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1. Introduction. Let I" be a locally compact non-compact abelian group
and B(I") be the space of all Fourier-Stieltjes transforms of bounded measures
on the dual group G of I'. Then it is known that a function ® on the interval
[—1,1] is extended to an entire function if and only if ®(f)< B(I') for all f
in B(I') with the range contained in [—1,1] (see, for example, [10: p.135]).

A function @ defined on I' is called an LP-multiplier if for every fe L?G)
there exists a function ¢ in L?(G) so that @f = @, where f denotes the
Fourier transform of f. The set of all L?-multipliers will be written by
M, (1) and the norm of @< M, (I') is defined by

H‘PHM,,(I‘) = sup {|gllzew : | fllorey = 1}.

If we define the product in M,(I') by the pointwise multiplication, it is a
commutative Banach algebra with identity.

It is well-known that M (I") coincides with B(I') with the norm of
measures and M,(I') = L=(I") isometrically. If 1=¢g = p=2, then M/ 1)
CM,T) and if 1/p+1/p' =1, then M, (I') =M ,(I") isometrically.

Our main theorem is the following :

THEOREM 1. Let I' be a locally compact non-compact abelian group.
Assume 1=p<<2 and ® is a function on [ —1,1]. Then ®(p)ec M, T)
Sor all @ in M|(I") whose range is contained in [—1,1], if and only if ®
is extended to an entire function.

2. Equivalence of multiplier transforms. In this section we shall
show the equivalence of multiplier transforms which will be needed later.

A measurable function @ on the real line R is said to be regulated if
there exists an approximate identity #. not necessarily continuous such that

lim pru(z) = p(x)

*) Supported in part by the Sakkokai Foundation.
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for all x.
K. de Leeuw proved the followings.
THEOREM A ([2]). Let @ be a bounded measurable periodic function

with period 2m and 1= p=2. Then @< M/T) if and only if < M,(R).

In this case we have
H‘P“M,IR) = H¢“M,(T)y
where T denotes the circle group.

THEOREM B ([2]). Let @ be a bounded regulated function on R and
1=p=2 If pc M(R), then p(an)e M(Z) for all AN>0 and

H‘Po\’n)”M,(Z) = H‘P“M,m),
where Z is the set of integers.

The next theorem is the converse of Theorem B which is given in [7],
but for the sake of convenience we shall state the complete proof.

THEOREM 2. Suppose 1=p=2 and @ is a function on R whose

points of discontinuity are null. If @(n)e M(Z) for all N>0 and
@A)\ u,z are bounded, then @(E)c M, (R) and we have

”‘P”M,(m = l;r;x: H‘P(Nn)HMv(Zr
Thus if @ is, furthermore, regulated, we have
@z = Lim @), -
PROOF. Let g be an infinitely differentiable function with compact support
and put gix(x) = Ag(Ax) where N is chosen so large that the support of g, is

contained in T =[— =, n). We denote by the same notation g, the periodic
extension of g,. Then we have

i ae) =0 ()] [ o)

o ([ gwraz)
My(Z)

S o 2)matmens)

n=-o0

=[#(3)
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where gi(n) denotes the n-th Fourier coefficient :

T

7:0) = o, | gaereae

Changing variable we see that the left hand side equals

E2 oo 1
- 1 - N\~(n inz/A ’ "
A (jh 2T ;;_f( N)7()e dx) ’
where
i 1 ) —1yE
&) = Jor | 90 e™dy.
Since the sum multiplied by (Aa/27)7' converges to
ol EGL G
NG _mg P
for every & as N — oo. we have by Fatou’s lemma
=1 ' yp
([ 5 [ g0 a0 e e az)

=1l

#(3),

Ao

v (f_:|gl” dx>1/p.

Thus we get the theorem.

The 7n-dimensional extensions of Theorems A, B and 2 are obvious.

Let 4(r) be the direct sum of countably many copies of the cyclic group
Z(r) of order r and D(r) be the dual to 4(r). Every element x of 4(r) or
D(r) has the expression £=x, @z, D-++, where x;=0,1,---, r—1 are
the realization of Z(r). With this realization to every x =z, @ 2, @ +++ of
D(r) such that x; = 0 except finite numbers of j there corresponds an element
of 4(r). Thus a function on D(r) is considered as a function on 4(r).

