FUNCTIONS OF Lp-MULTIPLIERS

SATORU IGARI*)

(Received January 9, 1969)

1. Introduction. Let Γ be a locally compact non-compact abelian group and $B(\Gamma)$ be the space of all Fourier-Stieltjes transforms of bounded measures on the dual group G of Γ . Then it is known that a function Φ on the interval [-1,1] is extended to an entire function if and only if $\Phi(f) \in B(\Gamma)$ for all f in $B(\Gamma)$ with the range contained in [-1,1] (see, for example, [10:p.135]).

A function φ defined on Γ is called an L^p -multiplier if for every $f \in L^p(G)$ there exists a function g in $L^p(G)$ so that $\varphi \hat{f} = \widehat{g}$, where \hat{f} denotes the Fourier transform of f. The set of all L^p -multipliers will be written by $M_p(\Gamma)$ and the norm of $\varphi \in M_p(\Gamma)$ is defined by

$$\|\varphi\|_{M_{p}(\Gamma)} = \sup \{ \|g\|_{L^{p}(G)} : \|f\|_{L^{p}(G)} = 1 \}.$$

If we define the product in $M_p(\Gamma)$ by the pointwise multiplication, it is a commutative Banach algebra with identity.

It is well-known that $M_1(\Gamma)$ coincides with $B(\Gamma)$ with the norm of measures and $M_2(\Gamma) = L^{\infty}(\Gamma)$ isometrically. If $1 \leq q \leq p \leq 2$, then $M_q(\Gamma) \subset M_p(\Gamma)$ and if 1/p + 1/p' = 1, then $M_p(\Gamma) = M_{p'}(\Gamma)$ isometrically.

Our main theorem is the following:

THEOREM 1. Let Γ be a locally compact non-compact abelian group. Assume $1 \leq p < 2$ and Φ is a function on [-1,1]. Then $\Phi(\varphi) \in M_p(\Gamma)$ for all φ in $M_1(\Gamma)$ whose range is contained in [-1,1], if and only if Φ is extended to an entire function.

2. Equivalence of multiplier transforms. In this section we shall show the equivalence of multiplier transforms which will be needed later.

A measurable function φ on the real line R is said to be regulated if there exists an approximate identity u_{ε} not necessarily continuous such that

$$\lim_{\varepsilon \to 0} \varphi * u_{\varepsilon}(x) = \varphi(x)$$

^{*)} Supported in part by the Sakkokai Foundation.

for all x.

K. de Leeuw proved the followings.

THEOREM A ([2]). Let φ be a bounded measurable periodic function with period 2π and $1 \leq p \leq 2$. Then $\varphi \in M_p(\mathbf{T})$ if and only if $\varphi \in M_p(\mathbf{R})$. In this case we have

$$\|\varphi\|_{M_{\sigma}(R)} = \|\varphi\|_{M_{\sigma}(T)},$$

where T denotes the circle group.

THEOREM B ([2]). Let φ be a bounded regulated function on \mathbf{R} and $1 \leq p \leq 2$. If $\varphi \in M_p(\mathbf{R})$, then $\varphi(\lambda n) \in M_p(\mathbf{Z})$ for all $\lambda > 0$ and

$$\|\varphi(\lambda n)\|_{M_p(Z)} \leq \|\varphi\|_{M_p(R)},$$

where Z is the set of integers.

The next theorem is the converse of Theorem B which is given in [7], but for the sake of convenience we shall state the complete proof.

Theorem 2. Suppose $1 \leq p \leq 2$ and φ is a function on \mathbf{R} whose points of discontinuity are null. If $\varphi(\lambda n) \in M_p(\mathbf{Z})$ for all $\lambda > 0$ and $\|\varphi(\lambda n)\|_{M_{\bullet}(\mathbf{Z})}$ are bounded, then $\varphi(\xi) \in M_p(\mathbf{R})$ and we have

$$\|\varphi\|_{M_p(R)} \leq \lim_{\lambda \to 0} \|\varphi(\lambda n)\|_{M_p(Z)}.$$

Thus if φ is, furthermore, regulated, we have

$$\|\varphi\|_{M_{\nu}(R)} = \lim_{\lambda \to 0} \|\varphi(\lambda n)\|_{M_{p}(Z)}.$$

PROOF. Let g be an infinitely differentiable function with compact support and put $g_{\lambda}(x) = \lambda g(\lambda x)$ where λ is chosen so large that the support of g_{λ} is contained in $T = [-\pi, \pi)$. We denote by the same notation g_{λ} the periodic extension of g_{λ} . Then we have

$$\begin{split} \left(\int_{-\pi}^{\pi} \left| \sum_{n=-\infty}^{\infty} \varphi\left(\frac{n}{\lambda}\right) \widehat{g}_{\lambda}(n) e^{inx} \right|^{p} dx \right)^{1/p} & \leq \left\| \varphi\left(\frac{n}{\lambda}\right) \right\|_{M_{p}(Z)} \left(\int_{-\pi}^{\pi} |g_{\lambda}(x)|^{p} dx \right)^{1/p} \\ & = \left\| \varphi\left(\frac{n}{\lambda}\right) \right\|_{M_{p}(Z)} \lambda^{1-1/p} \left(\int_{-\infty}^{\infty} |g(x)|^{p} dx \right)^{1/p}, \end{split}$$

where $\widehat{g}_{\lambda}(n)$ denotes the *n*-th Fourier coefficient:

$$\widehat{g}_{\lambda}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_{\lambda}(x) e^{-inx} dx.$$

Changing variable we see that the left hand side equals

$$\lambda^{1-1/p} \left(\int_{-\pi\lambda}^{\pi\lambda} \left| \frac{1}{\lambda \sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \varphi\left(\frac{n}{\lambda}\right) \widehat{g}\left(\frac{n}{\lambda}\right) e^{inx/\lambda} \right|^{p} dx \right)^{1/p},$$

where

$$\widehat{g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(y) e^{-iy\xi} dy.$$

