z = l then max|£(z2)| is attained at 2:=! and
l«l^ι 1*1̂ 1

also at z= — 1. We can use this observation to prove that p(z*) does not
vanish if

z —

(2*+ IK

From this a certain zero free region for p(z) can be obtained. Then we may
use the fact that max|^(^3)| is attained at the points e?πί/\ e*Λί/\ 1. This will

give two other regions in which p(z) does not vanish. This argument can be
extended in the obvious way.

Another refinement of the Enestrδm-Kakeya theorem which we note is
the following:

THEOREM 5. //

an ̂  α Λ _j ̂  αΛ_2 ̂  ^ a1 ̂  aQ ̂  0,
n

then the polynomial p(z) = ^ΓΛ akz
kΦQ does not vanish in a region contain-

ing the sector |arg z\<ττ/(n+ΐ) and the two regions D1 and D2 given by

and
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respectively.

PROOF. Since

Re [ρ(reίθ)} = a0 4- ^rcosθ + α2 r
2 cos 2Θ 4- 4- anr

ncosnθ,

Re />(*) > 0 and so />(*) ̂  0 for |arg *| < ir/{2(n 4- 1)}. On the other hand

|Im [ρ(r/)} I = \alr$\nθ 4- α2r
2sin20 4- 4- αwrnsinn(9 1 > 0

if 0 < |arg z\ <ττ/(w 4- 1). Hence />(*)=M) for |arg *| < τt/(n 4- 1). Now let

q(z) = z*p(l/z) = α0^
n + α^""1 + 4- α^z 4- αn

and consider (1 — z)q(z). It is clear that

^ - 1).

Hence Re {(1 - z) q(z)} > 0 if Re (zk - 1)< 0 for k = 1, 2, , w 4- 1. This
certainly holds if ττ/0* + 1)̂  |arg «| ^ 3ττ/{2(/z 4- 1)} and Re z < 1. This
implies that p(z) does not vanish in the two regions Dly D2 defined by

•{\z\ Π

and

Π

n "

g 3τr/{2(n +1)} f ,

respectively. Thus we have shown that in addition to the exterior of the
unit circle, p(z) does not vanish in the shaded portion of the unit circle
indicated in Fig.l. It is clear that the inequalities

Re(z* - 0, k = 1, 2, - , n 4- 1,

hold also if * lies in the half plane
Re * < 1, and Re(^n+1) < 1. It follows
that if z=reiθ then p(z) does not
vanish in the regions defined by r>

Fig.l
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