THEOREM 3. Let @ be a continuous function on D(r) and 1= p=2.
Then @< M (D)) if and only if @< M(A(r)). In this case we have

”‘P”M,(D(r)) = ”‘PHM,u(r))-
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PROOF. That @< M, (4(r)) is equivalent to say that

6 (f ”dx)l/p_ﬁ_ B (f

D(r) D(r)

2 )z, y)

K

22y ply)x, y)

Y

14 1/p
dx)

for all polynomial >  p(y)(x,y) on D(r), where B is a constant and (- ,y)
denotes a character of D(r). By the same way that @ € M, (D(r)) is equivalent
»\ Vp
el

to say that
p)llp
for all continuous step function f on D(r), where C is a constant.

We first deduce (1) from (2) with B=C. Let > p(y)x, y) be a

f Sw)u, v) du

D(r)

[ o) flaixe, vy

D(r)

® (T

v

Yy
polynomial. We may assume that the y’s run over all elements of the form
Y=y D DyyDPOPOD--- for some fixed N. Put fulw)= p(y)™ if u
is of the form =y, D+ - Dyy BOD - - 0P Uy DUy s ® -+ and fu(n)

= 0 otherwise. Then we have

| ftaa,v) du= 52 p3), 0)

D(r)

forall v=0,®---PvyDBODOD--- and the integral vanishes otherwise.
We remark that the right hand side does not depend on the n(> M)-th
components of v.

Let Uy be the set of all # of the form #u=0D ++- DOD s Dtsria D-+-.
Then, since @ is continuous,

lim r”f p(y + u)u,v) du = }{im r”f p(y +u) du
Uy —oo Uy

= @(y).

Thus we have

J

D(r)

() e, 0) die = 5 40X ) [l + )

=2 p()y,v) e(y) + o(1)
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uniformly in v of the form as before when M — oo. Therefore

p\1/p | P 1/p
[ rewtesr au )" =ror ([ 8 x| o)

n(r) D(r) Y

(2

where we replaced (y, v) by (v,y) and
P\YP
() fula et ) du|

=ro ([ 15 500 plo)09)

D(r) Y

=1

v D(r)

P 1/p
dv + 0(1)) .

Thus we get (1) with B=C.

Now we show that (1) implies (2) with C= B. Assume @ is continuous
and satisfies (1). Let f be a continuous step function so that fiz) depends
only on the first N-th components of # =u, u, D ---. Define ply) = f(u)
for y=u, @+ Puy®0P0H--- and p{y) =0 for y not of that form.
We fix this p(y).

For every &> 0, there exists a continuous step function ¢. converging
uniformly to @ such that

.

D(ry 'y

P 1/p
L o) 8w dr) =@+ o[ [T oK

D(r)y vy

4 1/p
dx) .

Thus there exists an integer M so that @.(x) depends only on the first M-th
components of #. We may assume M > N. Let Y be the set of « in D(r)
whose n( > N)-th components are zero and X the set of x's in D(r) whose
n( > M)-th components are zero. Then we have

Pw) flu)u, v) du=r=" 3 py) PNy, v)

D(r) yeY

for ve X and the left hand side vanishes for v not in X. By the same way
we have

S@)u,v) du =73 p(y)y,v)

D(r) yeY

for v in X and zero for v not in X. Therefore
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p
p)

P 1/p
— oMa-1P) (f ‘ > @dy) ply)x, y)! dx)

D(r) yeY

(=|[ ot o

v D(r)

and

, P\ VP
(1) Ao aul)” = ron ([ 5 e

D(r) () 'yeY

» yp
dx) .

Therefore we get from (1)

(Z f @) flu)u, v) du

v D(r)

p)wg (B + &) (z[ f Fa)a, v) dujp)w.

D(r)
Letting €—0 we get (2).
3. Proof of Theorem 1.

LEMMA 1. Let 1" be Z or A(r). Then for any 1=p<2 we have a
constant K, > 1 depending only on I' and p such that

sup [ €”|u,y = K3,
P

where @ ranges over all real-valued functions in M,I") satisfying |@|u.ar
=a.