Since the sum multiplied by $(\lambda \sqrt{2\pi})^{-1}$ converges to

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\widehat{g}(\xi)\,\varphi(\xi)\,e^{i\xi x}\,d\xi$$

for every x as $\lambda \to \infty$, we have by Fatou's lemma

$$\left(\int_{-\infty}^{\infty} \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{g}(\xi) \, \varphi(\xi) \, e^{i\xi x} \, d\xi \, \right|^{p} \, dx\right)^{1/p}$$

$$\leq \lim_{\lambda \to \infty} \left\| \varphi\left(\frac{n}{\lambda}\right) \right\|_{\mathbf{M}_{\bullet}(\mathbb{Z})} \left(\int_{-\infty}^{\infty} |g|^{p} \, dx\right)^{1/p}.$$

Thus we get the theorem.

The n-dimensional extensions of Theorems A, B and 2 are obvious.

Let $\Delta(r)$ be the direct sum of countably many copies of the cyclic group Z(r) of order r and D(r) be the dual to $\Delta(r)$. Every element x of $\Delta(r)$ or D(r) has the expression $x = x_1 \oplus x_2 \oplus \cdots$, where $x_j = 0, 1, \cdots, r-1$ are the realization of Z(r). With this realization to every $x = x_1 \oplus x_2 \oplus \cdots$ of D(r) such that $x_j = 0$ except finite numbers of j there corresponds an element of $\Delta(r)$. Thus a function on D(r) is considered as a function on $\Delta(r)$.

THEOREM 3. Let φ be a continuous function on D(r) and $1 \leq p \leq 2$. Then $\varphi \in M_p(D(r))$ if and only if $\varphi \in M_p(\Delta(r))$. In this case we have

$$\|\varphi\|_{M_p(D(r))} = \|\varphi\|_{M_p(A(r))}.$$

PROOF. That $\varphi \in M_p(\Delta(r))$ is equivalent to say that

$$(1) \qquad \left(\int_{D(r)} \left|\sum_{y} \varphi(y) p(y)(x,y)\right|^{p} dx\right)^{1/p} \leq B\left(\int_{D(r)} \left|\sum_{y} p(y)(x,y)\right|^{p} dx\right)^{1/p}$$

for all polynomial $\sum p(y)(x,y)$ on D(r), where B is a constant and (\cdot,y) denotes a character of D(r). By the same way that $\varphi \in M_p(D(r))$ is equivalent to say that

(2)
$$\left(\sum_{v} \left| \int_{D(\tau)} \varphi(u) f(u)(u,v) \ du \right|^{p} \right)^{1/p} \leq C \left(\sum_{v} \left| \int_{D(\tau)} f(u)(u,v) \ du \right|^{p} \right)^{1/p}$$

for all continuous step function f on D(r), where C is a constant.

We first deduce (1) from (2) with $B \leq C$. Let $\sum_{y} p(y)(x, y)$ be a polynomial. We may assume that the y's run over all elements of the form $y = y_1 \oplus \cdots \oplus y_N \oplus 0 \oplus 0 \oplus \cdots$ for some fixed N. Put $f_M(u) = p(y)r^M$ if u is of the form $u = y_1 \oplus \cdots \oplus y_N \oplus 0 \oplus \cdots \oplus u_{M+1} \oplus u_{M+2} \oplus \cdots$ and $f_M(u) = 0$ otherwise. Then we have

$$\int_{D(r)} f_{M}(u)(u,v) du = \sum_{u} p(y)(y,v)$$

for all $v = v_1 \oplus \cdots \oplus v_M \oplus 0 \oplus 0 \oplus \cdots$ and the integral vanishes otherwise. We remark that the right hand side does not depend on the n(>M)-th components of v.

Let $U_{\mathtt{M}}$ be the set of all u of the form $u=0\oplus\cdots\oplus 0\oplus u_{\mathtt{M}+1}\oplus u_{\mathtt{M}+2}\oplus\cdots$. Then, since φ is continuous,

$$\lim_{M \to \infty} r^M \int_{U_M} \varphi(y + u)(u, v) \ du = \lim_{M \to \infty} r^M \int_{U_M} \varphi(y + u) \ du$$
$$= \varphi(y).$$

Thus we have

$$\int_{D(r)} \varphi(u) f_{M}(u)(u, v) \ du = \sum_{y} p(y)(y, v) r^{M} \int_{U_{M}} \varphi(y + u)(u, v) \ du$$
$$= \sum_{y} p(y)(y, v) \varphi(y) + o(1)$$

uniformly in v of the form as before when $M \rightarrow \infty$. Therefore

$$\left(\sum_{v}\left|\int_{D(r)}f_{M}(u)(u,v)\ du\right|^{p}\right)^{1/p}=r^{M/p}\left(\int_{D(r)}\left|\sum_{y}p(y)(v,y)\right|^{p}dv\right)^{1/p},$$

where we replaced (y, v) by (v, y) and

$$\begin{split} \left(\sum_{v} \left| \int_{D(r)} \varphi(u) f_{M}(u)(u,v) \ du \right|^{p} \right)^{1/p} \\ & \geq r^{M/p} \left(\int_{D(r)} \left| \sum_{y} p(y) \varphi(y)(v,y) \right|^{p} dv + o(1) \right)^{1/p}. \end{split}$$

Thus we get (1) with $B \leq C$.

Now we show that (1) implies (2) with $C \subseteq B$. Assume φ is continuous and satisfies (1). Let f be a continuous step function so that f(u) depends only on the first N-th components of $u = u_1 \oplus u_2 \oplus \cdots$. Define p(y) = f(u) for $y = u_1 \oplus \cdots \oplus u_N \oplus 0 \oplus 0 \oplus \cdots$ and p(y) = 0 for y not of that form. We fix this p(y).