PROOF. Let G be the dual to I. For a function f on G define

. p\ 1/p
1flage = (Z | F0[)

where f denotes the Fourier coefficient of f. Then we know [9] that there
exists a constant K, > 1 for which we have

S%p Hew“A,(G) > K3,
where Q runs over all real polynomials on G with [|Q| 4, = a.

Since [|Qllaey = 1Qlm@ and [ flaw@ = I flu,@, there exists a real
polynomial @ on G such that ||@|y,e =a and
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I e“’l],,,,(g, > Kj3.

Assume T'=Z, then by Theorems A, B and 2 we have a real-valued
continuous function @ on T such that

2|y, 2y > K§ and  |@llym = a

for sufficiently small A > 0. Remark that |@An)|x@= = |®lr.e = leln.on=a
and then we get the desired inequality for I' = Z,
For the group 4(r) the result is obvious by Theorem 3.

LEMMA 2. Let 1" be R or a discrete group and assume 1= p<<2. If
(@) e M(I") for all ¢« M(T") whose range is contained in [—1,1], then ®
is continuous in [—1,1].

PROOF. First we assume I' is a discrete group. If ® is discontinuous at
a point in [—1,1], there exists a sequence {a;}32, in [—1,1] and a finite
number B satisfying :

B#®(a), a; # a;

—a‘<0°

and

B}<oo.

We may assume P(a) = 0.

Take a function f in L?(G) and a sequence {&;};,, & ==1, such that
i f('Y,) &,(z,v;) does not belong to L?(G), where f~ i f(')’,)(x, v,) (see [3]
or [11]). Thus if we set n,—®a,) for &=1 and 7,20 for &=—1, then
i Fr)nfz,v,) & L*(G). In fact we have
=0

B
2

ITODEES W ACEAEE S W ALIELA
=0 j=0

j=0

+ 3 f(,)) [®(a;) — Bl(z, 7).

E3=1
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The first and the third sums on the right hand side belong to L?(G) and the
second does not by the assumption.

Put @(7;) = a; for & =1 and @(¥) = a for other V. Then for any ¢ in
LY(G) we have

2 T @YXz, V) = 37 2(M) [@(Y) — al(x,7) + a 3° gV, V),

which also belongs to LYG), that is, @< M(I'). On the other hand ®(@(7;))
= 7n;. Thus ®(p) & M,(I") which contradicts our assumption.

Next we assume I' = R. First we show that there exist positive numbers
& and M such that if @ is a real-valued function in M,(R), the support of
»C[0,1] and |@[ls,m <8, then [B{@)|uw,m = M.

To prove this we may assume ®0)= 0. If this assertion is false, then
we have a sequence {@;} such that the suport of @;C (25,27 + 1), the range

of ¢;c[—11], l@;lmm <277 but “q)((pj)“M,(R) >j. Puty= Z ®;. Then
j=1

I¥llwmy =1. Let &; be the continuous function such that £,(x) =1 on (2j, 25
+ 1), =0 outside (27 —1/2,25 + 3/2) and is linear otherwise. Then &;®(y)
= ®{@;). Thus

3|2 lwymy = 1E,2) |y m) = | P@) sty > J

which is impossible.

Suppose @ is not continuous at a point a. Let {a;} be a sequence
converging to a such that ®(a;) converge to B#®(a). We may assume
P(a)=0 and a =0. Let F be any closed set contained in (1/4,3/4) and {C,}
be an increasing sequence of closed sets in [0, 1]\F, such that m(F u C;)—1.
Then we have a sequence {X;} of functions in M,(R) which equal 1 on F' and
0 on (—,0) UC; U(l,o0). Take a sequence {k;} such that |laxX;lu & <39
Then we have | ®(axX;)|lu,m <M for all j=1,2,--+, Since P(ayX;) = Pla,)
on F and 0 on (—o0,0) U (1, ), ®{ar,X;) — BXr almost everywhere as j— oo
and | BXrllu.ry = M, where Xr is the characteristic function of F. This
implies that every open set in (1/4, 3/4) is an LP-multiplier, which is
impossible (see, [8]).