For every $\varepsilon > 0$, there exists a continuous step function φ_{ε} converging uniformly to φ such that

$$\left(\int_{D(r)} \left| \sum_{y} \varphi_{\varepsilon}(y) \ p(y)(x,y) \right|^{p} dx \right)^{1/p} \leq (B+\varepsilon) \left(\int_{D(r)} \left| \sum_{y} p(y)(x,y) \right|^{p} dx \right)^{1/p}.$$

Thus there exists an integer M so that $\varphi_{\varepsilon}(u)$ depends only on the first M-th components of u. We may assume M > N. Let Y be the set of u in D(r) whose n(>N)-th components are zero and X the set of x's in D(r) whose n(>M)-th components are zero. Then we have

$$\int_{D(r)} \varphi_{\varepsilon}(u) f(u)(u,v) du = r^{-M} \sum_{y \in Y} \varphi_{\varepsilon}(y) p(y)(y,v)$$

for $v \in X$ and the left hand side vanishes for v not in X. By the same way we have

$$\int_{D(r)} f(u)(u,v) \ du = r^{-M} \sum_{y \in Y} p(y)(y,v)$$

for v in X and zero for v not in X. Therefore

$$\left(\sum_{v} \left| \int_{D(r)} \varphi_{\varepsilon}(u) f(u)(u, v) du \right|^{p} \right)^{1/p}$$

$$= r^{-M(1-1/p)} \left(\int_{D(r)} \left| \sum_{y \in Y} \varphi_{\varepsilon}(y) p(y)(x, y) \right|^{p} dx \right)^{1/p}$$

and

$$\left(\sum_{v}\left|\int_{D(r)}f(u)(u,v)\ du\right|^{p}\right)^{1/p}=r^{-M(1-1/p)}\left(\int_{D(r)}\left|\sum_{y\in Y}p(y)(x,y)\right|^{p}dx\right)^{1/p}.$$

Therefore we get from (1)

$$\left(\sum_{v}\left|\int_{D(r)}\varphi_{\varepsilon}(u)f(u)(u,v)\ du\right|^{p}\right)^{1/p}\leq (B+\varepsilon)\left(\sum_{v}\left|\int_{D(r)}f(u)(u,v)\ du\right|^{p}\right)^{1/p}.$$

Letting $\varepsilon \to 0$ we get (2).

Proof of Theorem 1.

LEMMA 1. Let Γ be \mathbf{Z} or $\Delta(r)$. Then for any $1 \leq p < 2$ we have a constant $K_p > 1$ depending only on Γ and p such that

$$\sup_{\varphi}\|e^{i\varphi}\|_{M_p(\Gamma)} \geq K_p^a,$$

where φ ranges over all real-valued functions in $M_1(\Gamma)$ satisfying $\|\varphi\|_{M_1(\Gamma)} \leq a$.

PROOF. Let G be the dual to Γ . For a function f on G define

$$||f||_{A_{p}(G)} = \left(\sum_{\gamma \in \Gamma} \left| \hat{f}(\gamma) \right|^p \right)^{1/p},$$

where \hat{f} denotes the Fourier coefficient of f. Then we know [9] that there exists a constant $K_p > 1$ for which we have

$$\sup_{Q} \|e^{iQ}\|_{A_{p}(G)} > K_{p}^{a},$$

where Q runs over all real polynomials on G with $\|Q\|_{A_1(G)} \le a$.

Since $\|Q\|_{A_1(G)} = \|Q\|_{M_1(G)}$ and $\|f\|_{A_p(G)} \le \|f\|_{M_p(G)}$, there exists a real polynomial φ on G such that $\|\varphi\|_{M_1(G)} \le a$ and

$$||e^{i\varphi}||_{M_p(G)} > K_p^a.$$

Assume $\Gamma = \mathbf{Z}$, then by Theorems A, B and 2 we have a real-valued continuous function φ on \mathbf{T} such that

$$\|e^{i\varphi(\lambda n)}\|_{M_n(Z)} > K_p^a$$
 and $\|\varphi\|_{M_1(T)} \leq a$

for sufficiently small $\lambda > 0$. Remark that $\|\varphi(\lambda n)\|_{M_1(\mathbf{Z})} \leq \|\varphi\|_{M_1(R)} = \|\varphi\|_{M_1(T)} \leq a$ and then we get the desired inequality for $\Gamma = \mathbf{Z}$,

For the group $\Delta(r)$ the result is obvious by Theorem 3.

LEMMA 2. Let Γ be \mathbf{R} or a discrete group and assume $1 \leq p < 2$. If $\Phi(\varphi) \in M_p(\Gamma)$ for all $\varphi \in M_1(\Gamma)$ whose range is contained in [-1,1], then Φ is continuous in [-1,1].

PROOF. First we assume Γ is a discrete group. If Φ is discontinuous at a point in [-1,1], there exists a sequence $\{a_j\}_{j=0}^{\infty}$ in [-1,1] and a finite number B satisfying:

$$B\neq\Phi(a),\ a_i\neq a_j\ (i\neq j),\ \sum_{j=0}^{\infty}\Big|a_j-a\Big|<\infty$$

and

$$\sum_{j=0}^{\infty} \left| \Phi(a_j) - B \right| < \infty.$$

We may assume $\Phi(a) = 0$.