LEMMA 3. Suppose I' is a locally compact, non-compact abelian group
and 1 = p<<2. If ® is a function on the real line possessing the property
that ®(p)e M,(1") for all real valued function ¢ in M,(T"), then ® has the
similar property for an infinite discrete group.

PROOF. By the structure theorem I' contains an open subgroup I', which
is the direct sum of a compact group A and an N-dimensional euclidean space
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RY. Let H be the annihilator of 1. Then H is the dual to 1'/1%, and a
compact subgroup of G =T.

(a) The case where N>0. First we observe that ® maps M(I') to
M,(T).

In fact for @ € M (I';) put @ = @ on I', and O outside I',. Then @ € M,(1").

For if fe LY(G). then f*(x)sz(x+y) dm,(y) belongs to LYG/H) and

f*('Y) = f('Y) on I'y, where dm, denotes the Haar measure on H. Thus there
exists a function g* in L'(G/H) such that §* = ¢f* = ﬁf on I'y. Let 7 be
the natural homomorphism of G onto G/H, then g=g¥*or e L'(G) and satisfies
the relation §= &/ on I,

On the other hand if ¥ e M,(I") and ¥=0 outside 1%, then We M/ I).
For if f*< L?(G/H), then the function f = f¥or ¢ L*G) and f = f* on T\,.
Thus there exists a function g in L”G) such that Wf = 7. Put g%(x)

:f glx+y) dmy(y), then g*e L”(G/H), since H is compact. Furthermore
H

we have Wf* = V= g=0% onI'.

Therefore we can conclude that ® maps M,(I'y) into M,(I',).

Since ''y=APRD---P R, & maps also M,(R) into M,(R). Thus
® is continuous by Lemma 2. Let @ be a real-valued function in M,(Z), then
there exists a measure u on T such that

@(n) =f e " du(x).

-7

Thus the function @* defined by

#® = [ e du()
is real-valued on R and ¢* € M,(R). Thus ®&(¢*)c M,(R). Since P is
continuous, Theorem B implies ®(@p*(n)) = ®(p(n)) € M, (Z). Therefore P
maps M,(Z) into M (Z).

(b) The case where N=0. We shall show that ® maps M,(I/I,)
into M,(I'/T,).

For @< M,(I'/T’;) we put @* = gos where o is the natural homomorphism
of I' onto I'/T',. Let T, and T, be the corresponding multiplier transforms on
L'(H) and LY(G) respectively. Every element z of G is written as e =x +7y
where x€ H and y is an element of a coset of 4. Then we have

(Tof1(2) = Tol fly + )] (x)
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for all f in L'(G). In fact the Fourier transform of the right hand side is

)

a/n

dma(y) [ @43 DT + @) diny(a)

= [ (y, ")’) d’nr.'/// (y)f (E’V) T«plf(y + ')] (I) dmll(x)

Ya/n

= [ 5 dmin ) [ @D oA f5 + ) dmaa)

G/n
= @*(7) f(7).

The last term is the Fourier transform of 7,.f.
On the other hand if ¥e My (I') and ¥ is constant on each coset of T,
then W considered as a function on I'/I'; belongs to M (I'/T,). For if

FfeL’H) put f=f on H and 0 otherwise. Then fe L¥G) and |f|we,

=\ fllzocm- 7(')’) is constant on each coset of I, and \If('Y)f('Y) = W(7,) f('Y,)
where 7, € I'/I'y and 7 € v,. Since Tq/?—:Ty/f on H and O otherwise, we
get Tyfe LP(H), that is, e M, (I'/I).

Therefore ® maps M (I'/T'y) into M, (I'/T';). We remark that I'/I', is an
infinite discrete group, since I' is not compact.

We refer the following lemma to [5].

LEMMA C. (a) Let {Q,},j=1,2,--+, be a sequence of finite subgroups
of A(r)\r=2). Then there exists a sequence {v;} of A(r) having the
property: Let I'; be the group generated by Q; and v;, then no two of
groups I'; have a non-zero element in common. Let {f;} be a sequence of
polynomials (real-valued if r = 2) on D(r) such that f, has its support in
Q,, then we have an element x, in D(r) so that

[fille = 2R[(x0,7,) f(x)), j=1,2,---,

(b) Let I" be an infinite discrete group of unbounded order and G is the
dual to T. Let {n;}, j=1,2,---, be a sequence of positive integers. Then
there exist a sequence {m;} of positive integers and a sequence {y;} in T’
having the properties :

(4) The order of v; exceeds 2m; + 6n}.