Take a function f in $L^p(G)$ and a sequence $\{\mathcal{E}_j\}_{j=0}^{\infty}$, $\mathcal{E}_j=\pm 1$, such that $\sum_{j=0}^{\infty} \hat{f}(\gamma_j) \, \mathcal{E}_j(x,\gamma_j)$ does not belong to $L^p(G)$, where $f \sim \sum_{j=0}^{\infty} \hat{f}(\gamma_j)(x,\gamma_j)$ (see [3] or [11]). Thus if we set $\eta_j = \Phi(a_j)$ for $\mathcal{E}_j = 1$ and $\eta_j = 0$ for $\mathcal{E}_j = -1$, then $\sum_{j=0}^{\infty} \hat{f}(\gamma_j) \, \eta_j(x,\gamma_j) \in L^p(G)$. In fact we have

$$\begin{split} \sum_{j=0}^{\infty} \hat{f}(\gamma_j) \, \eta_j(x, \gamma_j) &= \frac{B}{2} \sum_{j=0}^{\infty} \hat{f}(\gamma_j)(x, \gamma_j) + \frac{B}{2} \sum_{j=0}^{\infty} \hat{f}(\gamma_j) \, \varepsilon_j(x, \gamma_j) \\ &+ \sum_{\varepsilon_i = 1} \hat{f}(\gamma_i) \, [\Phi(a_j) - B] \, (x, \gamma_j). \end{split}$$

The first and the third sums on the right hand side belong to $L^p(G)$ and the second does not by the assumption.

Put $\varphi(\gamma_j) = a_j$ for $\mathcal{E}_j = 1$ and $\varphi(\gamma) = a$ for other γ . Then for any g in $L^1(G)$ we have

$$\sum \widehat{g}(Y) \varphi(Y)(x, Y) = \sum \widehat{g}(Y) [\varphi(Y) - a](x, Y) + a \sum \widehat{g}(Y)(x, Y),$$

which also belongs to $L^1(G)$, that is, $\varphi \in M_1(\Gamma)$. On the other hand $\Phi(\varphi(\gamma_j)) = \eta_j$. Thus $\Phi(\varphi) \in M_p(\Gamma)$ which contradicts our assumption.

Next we assume $\Gamma = \mathbf{R}$. First we show that there exist positive numbers δ and M such that if φ is a real-valued function in $M_1(\mathbf{R})$, the support of $\varphi \subset [0,1]$ and $\|\varphi\|_{M_1(\mathbf{R})} < \delta$, then $\|\Phi(\varphi)\|_{M_2(\mathbf{R})} \le M$.

To prove this we may assume $\Phi(0)=0$. If this assertion is false, then we have a sequence $\{\varphi_j\}$ such that the suport of $\varphi_j\subset (2j,2j+1)$, the range of $\varphi_j\subset [-1,1]$, $\|\varphi_j\|_{M_1(R)}<2^{-j}$ but $\|\Phi(\varphi_j)\|_{M_p(R)}>j$. Put $\psi=\sum_{j=1}^\infty \varphi_j$. Then $\|\psi\|_{M_1(R)}\leq 1$. Let ξ_j be the continuous function such that $\xi_j(x)=1$ on (2j,2j+1), =0 outside (2j-1/2,2j+3/2) and is linear otherwise. Then $\xi_j\Phi(\psi)=\Phi(\varphi_j)$. Thus

$$\|\Phi(\boldsymbol{\psi})\|_{M_{oldsymbol{p}(R)}} \geq \|\xi_j \Phi(\boldsymbol{\psi})\|_{M_{oldsymbol{p}(R)}} = \|\Phi(oldsymbol{arphi}_j)\|_{M_{oldsymbol{p}(R)}} > j$$

which is impossible.

Suppose Φ is not continuous at a point a. Let $\{a_j\}$ be a sequence converging to a such that $\Phi(a_j)$ converge to $B \neq \Phi(a)$. We may assume $\Phi(a) = 0$ and a = 0. Let F be any closed set contained in (1/4, 3/4) and $\{C_j\}$ be an increasing sequence of closed sets in $[0,1]\backslash F$, such that $m(F \cup C_j) \to 1$. Then we have a sequence $\{\chi_j\}$ of functions in $M_1(R)$ which equal 1 on F and 0 on $(-\infty,0) \cup C_j \cup (1,\infty)$. Take a sequence $\{k_j\}$ such that $\|a_{k_j}\chi_j\|_{M_1(R)} < \delta$. Then we have $\|\Phi(a_k,\chi_j)\|_{M_p(R)} < M$ for all $j=1,2,\cdots$, Since $\Phi(a_k,\chi_j)=\Phi(a_k)$ on F and 0 on $(-\infty,0) \cup (1,\infty)$, $\Phi(a_k,\chi_j) \to B\chi_F$ almost everywhere as $j\to\infty$ and $\|B\chi_F\|_{M_p(R)} \le M$, where χ_F is the characteristic function of F. This implies that every open set in (1/4,3/4) is an L^p -multiplier, which is impossible (see, [8]).

LEMMA 3. Suppose Γ is a locally compact, non-compact abelian group and $1 \leq p < 2$. If Φ is a function on the real line possessing the property that $\Phi(\varphi) \in M_p(\Gamma)$ for all real valued function φ in $M_1(\Gamma)$, then Φ has the similar property for an infinite discrete group.

PROOF. By the structure theorem Γ contains an open subgroup Γ_0 which is the direct sum of a compact group Λ and an N-dimensional euclidean space

 \mathbf{R}^{N} . Let H be the annihilator of Γ_{0} . Then H is the dual to Γ/Γ_{0} and a compact subgroup of $G = \widehat{\Gamma}$.

(a) The case where N>0. First we observe that Φ maps $M_{\scriptscriptstyle 1}(\Gamma_{\scriptscriptstyle 0})$ to $M_{\scriptscriptstyle p}(\Gamma_{\scriptscriptstyle 0})$.

In fact for $\varphi \in M_1(\Gamma_0)$ put $\widetilde{\varphi} = \varphi$ on Γ_0 and 0 outside Γ_0 . Then $\widetilde{\varphi} \in M_1(\Gamma)$. For if $f \in L^1(G)$, then $f^*(x) = \int_H f(x+y) \, dm_H(y)$ belongs to $L^1(G/H)$ and $\widehat{f}^*(\gamma) = \widehat{f}(\gamma)$ on Γ_0 , where dm_H denotes the Haar measure on H. Thus there exists a function g^* in $L^1(G/H)$ such that $\widehat{g}^* = \varphi \widehat{f}^* = \widetilde{\varphi} \widehat{f}$ on Γ_0 . Let π be the natural homomorphism of G onto G/H, then $g = g^* \circ \pi \in L^1(G)$ and satisfies the relation $\widehat{g} = \widetilde{\varphi} \widehat{f}$ on Γ .

On the other hand if $\Psi \in M_p(\Gamma)$ and $\Psi = 0$ outside Γ_0 , then $\Psi \in M_p(\Gamma_0)$. For if $f^* \in L^p(G/H)$, then the function $f = f^* \circ \pi \in L^p(G)$ and $\hat{f} = \hat{f}^*$ on Γ_0 . Thus there exists a function g in $L^p(G)$ such that $\Psi \hat{f} = \widehat{g}$. Put $g^*(x) = \int_H g(x+y) \ dm_H(y)$, then $g^* \in L^p(G/H)$, since H is compact. Furthermore we have $\Psi \hat{f}^* = \Psi \hat{f} = \widehat{g} = \widehat{g}^*$ on Γ_0 .

Therefore we can conclude that Φ maps $M_1(\Gamma_0)$ into $M_p(\Gamma_0)$.

Since $\Gamma_0 = \Lambda \oplus \boldsymbol{R} \oplus \cdots \oplus \boldsymbol{R}$, Φ maps also $M_1(\boldsymbol{R})$ into $M_p(\boldsymbol{R})$. Thus Φ is continuous by Lemma 2. Let φ be a real-valued function in $M_1(\boldsymbol{Z})$, then there exists a measure μ on \boldsymbol{T} such that

$$\varphi(n) = \int_{-\pi}^{\pi} e^{-inx} d\mu(x).$$

Thus the function φ^* defined by

$$\varphi^*(\xi) = \int_{-\pi}^{\pi} e^{-i\xi x} \ d\mu(x)$$

is real-valued on \boldsymbol{R} and $\varphi^* \in M_1(\boldsymbol{R})$. Thus $\Phi(\varphi^*) \in M_p(\boldsymbol{R})$. Since Φ is continuous, Theorem B implies $\Phi(\varphi^*(n)) = \Phi(\varphi(n)) \in M_p(\boldsymbol{Z})$. Therefore Φ maps $M_1(\boldsymbol{Z})$ into $M_p(\boldsymbol{Z})$.

(b) The case where N=0. We shall show that Φ maps $M_1(\Gamma/\Gamma_0)$ into $M_p(\Gamma/\Gamma_0)$.

For $\varphi \in M_1(\Gamma/\Gamma_0)$ we put $\varphi^* = \varphi \circ \sigma$ where σ is the natural homomorphism of Γ onto Γ/Γ_0 . Let T_{φ} and T_{φ^*} be the corresponding multiplier transforms on $L^1(H)$ and $L^1(G)$ respectively. Every element z of G is written as z = x + y where $x \in H$ and y is an element of a coset of H. Then we have

$$[T_{\varphi^*}f](z) = T_{\varphi}[f(y + \cdot)](x)$$

for all f in $L^1(G)$. In fact the Fourier transform of the right hand side is

$$\begin{split} &\int_{G/H} dm_{G/H}(y) \int_{H} (x+y, Y) \, T_{\varphi}[f(y+\cdot)](x) \, dm_{H}(x) \\ &= \int_{G/H} (y, Y) \, dm_{G/H}(y) \int_{H} (x, Y) \, T_{\varphi}[f(y+\cdot)](x) \, dm_{H}(x) \\ &= \int_{G/H} (y, Y) \, dm_{G/H}(y) \int_{H} (x, Y) \, \varphi^*(Y) \, f(y+x) \, dm_{H}(x) \\ &= \varphi^*(Y) \, \hat{f}(Y). \end{split}$$

The last term is the Fourier transform of $T_{\varphi^*}f$.

On the other hand if $\Psi \in M_p(\Gamma)$ and Ψ is constant on each coset of Γ_0 , then Ψ considered as a function on Γ/Γ_0 belongs to $M_p(\Gamma/\Gamma_0)$. For if $f \in L^p(H)$ put $\widetilde{f} = f$ on H and 0 otherwise. Then $\widetilde{f} \in L^p(G)$ and $\|\widetilde{f}\|_{L^p(G)} = \|f\|_{L^p(H)}$. $\hat{\widetilde{f}}(\gamma)$ is constant on each coset of Γ_0 and $\Psi(\gamma)\hat{\widetilde{f}}(\gamma) = \Psi(\gamma_1)\hat{f}(\gamma_1)$ where $\gamma_1 \in \Gamma/\Gamma_0$ and $\gamma \in \gamma_1$. Since $T_{\Psi}\widetilde{f} = T_{\Psi}f$ on H and 0 otherwise, we get $T_{\Psi}f \in L^p(H)$, that is, $\Psi \in M_p(\Gamma/\Gamma_0)$.

Therefore Φ maps $M_{\rm I}(\Gamma/\Gamma_0)$ into $M_{\rm p}(\Gamma/\Gamma_0)$. We remark that Γ/Γ_0 is an infinite discrete group, since Γ is not compact.

We refer the following lemma to [5].