(6) The sets E; = {ny;: m; — 2n; =n=m; + 2n;} are disjoint.
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6) If {f,} is a sequence of polynomials on T such that f; has its support
in {n: |n|=2n,;}, then we have an element x, in G such that

2nj

[ fillee = 2 R[(zo, myv;) Z fj(”)(xo, v, J=12,---.

—2ny
LEMMA 4. Let ©" be an infinite discrete group and ® be a continuous
periodic function. Suppose ®(¢)e M,1") for every real-valued multiplier

@ in M(I'). Then for any positive number a, there exists a constant C,
such that

@ 1@, = Ca

Jor all real-valued @ in M,(A) such that |@|us = a, where A is a group
Ar)r=2) or Z.

PROOF. We may suppose ®{0) = 0. If (7) is false, we can find polynomils
p; on L and real-valued multipliers @; satisfying

| sllzeny = 277,
®) @il = a,

> 7, j=1,2,...’

1P.5)

| Z @i 5, )

where A indicates the groups 4(r) (r=2) or Z, and L is the dual to A.

Here we can assume that the support of ¢; is finite. For let %; be the
polynomials on L so that |&,|zu =3 and £, =1 on the support of #,. Then
I2,@,lx.6r = 3a and

> B W) 5,0)x,7) = X B@,)) B V), 7).

First we assume that 1" is a group of bounded order. Then we can write
I'=4d(r) @I for some r=2. Therefore ® has the same property for 4(r)
as in the lemma, so that we can assume I' = 4(r). We show (8) is impossible
for A = 4().

Let Q; be the subgroup generated by the support of @;, then Q; is a finite
subgroup of 4(r). Let X be the space of real-valued continuous functions f
of the form
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flx) =2 (x, 7)) fi(x),
j=1

where {v;} is a sequence of (a) in Lemma C and the support of f; is contained
in ;. Then this representation of f is unique and we have

£l = & 1f)l- S 211

Thus the functional defined on X by

77=5 [

Jj=1+D(r)

fi(—x) Z @,(v)(x,v) dx

is bounded. Therefore there exists a finite measure u on D(r) such that

7= [ o) duta).
Y D(r)

In particular 2(y +v;) =@,(y). If & is not real-valued we replace Z by its real
part. Since &€ M(4(r)) and |>_ p(-,v;)
j=1

=1, we have
LP p(r))

z

Jj=1

= | D(2)] a,c a0y

LP ()

2 O(AM +v,) B (- v +))

< oo,

Consider the characteristic function of Q; + v; which is a multiplier of norm
one. Then

l‘(b(ﬁ)llM,{l(T)) Z

2 PRy + ) BN, Y + 7))

LP(D())

4zmmmﬂmuw

=7

LP(D(r))

j=1,2,---, which is impossible.

Next we treat the case where I' is not of bounded order. Assume (8)
holds for A = Z.

We can suppose that the support of %;C[—n;, 7n,] and the support of
@;C[—2n,,2n;]. Let {7}, {E;} and {m,} be the sequences of (b) in Lemma C.
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Let X be the space of continuous functions f on G of the form

@) = X (@ mit) f1),

2n;
where f¥(x) = Y fi(n)x,nY;). Then the representation is unique. For f* put

—2n;

F6) = 3 e £0),
j=1

2n;

where f,(0) = >_ fy(n)e™. Then we have, by (b) of Lemma C,

—2n;

> Ufyle = 20f4].

We define a functional T on X by

2n;

77 =5 [ (=003 o) e ab.

Jj=1 -z —2n;

Then this is bounded on X. Thus there exists, by extension theorem, a finite
measure g on G such that

Tf = [ £3(~2) du(a).

In particular Z(m;Y; + nv;) = @n) for |n| =2n, j=1,2,---. As above
we may assume £ is real-valued.
Now for the polynomial ¢ on T of order = #n,, put

q*(x) = i G(n)(x,nY;), x<G.