LEMMA C. (a) Let $\{\Omega_j\}$, $j=1,2,\cdots$, be a sequence of finite subgroups of $\Delta(r)(r \geq 2)$. Then there exists a sequence $\{\gamma_j\}$ of $\Delta(r)$ having the property: Let Γ_j be the group generated by Ω_j , and γ_j , then no two of groups Γ_j have a non-zero element in common. Let $\{f_j\}$ be a sequence of polynomials (real-valued if r=2) on D(r) such that $\hat{f_j}$ has its support in Ω_j , then we have an element x_0 in D(r) so that

$$||f_i||_{\infty} \leq 2 \Re[(x_0, \gamma_i) f_i(x_0)], \quad j = 1, 2, \cdots,$$

- (b) Let Γ be an infinite discrete group of unbounded order and G is the dual to Γ . Let $\{n_j\}$, $j=1,2,\cdots$, be a sequence of positive integers. Then there exist a sequence $\{m_j\}$ of positive integers and a sequence $\{\gamma_j\}$ in Γ having the properties:
- (4) The order of γ_j exceeds $2m_j + 6n_j^2$.
- (5) The sets $E_j = \{n\gamma_j : m_j 2n_j \le n \le m_j + 2n_j\}$ are disjoint.

(6) If $\{f_j\}$ is a sequence of polynomials on **T** such that \hat{f}_j has its support in $\{n: |n| \leq 2n_j\}$, then we have an element x_0 in G such that

$$||f_j||_{\infty} \leq 2 \Re[(x_0, m_j \gamma_j) \sum_{j=2n_j}^{2n_j} \hat{f}_j(n)(x_0, \gamma_j)], \quad j = 1, 2, \cdots.$$

LEMMA 4. Let Γ be an infinite discrete group and Φ be a continuous periodic function. Suppose $\Phi(\varphi) \in M_p(\Gamma)$ for every real-valued multiplier φ in $M_1(\Gamma)$. Then for any positive number a, there exists a constant C_a such that

$$\|\Phi(\varphi)\|_{\mathbf{M}_{\mathbf{g}}(A)} \leq C_{\mathbf{a}}$$

for all real-valued φ in $M_1(\Lambda)$ such that $\|\varphi\|_{M_1(\Lambda)} \leq a$, where Λ is a group $\Delta(r)(r \geq 2)$ or \mathbb{Z} .

PROOF. We may suppose $\Phi(0) = 0$. If (7) is false, we can find polynomils p_j on L and real-valued multipliers φ_j satisfying

(8)
$$\| p_j \|_{L^{\mathbf{p}}(L)} \leq 2^{-j},$$

$$\| \varphi_j \|_{M_1(A)} \leq a,$$

$$\left\| \sum_{\gamma} \Phi(\varphi_j(\gamma)) \widehat{p}_j(\gamma)(\cdot, \gamma) \right\|_{L^{\mathbf{p}}(L)} > j, \quad j = 1, 2, \cdots,$$

where Λ indicates the groups $\Delta(r)$ $(r \ge 2)$ or Z, and L is the dual to Λ .

Here we can assume that the support of φ_j is finite. For let k_j be the polynomials on L so that $||k_j||_{L^1(L)} \leq 3$ and $\hat{k}_j = 1$ on the support of \hat{p}_j . Then $||\hat{k}_j \varphi_j||_{M_1(A)} \leq 3a$ and

$$\sum_{\gamma} \Phi(\hat{k}_{j}(\gamma) \varphi_{j}(\gamma)) \ \widehat{p}_{j}(\gamma)(x,\gamma) = \sum_{\gamma} \Phi(\varphi_{j}(\gamma)) \ \widehat{p}_{j}(\gamma)(x,\gamma).$$

First we assume that Γ is a group of bounded order. Then we can write $\Gamma = \Delta(r) \oplus \Pi$ for some $r \geq 2$. Therefore Φ has the same property for $\Delta(r)$ as in the lemma, so that we can assume $\Gamma = \Delta(r)$. We show (8) is impossible for $\Lambda = \Delta(r)$.

Let Ω_j be the subgroup generated by the support of φ_j , then Ω_j is a finite subgroup of $\Delta(r)$. Let X be the space of real-valued continuous functions f of the form

$$f(x) = \sum_{j=1}^{\infty} (x, \gamma_j) f_j(x),$$

where $\{\gamma_j\}$ is a sequence of (a) in Lemma C and the support of f_j is contained in Ω_j . Then this representation of f is unique and we have

$$||f||_{\infty} \leq \sum_{j=1}^{\infty} ||f_j||_{\infty} \leq 2||f||_{\infty}.$$

Thus the functional defined on X by

$$Tf = \sum_{j=1}^{\infty} \int_{D(r)} f_j(-x) \sum_{\gamma} \varphi_j(\gamma)(x, \gamma) dx$$

is bounded. Therefore there exists a finite measure μ on D(r) such that

$$Tf = \int_{D(r)} f(-x) \, d\mu(x) \,.$$

In particular $\widehat{\mu}(\gamma + \gamma_j) = \varphi_j(\gamma)$. If $\widehat{\mu}$ is not real-valued we replace $\widehat{\mu}$ by its real part. Since $\widehat{\mu} \in M_1(\Delta(r))$ and $\left\| \sum_{j=1}^{\infty} p_j(\cdot, \gamma_j) \right\|_{L^{\mathbf{p}}(p(r))} \leq 1$, we have

$$\left\| \sum_{j=1}^{\infty} \sum_{\gamma} \Phi(\widehat{\mu}(\gamma + \gamma_{j})) \, \widehat{p}_{j}(\gamma) (\cdot, \gamma + \gamma_{j}) \right\|_{L^{\mathbf{p}}(D(r))} \leq \|\Phi(\widehat{\mu})\|_{M_{\mathbf{p}}(A(r))}$$

Consider the characteristic function of $\Omega_j + \gamma_j$ which is a multiplier of norm one. Then

$$\begin{split} \|\Phi(\widehat{\mu})\|_{M_{\mathbf{p}(\mathcal{A}(r))}} & \geqq \left\| \sum_{\gamma} \Phi(\widehat{\mu}(\gamma + \gamma_{j})) \, \widehat{p}_{j}(\gamma)(\cdot \,, \gamma + \gamma_{j}) \right\|_{L^{\mathbf{p}}(D(r))} \\ & = \left\| \sum_{\gamma} \Phi(\varphi_{j}(\gamma)) \, \widehat{p}_{j}(\gamma)(\cdot \,, \gamma) \right\|_{L^{\mathbf{p}}(D(r))} \\ & \geqq j, \end{split}$$

 $j = 1, 2, \dots$, which is impossible.

Next we treat the case where Γ is not of bounded order. Assume (8) holds for $\Lambda = \mathbf{Z}$.

We can suppose that the support of $\hat{p}_j \subset [-n_j, n_j]$ and the support of $\varphi_j \subset [-2n_j, 2n_j]$. Let $\{\gamma_j\}, \{E_j\}$ and $\{m_j\}$ be the sequences of (b) in Lemma C.

Let X be the space of continuous functions f on G of the form

$$f^*(x) = \sum_{j=1}^{\infty} (x, m_j \gamma_j) f_j^*(x),$$

where $f_j^*(x) = \sum_{j=0}^{2n_j} \hat{f}_j(n)(x, n\gamma_j)$. Then the representation is unique. For f^* put

$$f(\theta) = \sum_{j=1}^{\infty} e^{im_j \theta} f_j(\theta),$$

where $f_j(\theta) = \sum_{j=2n}^{2n_j} \hat{f}_j(n)e^{in\theta}$. Then we have, by (b) of Lemma C,

$$\sum_{j=1}^{\infty} \|f_j\|_{\infty} \leq 2\|f^*\|_{\infty}.$$

We define a functional T on X by

$$Tf = \sum_{j=1}^{\infty} \int_{-\pi}^{\pi} f_j(-\theta) \sum_{j=2n}^{2n_j} \varphi_j(n) e^{in\theta} d\theta.$$

Then this is bounded on X. Thus there exists, by extension theorem, a finite measure μ on G such that

$$Tf = \int_{G} f^*(-x) \, d\mu(x).$$

In particular $\widehat{\mu}(m_j \gamma_j + n \gamma_j) = \varphi_j(n)$ for $|n| \leq 2n_j$, $j = 1, 2, \cdots$. As above we may assume $\widehat{\mu}$ is real-valued.

Now for the polynomial q on T of order $\leq n_j$, put

$$q^*(x) = \sum_{j=1}^{n_j} \hat{q}(n)(x, n\gamma_j), \quad x \in G.$$

If γ_j is of infinite order, then $\|q^*\|_{L^{p}(G)} = \|q\|_{L^{p}(T)}$. If γ_j has order d, say, then

$$\|q^*\|_{L^{p}(G)} = \left[\sum_{k=1}^d \frac{1}{d} \left| q\left(\frac{2\pi k}{d}\right) \right|^p \right]^{1/p}.$$

This differs from

$$\|q\|_{L^{\mathbf{p}}(T)} = \left[\sum_{k=1}^{d} \frac{1}{2\pi} \int_{(2k-1)\pi/d}^{(2k+1)\pi/d} |q(\theta)|^p d\theta\right]^{1/p}$$

by at most

$$\frac{\pi}{d} \|q'\|_{\infty} \leq \frac{5\pi}{d} n_{j}^{2} \|q\|_{L^{1}(T)} \leq \frac{1}{2} \|q\|_{L^{1}(T)} \leq \frac{1}{2} \|q\|_{L^{\mathbf{p}}(T)}.$$

Thus we have

$$2\|q\|_{L^{\mathbf{p}}(T)} \ge \|q^*\|_{L^{\mathbf{p}}(T)} \ge \frac{1}{2} \|q\|_{L^{\mathbf{p}}(T)}.$$

Therefore from (8) we get

$$\|p_j^*\|_{L^{\mathbf{p}}(G)} \leq 2^{-j+1},$$

(9)

$$\left\| \sum_{n=1}^{n_j} \Phi(\varphi_j(n)) \, \hat{p}_j(n) (\, \cdot \, , \, n \Upsilon_j) \, \right\|_{L^{\mathbf{p}}(G)} \geqq \frac{1}{2} \, j,$$

$$j=1,2,\cdots$$
. Since $\hat{\mu}\in M_1(\Gamma)$ and $\left\|\sum p_j^*\right\|_{L^1(G)}\leq 2$,

$$\left\| \sum_{j=1}^{\infty} \sum_{-n_j}^{n_j} \Phi(\hat{\boldsymbol{\mu}}(m_j \boldsymbol{\gamma}_j + n \boldsymbol{\gamma}_j)) \, \hat{\boldsymbol{p}}_j(n) (\, \cdot \, , m_j \boldsymbol{\gamma}_j + n \boldsymbol{\gamma}_j) \right\|_{L^{\mathbf{p}}(G)} \leq 2 \|\Phi(\hat{\boldsymbol{\mu}})\|_{M_{\mathbf{p}}(\Gamma)}$$

If we put $\hat{K}_j(\gamma) = \min(1, 2 - |n|/n_j)$ for $\gamma = m_j \gamma_j + n \gamma_j$, $|n| \le 2n_j$ and $\hat{K}_j = 0$ otherwise, then $\|\hat{K}_j\|_{M_p(\Gamma)} \le 3$. Thus

$$6\|\Phi(\widehat{\mu})\|_{M_{\mathfrak{p}}(\Gamma)} \geq \left\| \sum_{-n_{j}}^{n_{j}} \Phi(\widehat{\mu}(m_{j}\gamma_{j} + n\gamma_{j}))\widehat{p}_{j}(n)(\cdot, m_{j}\gamma_{j} + n\gamma_{j}) \right\|_{L^{\mathfrak{p}}(G)}$$

$$= \left\| \sum_{-n_{j}}^{n_{j}} \Phi(\varphi_{j}(n)) \widehat{p}_{j}(n)(\cdot, n\gamma_{j}) \right\|_{L^{\mathfrak{p}}(G)},$$

which contradicts (9). Thus the lemma is proved.