If v, is of infinite order, then | g*|zv = lglir). If V; has order d, say, then

P] 1/p

lg*llzee = [él _}i_ { q (%‘k)
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This differs from

a 1 f(2k+1)7t/d 1/p
Py = - 6 ”d@]
lalon=| 2 5 [ a0

k=1

by at most
, 5 1 1
"Z‘ gl = 71;— 7lj2HqHL‘(T) = o “qHE'(T) =9 H‘I”L"m-
Thus we have

. 1
2lqlipey = 1g*lwy = o gl oz
Therefore from (8) we get

I 2%l 2y = 277,

9
= . | 1 .
2 D(p;(n) b (n)( -, nY,) i = o I
—n; P (@)
j=1,2,---. Since &< M) and H > p¥ =2,
L@
22 DE(mY; + nv) () -, m;Y; + nv)) =2 @) w,cr)
J=1 —ny LP(@)

< oo,
If we put K,(¥) = min(1,2 — |n|/n,) for ¥ = m,¥, + n¥,, |n| =2n, and K;=0

otherwise, then IIK,HM,@)_S_B. Thus

\i D(a(m;Y; + n¥))p () -, m;Y; + nv;) \

—-n; LP(@)

6| P2) s, cry =

b
P

3 B, (m)) ) - ;)

which contradicts (9). Thus the lemma is proved.
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Now we proceed to the proof of Theorem 1. Let ® be the function in the
theorem. Considering ®(sin ¢) and ®(&€ sin £) (0 < &< 1), it is sufficient to
show that @ is entire under the additional assumption that ® is defined on
the whole line and periodic. By Lemmas 2 and 3 ® is continuous and maps
real-valued functions in M;(A) into M_,(A) where A is an infinite discrete
group. We have

e d(n) = 721; f O(p+x)e " dx,

where @€ M;(A) and A = 4(r)(r =2) or Z. Hence by Lemma 4
|D(n)| [[€™]|ayn = Ca

for any @ such that |@|uyw =a. Therefore by Lemma 1 we get | D(n)]
= C,K;* for any a > 0. Therefore ® is extended to an entire function.

REMARK. Let I'" be a compact abelian group and 1=p<2. If ®isa
function on [—1,1] and ¥(@)e M,(T) for all ¢ in M,T) with the range
contained in [—1, 1], then ® is the restriction of a function analytic in a
neighborhood of [—1, 1].

In fact M,I") = A,(T") and M,(T) c A, D), so that this follows from a
theorem of Rudin in [9].

4. Some consequences of Theorem 1. Let 1=p<2 and m,(I") be
the space of continuous functions in M,(I"). Since |@|. = |@lx, ), mI") is
a closed subalgebra of M, (I") and each point of I' is identified with a maximal
ideal of m,(I).

THEOREM 4. Let 1= p<2 and T be a locally compact non-compact
abelian group. Then for any complex number =z there exist a real-valued
Junction @ in m,I') and a homomorphism h of m, 1) such that h(p)=-=z.

PROOF. Otherwise the function ®(x) = (x — 2)~' would carry the real-
valued functions in m,(I') to M,(I"), which is impossible since M(T') C m,(T").

COROLLARY 5. Under the conditions in Theorem 4 the algebra m,(I")
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is asymmetric and not regular.

PROOF. By Theorem 4, I' is not dense in the maximal ideal space M of
m,(I"). Therefore m,(I") is not regular. Let @ be a function in m,(I') such
that the Fourier-Gelfand transform & is real-valued on I' but not on M. If

for some Yrem,(I') we have v =g on M, then (V) = @(¥) for all veT,

that is, @ is real-valued. Thus @ &m,(I).

THEOREM 6. Under the conditions in Theorem 4 there exists a real-
valued function @ in M\(I") such that (Y)=1 but 1/p & M,T).

PROOF. It suffices to consider the function ®(x) = 1/(x? + 1).

This will be interesting in connection with the inversion theorem of the
singular integral operators; see Calder6n-Zygmund [1].

From Theorem 1 and Remark in § 3 we have the following result which
is proved partially by Hormander [6] and Figa-Talamanca [4] in the case
T'=R.

THEOREM 7. Let I' be a locally compact abelian group and 1= p<2.
Then the contraction does not operate on M, (T") and m,(I).
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