Now we proceed to the proof of Theorem 1. Let Φ be the function in the theorem. Considering $\Phi(\sin t)$ and $\Phi(\varepsilon \sin t)(0 < \varepsilon < 1)$, it is sufficient to show that Φ is entire under the additional assumption that Φ is defined on the whole line and periodic. By Lemmas 2 and 3 Φ is continuous and maps real-valued functions in $M_1(\Lambda)$ into $M_p(\Lambda)$ where Λ is an infinite discrete group. We have

$$e^{in\varphi}\,\hat{\Phi}(n)=rac{1}{2\pi}\int_{-\pi}^{\pi}\Phi(\varphi+x)\,e^{-inx}\,dx,$$

where $\varphi \in M_1(\Lambda)$ and $\Lambda = \Delta(r)(r \ge 2)$ or Z. Hence by Lemma 4

$$\|\hat{\Phi}(n)\| \|e^{in\varphi}\|_{M_{\mathbf{p}}(A)} \leq C_a$$

for any φ such that $\|\varphi\|_{M_1(A)} \leq a$. Therefore by Lemma 1 we get $|\hat{\Phi}(n)| \leq C_a K_p^{-an}$ for any a > 0. Therefore Φ is extended to an entire function.

REMARK. Let Γ be a compact abelian group and $1 \leq p < 2$. If Φ is a function on [-1,1] and $\Phi(\varphi) \in M_p(\Gamma)$ for all φ in $M_1(\Gamma)$ with the range contained in [-1, 1], then Φ is the restriction of a function analytic in a neighborhood of [-1, 1].

In fact $M_1(\Gamma) = A_1(\Gamma)$ and $M_p(\Gamma) \subset A_p(\Gamma)$, so that this follows from a theorem of Rudin in [9].

4. Some consequences of Theorem 1. Let $1 \leq p < 2$ and $m_p(\Gamma)$ be the space of continuous functions in $M_p(\Gamma)$. Since $\|\varphi\|_{\infty} \leq \|\varphi\|_{M_p(\Gamma)}$, $m_p(\Gamma)$ is a closed subalgebra of $M_p(\Gamma)$ and each point of Γ is identified with a maximal ideal of $m_p(\Gamma)$.

THEOREM 4. Let $1 \le p < 2$ and Γ be a locally compact non-compact abelian group. Then for any complex number z there exist a real-valued function φ in $m_p(\Gamma)$ and a homomorphism h of $m_p(\Gamma)$ such that $h(\varphi) = z$.

PROOF. Otherwise the function $\Phi(x) = (x-z)^{-1}$ would carry the real-valued functions in $m_v(\Gamma)$ to $M_v(\Gamma)$, which is impossible since $M_1(\Gamma) \subset m_v(\Gamma)$.

COROLLARY 5. Under the conditions in Theorem 4 the algebra $m_v(\Gamma)$

is asymmetric and not regular.

PROOF. By Theorem 4, Γ is not dense in the maximal ideal space \mathfrak{M} of $m_p(\Gamma)$. Therefore $m_p(\Gamma)$ is not regular. Let φ be a function in $m_p(\Gamma)$ such that the Fourier-Gelfand transform $\widetilde{\varphi}$ is real-valued on Γ but not on \mathfrak{M} . If for some $\psi \in m_p(\Gamma)$ we have $\widetilde{\psi} = \overline{\widetilde{\varphi}}$ on \mathfrak{M} , then $\psi(\Upsilon) = \varphi(\Upsilon)$ for all $\Upsilon \in \Gamma$, that is, $\widetilde{\varphi}$ is real-valued. Thus $\overline{\widetilde{\varphi}} \in m_p(\Gamma)$.

THEOREM 6. Under the conditions in Theorem 4 there exists a real-valued function φ in $M_1(\Gamma)$ such that $\varphi(\gamma) \geq 1$ but $1/\varphi \in M_p(\Gamma)$.

PROOF. It suffices to consider the function $\Phi(x) = 1/(x^2 + 1)$.

This will be interesting in connection with the inversion theorem of the singular integral operators; see Calderón-Zygmund [1].

From Theorem 1 and Remark in § 3 we have the following result which is proved partially by Hörmander [6] and Figà-Talamanca [4] in the case $\Gamma = \mathbf{R}$.

THEOREM 7. Let Γ be a locally compact abelian group and $1 \leq p < 2$. Then the contraction does not operate on $M_v(\Gamma)$ and $m_v(\Gamma)$.

REFERENCES

- [1] A. P. CALDERON AND A. ZYGMUND, Algebras of certain singular operators, Amer. J. Math., 78(1956), 310-320.
- [2] K. DE LEEUW, On Lp-multipliers, Ann. of Math., 81(1965), 364-379.
- [3] R. E. EDWARDS, Changing signs of Fourier coefficients, Pacific J. Math., 15(1965), 463-475.
- [4] A. FIGA-TALAMANCA, On the subspace of L^p invariant under multiplication of transform by bounded continuous functions, Rend. Sem. Mat. Univ. Padova, 35(1965), 176-189.
- [5] H. HELSON, J.-P. KAHANE, Y. KATZNELSON AND W. RUDIN, The functions which operate on Fourier transforms, Acta Math., 102(1959), 135-157.
- [6] L. HORMANDER, Estimates for translation invariant operators in L^p spaces, Acta Math., 104(1960), 93-140.
- [7] S. IGARI, Lectures on Fourier Series of Several Variables, Univ. of Wis., 1968.
- [8] H. ROSENTHAL, Projections onto Translation Invariant Subspaces of $L^p(G)$, Mem. Amer. Math. Soc., 1966.
- [9] W. RUDIN, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962), 694-701.

- [10] W. RUDIN, Fourier Analysis on Groups, Interscience. Publ., 1962.
 [11] A. ZYGMUND, Trigonometric Series, vol. 1 2nd ed., Cambridge 1958.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN