FUNCTIONS OF L^{p}-MULTIPLIERS

Satoru Igari*)

(Received January 9, 1969)

1. Introduction. Let I' be a locally compact non-compact abelian group and $B(\Gamma)$ be the space of all Fourier-Stieltjes transforms of bounded measures on the dual group G of Γ. Then it is known that a function Φ on the interval $[-1,1]$ is extended to an entire function if and only if $\Phi(f) \in B(\Gamma)$ for all f in $B(\Gamma)$ with the range contained in $[-1,1]$ (see, for example, [10: p.135]).

A function φ defined on Γ^{\prime} is called an L^{p}-multiplier if for every $f \in L^{p}(G)$ there exists a function g in $L^{p}(G)$ so that $\varphi \hat{f}=\hat{q}$, where \hat{f} denotes the Fourier transform of f. The set of all L^{p}-multipliers will be written by $M_{p}(\Gamma)$ and the norm of $\varphi \in M_{p}(\Gamma)$ is defined by

$$
\|\boldsymbol{\varphi}\|_{\boldsymbol{M}_{\boldsymbol{p}}(\Gamma)}=\sup \left\{\|g\|_{L^{p_{(G)}}}:\|f\|_{L^{p_{(G)}}}=1\right\} .
$$

If we define the product in $M_{p}(\Gamma)$ by the pointwise multiplication, it is a commutative Banach algebra with identity.

It is well-known that $M_{1}(\mathrm{\Gamma})$ coincides with $B(\Gamma)$ with the norm of measures and $M_{2}(\Gamma)=L^{\infty}(\Gamma)$ isometrically. If $1 \leqq q \leqq p \leqq 2$, then $M_{q}\left(\mathrm{I}^{\prime}\right)$ $\subset M_{p}(\mathrm{\Gamma})$ and if $1 / p+1 / p^{\prime}=1$, then $M_{p}(\Gamma)=M_{p^{\prime}}\left(\mathrm{I}^{\prime}\right)$ isometrically.

Our main theorem is the following:
THEOREM 1. Let Γ be a locally compact non-compact abelian group. Assume $1 \leqq p<2$ and Φ is a function on $[-1,1]$. Then $\Phi(\phi) \in M_{p}(\Gamma)$ for all φ in $M_{1}(\Gamma)$ whose range is contained in $[-1,1]$, if and only if Φ is extended to an entire function.
2. Equivalence of multiplier transforms. In this section we shall show the equivalence of multiplier transforms which will be needed later.

A measurable function $\boldsymbol{\varphi}$ on the real line \boldsymbol{R} is said to be regulated if there exists an approximate identity u_{ε} not necessarily continuous such that

$$
\lim _{\varepsilon \rightarrow 0} \varphi * u_{\varepsilon}(x)=\varphi(x)
$$

[^0]for all x.
K. de Leeuw proved the followings.

THEOREM A ([2]). Let ϕ be a bounded measurable periodic function with period 2π and $1 \leqq p \leqq 2$. Then $\varphi \in M_{p}(\boldsymbol{T})$ if and only if $\boldsymbol{\varphi} \in M_{p}(\boldsymbol{R})$. In this case we have

$$
\|\varphi\|_{M_{\boldsymbol{p}}(R)}=\|\boldsymbol{\varphi}\|_{M_{\boldsymbol{p}}(T)}
$$

where \boldsymbol{T} denotes the circle group.
THEOREM $\mathrm{B}([2])$. Let φ be a bounded regulated function on \boldsymbol{R} and $1 \leqq p \leqq 2$. If $\boldsymbol{\varphi} \in M_{p}(\boldsymbol{R})$, then $\varphi(\lambda n) \in M_{p}(\boldsymbol{Z})$ for all $\lambda>0$ and

$$
\|\varphi(\lambda n)\|_{M_{p}(Z)} \leqq\|\varphi\|_{M_{\boldsymbol{p}}(R)}
$$

where \boldsymbol{Z} is the set of integers.
The next theorem is the converse of Theorem B which is given in [7], but for the sake of convenience we shall state the complete proof.

THEOREM 2. Suppose $1 \leqq p \leqq 2$ and φ is a function on \boldsymbol{R} whose points of discontinuity are null. If $\phi(\lambda n) \in M_{p}(\boldsymbol{Z})$ for all $\lambda>0$ and $\|\boldsymbol{\varphi}(\lambda n)\|_{M_{p}(Z)}$ are bounded, then $\varphi(\xi) \in M_{p}(\boldsymbol{R})$ and we have

$$
\|\boldsymbol{\varphi}\|_{M_{p}(R)} \leqq \lim _{\lambda \rightarrow 0}\|\boldsymbol{\varphi}(\lambda n)\|_{M_{p}(Z)} .
$$

Thus if φ is, furthermore, regulated, we have

$$
\|\boldsymbol{\varphi}\|_{M_{2}(R)}=\lim _{\lambda \rightarrow 0}\|\boldsymbol{\varphi}(\lambda n)\|_{M_{p^{\prime}}(Z)} .
$$

Proof. Let g be an infinitely differentiable function with compact support and put $g_{\lambda}(x)=\lambda g(\lambda x)$ where λ is chosen so large that the support of g_{λ} is contained in $\boldsymbol{T}=[-\pi, \pi)$. We denote by the same notation g_{λ} the periodic extension of g_{λ}. Then we have

$$
\begin{aligned}
\left(\int_{-\pi}^{\pi}\left|\sum_{n=-\infty}^{\infty} \varphi\left(\frac{n}{\lambda}\right) \widehat{g}_{\lambda}(n) e^{i n x}\right|^{p} d x\right)^{1 / p} & \leqq\left\|\varphi\left(\frac{n}{\lambda}\right)\right\|_{M_{p}(Z)}\left(\int_{-\pi}^{\pi}\left|g_{\lambda}(x)\right|^{p} d x\right)^{1 / p} \\
& =\left\|\varphi\left(\frac{n}{\lambda}\right)\right\|_{M_{p}(Z)} \lambda^{1-1 / p}\left(\int_{-\infty}^{\infty}|g(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

where $\widehat{g}_{\lambda}(n)$ denotes the n-th Fourier coefficient:

$$
\widehat{g}_{\lambda}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{\lambda}(x) e^{-i n x} d x
$$

Changing variable we see that the left hand side equals

$$
\lambda^{1-1 / p}\left(\int_{-\pi \lambda}^{\pi \lambda}\left|\frac{1}{\lambda \sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \varphi\left(\frac{n}{\lambda}\right) \widehat{g}\left(\frac{n}{\lambda}\right) e^{i n x / \lambda}\right|^{p} d x\right)^{1 / p}
$$

where

$$
\widehat{g}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) e^{-i v \xi} d y
$$

Since the sum multiplied by $(\lambda \sqrt{2 \pi})^{-1}$ converges to

$$
\frac{1}{\sqrt{ } 2 \pi} \int_{-\infty}^{\infty} \widehat{g}(\xi) \varphi(\xi) e^{i \xi x} d \xi
$$

for every x as $\lambda \rightarrow \infty$, we have by Fatou's lemma

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty}\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{g}(\xi) \varphi(\xi) e^{i \xi x} d \xi\right|^{p} d x\right)^{1 / p} \\
& \leqq \lim _{\lambda \rightarrow \infty}\left\|\varphi\left(\frac{n}{\lambda}\right)\right\|_{\mu_{p}(Z)}\left(\int_{-\infty}^{\infty}|g|^{p} d x\right)^{1 / p}
\end{aligned}
$$

Thus we get the theorem.
The n-dimensional extensions of Theorems A, B and 2 are obvious.
Let $\Delta(r)$ be the direct sum of countably many copies of the cyclic group $Z(r)$ of order r and $D(r)$ be the dual to $\Delta(r)$. Every element x of $\Delta(r)$ or $D(r)$ has the expression $x=x_{1} \oplus x_{2} \oplus \cdots$, where $x_{j}=0,1, \cdots, r-1$ are the realization of $Z(r)$. With this realization to every $x=x_{1} \oplus x_{2} \oplus \cdots$ of $D(r)$ such that $x_{j}=0$ except finite numbers of j there corresponds an element of $\Delta(r)$. Thus a function on $D(r)$ is considered as a function on $\Delta(r)$.

THEOREM 3. Let φ be a continuous function on $D(r)$ and $1 \leqq p \leqq 2$. Then $\varphi \in M_{p}(D(r))$ if and only if $\varphi \in M_{p}(\Delta(r))$. In this case we have

$$
\|\boldsymbol{P}\|_{M_{p}(D(r))}=\|\boldsymbol{P}\|_{M_{\boldsymbol{p}}(\Delta(r))} .
$$

Proof. That $\boldsymbol{\rho} \in M_{p}(\Delta(r))$ is equivalent to say that

$$
\begin{equation*}
\left(\int_{D(r)}\left|\sum_{y} \varphi(y) p(y)(x, y)\right|^{p} d x\right)^{1 / p} \leqq B\left(\int_{D(r)}\left|\sum_{y} p(y)(x, y)\right|^{p} d x\right)^{1 / p} \tag{1}
\end{equation*}
$$

for all polynomial $\sum p(y)(x, y)$ on $D(r)$, where B is a constant and (\cdot, y) denotes a character of $D(r)$. By the same way that $\varphi \in M_{p}(D(r))$ is equivalent to say that

$$
\begin{equation*}
\left(\sum_{v}\left|\int_{D(r)} \varphi(u) f(u)(u, v) d u\right|^{p}\right)^{1 / p} \leqq C\left(\sum_{v}\left|\int_{D(r)} f(u)(u, v) d u\right|^{p}\right)^{1 / p} \tag{2}
\end{equation*}
$$

for all continuous step function f on $D(r)$, where C is a constant.
We first deduce (1) from (2) with $B \leqq C$. Let $\sum_{y} p(y)(x, y)$ be a polynomial. We may assume that the y^{\prime} s run over all elements of the form $y=y_{1} \oplus \cdots \oplus y_{N} \oplus 0 \oplus 0 \oplus \cdots$ for some fixed N. Put $f_{M}(u)=p(y) r^{M}$ if u is of the form $u=y_{1} \oplus \cdots \oplus y_{N} \oplus 0 \oplus \cdots 0 \oplus u_{M+1} \oplus u_{M+2} \oplus \cdots$ and $f_{M}(u)$ $=0$ otherwise. Then we have

$$
\int_{D(r)} f_{M}(u)(u, v) d u=\sum_{y} p(y)(y, v)
$$

for all $v=v_{1} \oplus \cdots \oplus v_{M} \oplus 0 \oplus 0 \oplus \cdots$ and the integral vanishes otherwise. We remark that the right hand side does not depend on the $n(>M)$-th components of v.

Let U_{M} be the set of all u of the form $u=0 \oplus \cdots \oplus 0 \oplus u_{M+1} \oplus u_{M+2} \oplus \cdots$. Then, since φ is continuous,

$$
\begin{aligned}
\lim _{M \rightarrow \infty} r^{M} \int_{U_{M}} \varphi(y+u)(u, v) d u & =\lim _{M \rightarrow \infty} r^{M} \int_{U_{M}} \varphi(y+u) d u \\
& =\varphi(y)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{D(r)} \varphi(u) f_{M M}(u)(u, v) d u & =\sum_{y} p(y)(y, v) r^{M} \int_{U_{M}} \varphi(y+u)(u, v) d u \\
& =\sum_{y} p(y)(y, v) \varphi(y)+o(1)
\end{aligned}
$$

uniformly in v of the form as before when $M \rightarrow \infty$. Therefore

$$
\left(\sum_{v}\left|\int_{D(r)} f_{M}(u)(u, v) d u\right|^{p}\right)^{1 / p}=r^{M / p}\left(\int_{D(r)}\left|\sum_{y} p(y)(v, y)\right|^{p} d v\right)^{1 / p},
$$

where we replaced (y, v) by (v, y) and

$$
\begin{aligned}
& \left(\sum_{v}\left|\int_{D(r)} \varphi(u) f_{M}(u)(u, v) d u\right|^{p}\right)^{1 / p} \\
& \quad \geqq r^{M / p}\left(\int_{D(r)}\left|\sum_{y} p(y) \varphi(y)(v, y)\right|^{p} d v+o(1)\right)^{1 / p}
\end{aligned}
$$

Thus we get (1) with $B \leqq C$.
Now we show that (1) implies (2) with $C \leqq B$. Assume $\boldsymbol{\phi}$ is continuous and satisfies (1). Let f be a continuous step function so that $f(u)$ depends only on the first N-th components of $u=u_{1} \oplus u_{2} \oplus \cdots$. Define $p^{\prime}(y)=f(u)$ for $y=u_{1} \oplus \cdots \oplus u_{N} \oplus 0 \oplus 0 \oplus \cdots$ and $p(y)=0$ for y not of that form. We fix this $p(y)$.

For every $\varepsilon>0$, there exists a continuous step function $\boldsymbol{\phi}_{\varepsilon}$ converging uniformly to φ such that

$$
\left(\int_{D(r)} \cdot\left|\sum_{y} \phi_{\varepsilon}(y) p(y)(x, y)\right|^{p} d x\right)^{1 / p} \leqq(B+\varepsilon)\left(\int_{D(r)}\left|\sum_{y} p(y)(x, y)\right|^{p} d x\right)^{1 / p} .
$$

Thus there exists an integer M so that $\phi_{\varepsilon}(u)$ depends only on the first M-th components of u. We may assume $M>N$. Let Y be the set of u in $D(r)$ whose $n(>N)$-th components are zero and X the set of x^{\prime} s in $D(r)$ whose $n(>M)$-th components are zero. Then we have

$$
\int_{D(r)} \phi_{\varepsilon}(u) f(u)(u, v) d u=r^{-M} \sum_{y \in Y} \phi_{\varepsilon}(y) p^{\prime}(y)(y, v)
$$

for $v \in X$ and the left hand side vanishes for v not in X. By the same way we have

$$
\int_{D(r)} f(u)(u, v) d u=r^{-M} \sum_{y \in Y} p(y)(y, v)
$$

for v in X and zero for v not in X. Therefore

$$
\begin{aligned}
& \left(\sum_{v}\left|\int_{D(r)} \phi_{\varepsilon}(u) f(u)(u, v) d u\right|^{p}\right)^{1 / p} \\
& \quad=r^{-M(1-1 / p)}\left(\int_{D(r)}\left|\sum_{y \in Y} \phi_{\varepsilon}(y) p(y)(x, y)\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

and

$$
\left(\sum_{v}\left|\int_{D(r)} f(u)(u, v) d u\right|^{p}\right)^{1 / p}=r^{-u(1-1 / p)}\left(\int_{D(r)}\left|\sum_{y \in Y} p(y)(x, y)\right|^{p} d x\right)^{1 / p}
$$

Therefore we get from (1)

$$
\left(\sum_{v}\left|\int_{D(r)} \phi_{\varepsilon}^{\prime}(u) f(u)(u, v) d u\right|^{p}\right)^{1 / p} \leqq(B+\varepsilon)\left(\sum_{v}\left|\int_{D(r)} f(u)(u, v) d u\right|^{p}\right)^{1 / p} .
$$

Letting $\varepsilon \rightarrow 0$ we get (2).

3. Proof of Theorem 1.

Lemma 1. Let $\mathrm{\Gamma}$ be \boldsymbol{Z} or $\Delta(r)$. Then for any $1 \leqq p<2$ we have a constant $K_{p}>1$ depending only on Γ and p such that

$$
\sup _{\varphi}\left\|e^{i \varphi}\right\|_{M_{p}(\Gamma)} \geqq K_{p}^{a},
$$

where ϕ ranges over all real-valued functions in $M_{1}(\mathbf{\Gamma})$ satisfying $\|\boldsymbol{\psi}\|_{M_{1}(\Gamma)}$ $\leqq a$.

Proof. Let G be the dual to I . For a function f on G define

$$
\|f\|_{A_{p}(F)}=\left(\sum_{\gamma \epsilon \Gamma}|\hat{f}(\gamma)|^{p}\right)^{1 / p},
$$

where \hat{f} denotes the Fourier coefficient of f. Then we know [9] that there exists a constant $K_{p}>1$ for which we have

$$
\sup _{Q}\left\|e^{i q}\right\|_{A_{p}(G)}>K_{p}^{a},
$$

where Q runs over all real polynomials on G with $\|Q\|_{A_{1}(G)} \leqq a$.
Since $\|Q\|_{A_{1}(G)}=\|Q\|_{M_{1}(G)}$ and $\|f\|_{A_{p}(\xi)} \leqq\|f\|_{M_{D}(\xi)}$, there exists a real polynomial φ on G such that $\|\varphi\|_{\boldsymbol{M}_{1}(G)} \leqq a$ and

$$
\left\|e^{i \phi}\right\|_{M_{p}(G)}>K_{p}^{a} .
$$

Assume $\boldsymbol{\Gamma}=\boldsymbol{Z}$, then by Theorems A, B and 2 we have a real-valued continuous function φ on \boldsymbol{T} such that

$$
\left\|e^{i \varphi(\lambda n)}\right\|_{M_{p}(Z)}>K_{p}^{a} \quad \text { and } \quad\|\varphi\|_{M_{1}(T)} \leqq a
$$

for sufficiently small $\lambda>0$. Remark that $\|\boldsymbol{P}(\lambda n)\|_{M_{1}(Z)} \leqq\|\boldsymbol{\varphi}\|_{M_{1}(R)}=\|\boldsymbol{\varphi}\|_{M_{1}(T)} \leqq a$ and then we get the desired inequality for $\Gamma=\boldsymbol{Z}$,

For the group $\Delta(r)$ the result is obvious by Theorem 3.
Lemma 2. Let I be \boldsymbol{R} or a discrete group and assume $1 \leqq p<2$. If $\Phi(\boldsymbol{\phi}) \in M_{p}(\Gamma)$ for all $\boldsymbol{\varphi} \in M_{1}(\Gamma)$ whose range is contained in $[-1,1]$, then Φ is continuous in $[-1,1]$.

Proof. First we assume Γ is a discrete group. If Φ is discontinuous at a point in $[-1,1]$, there exists a sequence $\left\{a_{j}\right\}^{\circ}=0$ in $[-1,1]$ and a finite number B satisfying:

$$
B \neq \Phi(a), \quad a_{i} \neq a_{j}(i \neq j), \quad \sum_{j=0}^{\infty}\left|a_{j}-a\right|<\infty
$$

and

$$
\sum_{j=0}^{\infty}\left|\Phi\left(a_{j}\right)-B\right|<\infty .
$$

We may assume $\Phi(a)=0$.

Take a function f in $L^{p}(G)$ and a sequence $\left\{\varepsilon_{j}\right\}_{j=0}^{\infty}, \varepsilon_{j}= \pm 1$, such that $\sum_{j=0}^{\infty} \hat{f}\left(\gamma_{j}\right) \varepsilon_{j}\left(x, \gamma_{j}\right)$ does not belong to $L^{p}(G)$, where $f \sim \sum_{j=0}^{\infty} \hat{f}\left(\boldsymbol{\gamma}_{j}\right)\left(x, \gamma_{j}\right)$ (see [3] or [11]). Thus if we set $\eta_{j}=\Phi\left(a_{j}\right)$ for $\varepsilon_{j}=1$ and $\eta_{j}=0$ for $\varepsilon_{j}=-1$, then $\sum_{j=0}^{\infty} \hat{f}\left(\gamma_{j}\right) \eta_{j}\left(x, \gamma_{j}\right) \notin L^{p}(G)$. In fact we have

$$
\begin{aligned}
\sum_{j=0}^{\infty} \hat{f}\left(\gamma_{j}\right) \eta_{j}\left(x, \gamma_{j}\right)= & \frac{B}{2} \sum_{j=0}^{\infty} \hat{f}\left(\gamma_{j}\right)\left(x, \gamma_{j}\right)+\frac{B}{2} \sum_{j=0}^{\infty} \hat{f}\left(\gamma_{j}\right) \varepsilon_{j}\left(x, \gamma_{j}\right) \\
& +\sum_{\varepsilon_{j}=1} \hat{f}\left(\gamma_{j}\right)\left[\Phi\left(a_{j}\right)-B\right]\left(x, \gamma_{j}\right) .
\end{aligned}
$$

The first and the third sums on the right hand side belong to $L^{p}(G)$ and the second does not by the assumption.

Put $\varphi\left(\gamma_{j}\right)=a_{j}$ for $\varepsilon_{j}=1$ and $\varphi(\gamma)=a$ for other γ. Then for any g in $L^{1}(G)$ we have

$$
\sum \widehat{g}(\gamma) \varphi(\gamma)(x, \gamma)=\sum \widehat{g}(\gamma)\left[\varphi^{\prime}(\gamma)-a\right](x, \gamma)+a \sum \widehat{g}(\gamma)(x, \gamma),
$$

which also belongs to $L^{1}(G)$, that is, $\boldsymbol{\varphi} \in M_{1}(\Gamma)$. On the other hand $\Phi\left(\boldsymbol{\varphi}\left(\gamma_{j}\right)\right)$ $=\eta_{j}$. Thus $\Phi(\boldsymbol{\varphi}) \notin M_{p}(\Gamma)$ which contradicts our assumption.

Next we assume $\Gamma=\boldsymbol{R}$. First we show that there exist positive numbers δ and M such that if φ is a real-valued function in $M_{1}(\boldsymbol{R})$, the support of $\boldsymbol{\varphi} \subset[0,1]$ and $\|\varphi\|_{M_{1}(R)}<\delta$, then $\|\Phi(\boldsymbol{\varphi})\|_{M_{\boldsymbol{p}}(R)} \leqq M$.

To prove this we may assume $\Phi^{\prime}(0)=0$. If this assertion is false, then we have a sequence $\left\{\boldsymbol{\phi}_{j}\right\}$ such that the suport of $\boldsymbol{\varphi}_{j} \subset(2 j, 2 j+1)$, the range of $\boldsymbol{\varphi}_{j} \subset[-1,1],\left\|\boldsymbol{\varphi}_{j}\right\|_{M_{1}(R)}<2^{-j}$ but $\left\|\Phi\left(\boldsymbol{\varphi}_{j}\right)\right\|_{M_{p}(R)}>j$. Put $\psi=\sum_{j=1}^{\infty} \boldsymbol{\phi}_{j}$. Then $\| \psi_{\|_{M_{1}(R)}} \leqq 1$. Let ξ_{j} be the continuous function such that $\xi_{j}(x)=1$ on $(2 j, 2 j$ $+1),=0$ outside $(2 j-1 / 2,2 j+3 / 2)$ and is linear otherwise. Then $\xi_{j} \Phi(\psi)$ $=\Phi^{\prime}\left(\boldsymbol{\varphi}_{j}\right)$. Thus

$$
3\|\Phi(\psi)\|_{\left.M_{p}, R\right)} \geqq\left\|\xi_{j} \Phi(\psi)\right\|_{\left.M_{p^{\prime}}^{\prime} R\right)}=\left\|\Phi^{(}\left(\boldsymbol{\varphi}_{j}\right)\right\|_{M_{p}(R)}>j
$$

which is impossible.
Suppose Φ is not continuous at a point a. Let $\left\{a_{j}\right\}$ be a sequence converging to a such that $\Phi\left(a_{j}\right)$ converge to $B \neq \Phi(a)$. We may assume $\Phi(a)=0$ and $a=0$. Let F be any closed set contained in $(1 / 4,3 / 4)$ and $\left\{C_{j}\right\}$ be an increasing sequence of closed sets in $[0,1] \backslash F$, such that $m\left(F \cup C_{j}\right) \rightarrow 1$. Then we have a sequence $\left\{\chi_{j}\right\}$ of functions in $M_{1}(\boldsymbol{R})$ which equal 1 on F and 0 on $(-\infty, 0) \cup C_{j} \cup(1, \infty)$. Take a sequence $\left\{k_{j}\right\}$ such that $\left\|a_{k}, \chi_{j}\right\|_{M_{1}(R)}<\delta$. Then we have $\left\|\Phi\left(a_{k}, \chi_{j}\right)\right\|_{M_{p}(R)}<M$ for all $j=1,2, \cdots$, Since $\Phi\left(a_{k}, \chi_{j}\right)=\Phi\left(a_{k_{j}}\right)$ on F and 0 on $(-\infty, 0) \cup(1, \infty), \Phi\left(a_{k}, \chi_{j}\right) \rightarrow B \chi_{F}$ almost everywhere as $j \rightarrow \infty$ and $\left\|B \chi_{F}\right\|_{M_{甲}(R)} \leqq M$, where χ_{F} is the characteristic function of F. This implies that every open set in $(1 / 4,3 / 4)$ is an L^{p}-multiplier, which is impossible (see, [8]).

Lemma 3. Suppose Γ is a locally compact, non-compact abelian group and $1 \leqq p<2$. If Φ is a function on the real line possessing the property that $\Phi(\phi) \in M_{p}(\mathrm{I})$ for all real valued function φ in $M_{1}(\Gamma)$, then Φ has the similar property for an infinite discrete group.

Proof. By the structure theorem Γ contains an open subgroup Γ_{0} which is the direct sum of a compact group Λ and an N-dimensional euclidean space
\boldsymbol{R}^{N}. Let H be the annihilator of Γ_{0}. Then H is the dual to Γ / Γ_{0} and a compact subgroup of $G=\widehat{\Gamma}$.
(a) The case where $N>0$. First we observe that Φ maps $M_{1}\left(\Gamma_{0}\right)$ to $M_{p}\left(\boldsymbol{\Gamma}_{0}\right)$.

In fact for $\varphi \in M_{1}\left(\Gamma_{0}\right)$ put $\widetilde{\boldsymbol{P}}=\varphi$ on Γ_{0} and 0 outside Γ_{0}. Then $\widetilde{\boldsymbol{\rho}} \in M_{1}\left(\Gamma^{\top}\right)$. For if $f \in L^{1}(G)$. then $f^{*}(x)=\int_{I I} f(x+y) d m_{I I}(y)$ belongs to $L^{1}(G / H)$ and $\hat{f}^{*}(\gamma)=\hat{f}(\gamma)$ on Γ_{0}, where $d m_{I I}$ denotes the Haar measure on H. Thus there exists a function g^{*} in $L^{1}(G / H)$ such that $\widehat{g}^{*}=\phi \hat{f}^{*}=\widetilde{\rho} \hat{f}$ on Γ_{0}. Let π be the natural homomorphism of G onto G / H, then $g=g^{*} \circ \pi \in L^{\prime}(G)$ and satisfies the relation $\hat{g}=\widetilde{\Phi} \hat{f}$ on Γ.

On the other hand if $\Psi \in M_{p}\left(\Gamma^{\prime}\right)$ and $\Psi=0$ outside Γ_{0}, then $\Psi \in M_{p}\left(\Gamma_{0}\right)$. For if $f^{*} \in L^{p}(G / H)$, then the function $f=f^{*} \circ \pi \in L^{p}(G)$ and $\hat{f}=\hat{f}^{*}$ on Γ_{0}. Thus there exists a function g in $L^{p}(G)$ such that $\Psi \hat{f}=\hat{g}$. Put $g^{*}(x)$ $=\int_{H} g(x+y) d m_{H}(y)$, then $g^{*} \in L^{p}(G / H)$, since H is compact. Furthermore we have $\Psi \hat{f}^{*}=\Psi \hat{f}=\hat{g}=\hat{g}^{*}$ on Γ_{0}.

Therefore we can conclude that Φ maps $M_{1}\left(\Gamma_{0}\right)$ into $M_{p}\left(\Gamma_{0}\right)$.
Since $\Gamma_{0}=\Lambda \oplus \boldsymbol{R} \oplus \cdots \oplus \boldsymbol{R}, \Phi$ maps also $M_{1}(\boldsymbol{R})$ into $M_{p}(\boldsymbol{R})$. Thus Φ is continuous by Lemma 2. Let φ be a real-valued function in $M_{1}(\boldsymbol{Z})$, then there exists a measure μ on \boldsymbol{T} such that

$$
\varphi(n)=\int_{-\pi}^{\pi} e^{-i n x} d \mu(x)
$$

Thus the function ϕ^{*} defined by

$$
\phi^{*}(\xi)=\int_{-\pi}^{\pi} e^{-i \xi x} d \mu(x)
$$

is real-valued on \boldsymbol{R} and $\phi^{*} \in M_{1}(\boldsymbol{R})$. Thus $\Phi\left(\phi^{*}\right) \in M_{p}(\boldsymbol{R})$. Since Φ is continuous, Theorem B implies $\Phi\left(\boldsymbol{\varphi}^{*}(n)\right)=\Phi(\boldsymbol{\varphi}(n)) \in M_{p}(\boldsymbol{Z})$. Therefore Φ maps $M_{1}(\boldsymbol{Z})$ into $M_{p}(\boldsymbol{Z})$.
(b) The case where $N=0$. We shall show that Φ maps $M_{1}\left(\Gamma / \Gamma_{0}\right)$ into $M_{p}\left(\Gamma / \Gamma_{0}\right)$.

For $\varphi \in M_{1}\left(\Gamma / \Gamma_{0}\right)$ we put $\phi^{*}=\boldsymbol{\varphi} \circ \sigma$ where σ is the natural homomorphism of Γ onto Γ / Γ_{0}. Let T_{Φ} and $T_{\Phi^{*}}$ be the corresponding multiplier transforms on $L^{1}(H)$ and $L^{1}(G)$ respectively. Every element z of G is written as $z=x+y$ where $x \in H$ and y is an element of a coset of H. Then we have

$$
\left[T_{\varphi^{*}} f\right](z)=T_{\varphi}[f(y+\cdot)](x)
$$

for all f in $L^{1}(G)$. In fact the Fourier transform of the right hand side is

$$
\begin{array}{rl}
\int_{G / / I} & d m_{G / / I}(y) \int_{H}(x+y, \gamma) T_{\varphi}[f(y+\cdot)](x) d m_{I \prime}(x) \\
& \left.=\int_{G / I I}(y, \gamma) d m_{G / / \prime \prime}(y) \int_{H} \overline{(x, \gamma)} T_{\varphi} \mid f(y+\cdot)\right](x) d m_{H}(x) \\
& \left.=\int_{G / I I} \overline{(y, \gamma)} d m_{G / / I \prime}(y) \int_{H} \overline{(x, \gamma}\right) \varphi^{*}(\gamma) f(y+x) d m_{H}(x) \\
& =\phi^{*}(\gamma) \hat{f}(\gamma) .
\end{array}
$$

The last term is the Fourier transform of $T_{\varphi^{*}} f$.
On the other hand if $\Psi \in M_{p}(\mathbf{\Gamma})$ and Ψ is constant on each coset of Γ_{0}, then Ψ considered as a function on Γ / Γ_{0} belongs to $M_{p}\left(\Gamma / \Gamma_{0}\right)$. For if $f \in L^{p}(H)$ put $\widetilde{f}=f$ on H and 0 otherwise. Then $\widetilde{f} \in L^{p}(G)$ and $\|\widetilde{f}\|_{L^{p_{(G)}}}$ $=\|f\|_{L^{p^{p}(I)}} . \hat{\tilde{f}}(\gamma)$ is constant on each coset of Γ_{0} and $\Psi(\gamma) \hat{\tilde{f}}(\gamma)=\Psi\left(\gamma_{1}\right) \hat{f}\left(\gamma_{1}\right)$ where $\gamma_{1} \in \Gamma / \Gamma_{0}$ and $\gamma \in \gamma_{1}$. Since $T_{\psi} \widetilde{f}=T_{\psi} f$ on H and 0 otherwise, we get $T_{\psi} f \in L^{p}(H)$, that is, $\Psi \in M_{p}\left(\Gamma / \Gamma_{0}\right)$.

Therefore Φ maps $M_{1}\left(\Gamma / \Gamma_{0}\right)$ into $M_{p}\left(\Gamma / \Gamma_{0}\right)$. We remark that Γ / Γ_{0} is an infinite discrete group, since Γ^{\prime} is not compact.

We refer the following lemma to [5].
Lemma C. (a) Let $\left\{\Omega_{j}\right\}, j=1,2, \cdots$, be a sequence of finite subgroups of $\Delta(r)(r \geqq 2)$. Then there exists a sequence $\left\{\gamma_{j}\right\}$ of $\Delta(r)$ having the property: Let Γ_{j} be the group generated by Ω_{j} and γ_{j}, then no two of groups Γ_{j} have a non-zero element in common. Let $\left\{f_{j}\right\}$ be a sequence of polynomials (real-valued if $r=2$) on $D(r)$ such that $\hat{f_{j}}$ has its support in Ω_{j}, then we have an element x_{0} in $D(r)$ so that

$$
\left\|f_{j}\right\|_{\infty} \leqq 2 \Re\left[\left(x_{0}, \gamma_{j}\right) f_{j}\left(x_{0}\right)\right], \quad j=1,2, \cdots,
$$

(b) Let Γ be an infinite discrete group of unbounded order and G is the dual to Γ. Let $\left\{n_{j}\right\}, j=1,2, \cdots$, be a sequence of positive integers. Then there exist a sequence $\left\{m_{j}\right\}$ of positive integers and a sequence $\left\{\gamma_{j}\right\}$ in Γ having the properties:
(4) The order of γ_{j} exceeds $2 m_{j}+6 n_{j}^{2}$.
(5) The sets $E_{j}=\left\{n \gamma_{j}: m_{j}-2 n_{j} \leqq n \leqq m_{j}+2 n_{j}\right\}$ are disjoint.
(6) If $\left\{f_{j}\right\}$ is a sequence of polynomials on \boldsymbol{T} such that \hat{f}_{j} has its support in $\left\{n:|n| \leqq 2 n_{j}\right\}$, then we have an element x_{0} in G such that

$$
\left\|f_{j}\right\|_{\infty} \leqq 2 \Re\left[\left(x_{0}, m_{j} \gamma_{j}\right) \sum_{-2 n_{j}}^{2 n j} \hat{f}_{j}(n)\left(x_{0}, \gamma_{j}\right)\right], \quad j=1,2, \cdots
$$

Lemma 4. Let Γ be an infinite discrete group and Φ be a continuous periodic function. Suppose $\Phi(\boldsymbol{\psi}) \in M_{p}(\mathbf{I})$.for every real-valued multiplier φ in $M_{1}(\Gamma)$. Then for any positive number a, there exists a constant C_{a} such that

$$
\begin{equation*}
\|\Phi(\phi)\|_{M_{p}(A)} \leqq C_{a} \tag{7}
\end{equation*}
$$

for all real-valued ϕ in $M_{1}(\Lambda)$ such that $\|\phi\|_{M_{1}(A)} \leqq a$, where Λ is a group $\Delta(r)(r \geqq 2)$ or \boldsymbol{Z}.

Proof. We may suppose $\Phi(0)=0$. If (7) is false, we can find polynomils p_{j} on L and real-valued multipliers φ_{j} satisfying

$$
\begin{gather*}
\left\|p_{j}\right\|_{L^{p^{\prime}},} \leqq 2^{-j} \\
\left\|\boldsymbol{\varphi}_{j}\right\|_{M_{1}(A)} \leqq a \tag{8}\\
\left\|\sum_{\gamma} \Phi^{\prime}\left(\boldsymbol{\varphi}_{j}(\gamma)\right) \hat{p}_{j}(\gamma)(\cdot, \gamma)\right\|_{L^{\boldsymbol{p}}(L)}>j, \quad j=1,2, \cdots,
\end{gather*}
$$

where Λ indicates the groups $\Delta(r)(r \geqq 2)$ or \boldsymbol{Z}, and \boldsymbol{L} is the dual to Λ.
Here we can assume that the support of $\boldsymbol{\phi}_{j}$ is finite. For let k_{j} be the polynomials on \boldsymbol{L} so that $\left\|k_{j}\right\|_{L^{\prime}(L)} \leqq 3$ and $\hat{k}_{j}=1$ on the support of \hat{p}_{j}. Then $\left\|\hat{k}_{j} \boldsymbol{\varphi}_{j}\right\|_{M_{1}(1)} \leqq 3 a$ and

$$
\sum_{\gamma} \Phi\left(\hat{k}_{j}(\gamma) \boldsymbol{\phi}_{j}(\gamma)\right) \hat{p}_{j}(\gamma)(x, \gamma)=\sum_{\gamma} \Phi\left(\phi_{j}(\gamma)\right) \hat{p}_{j}(\gamma)(x, \gamma) .
$$

First we assume that Γ is a group of bounded order. Then we can write $\Gamma=\Delta(r) \oplus \Pi$ for some $r \geqq 2$. Therefore Φ has the same property for $\Delta(r)$ as in the lemma, so that we can assume $\Gamma=\Delta(r)$. We show (8) is impossible for $\Lambda=\Delta(r)$.

Let Ω_{j} be the subgroup generated by the support of ϕ_{j}, then Ω_{j} is a finite subgroup of $\Delta(r)$. Let X be the space of real-valued continuous functions f of the form

$$
f(x)=\sum_{j=1}^{\infty}\left(x, \gamma_{j}\right) f_{j}(x)
$$

where $\left\{\boldsymbol{\gamma}_{j}\right\}$ is a sequence of (a) in Lemma C and the support of f_{j} is contained in Ω_{j}. Then this representation of f is unique and we have

$$
\|f\|_{\infty} \leqq \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{\infty} \leqq 2\|f\|_{\infty}
$$

Thus the functional defined on X by

$$
T f=\sum_{j=1}^{\infty} \int_{D(r)} f_{j}(-x) \sum_{\gamma} \phi_{j}(\gamma)(x, \gamma) d x
$$

is bounded. Therefore there exists a finite measure μ on $D(r)$ such that

$$
T f=\int_{D(r)} f(-x) d \mu(x)
$$

In particular $\hat{\mu}\left(\gamma+\gamma_{j}\right)=\phi_{j}(\gamma)$. If $\hat{\mu}$ is not real-valued we replace $\hat{\mu}$ by its real part. Since $\hat{\mu} \in M_{1}(\Delta(r))$ and $\left\|\sum_{j=1}^{\infty} p_{j}\left(\cdot, \gamma_{j}\right)\right\|_{L^{p_{i(r)}}} \leqq 1$, we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{\infty} \sum_{\gamma} \Phi\left(\hat{\mu}\left(\gamma+\gamma_{j}\right)\right) \hat{p}_{j}(\gamma)\left(\cdot, \gamma+\gamma_{j}\right)\right\|_{L^{p_{i D(~}^{\prime}}} & \leqq\|\Phi(\hat{\mu})\|_{M_{\boldsymbol{p}}(\Delta(r))} \\
& <\infty .
\end{aligned}
$$

Consider the characteristic function of $\Omega_{j}+\gamma_{j}$ which is a multiplier of norm one. Then

$$
\begin{aligned}
\|\Phi(\hat{\mu})\|_{\left.M_{p}: \Delta(r)\right)} & \geqq\left\|\sum_{\gamma} \Phi\left(\hat{\mu}\left(\gamma+\gamma_{j}\right)\right) \hat{p}_{j}(\gamma)\left(\cdot, \gamma+\gamma_{j}\right)\right\|_{L^{p}(D(r))} \\
& =\left\|\sum_{\gamma} \Phi\left(\boldsymbol{\phi}_{j}(\gamma)\right) \hat{p}_{j}(\gamma)(\cdot, \gamma)\right\|_{L^{p^{p}(D(r))}} \\
& \geqq j,
\end{aligned}
$$

$j=1,2, \cdots$, which is impossible.
Next we treat the case where Γ is not of bounded order. Assume (8) holds for $\boldsymbol{\Lambda}=\boldsymbol{Z}$.

We can suppose that the support of $\widehat{p}_{j} \subset\left[-n_{j}, n_{j}\right]$ and the support of $\boldsymbol{\varphi}_{j} \subset\left[-2 n_{j}, 2 n_{j}\right]$. Let $\left\{\boldsymbol{\gamma}_{j}\right\},\left\{E_{j}\right\}$ and $\left\{m_{j}\right\}$ be the sequences of (b) in Lemma C.

Let X be the space of continuous functions f on G of the form

$$
f^{*}(x)=\sum_{j=1}^{\infty}\left(x, m_{j} \gamma_{j}\right) f_{j}^{*}(x),
$$

where $f_{\bar{j}}^{*}(x)=\sum_{-2 n_{j}}^{2 n_{j}} \hat{f}_{j}(n)\left(x, n \gamma_{j}\right)$. Then the representation is unique. For f^{*} put

$$
f(\theta)=\sum_{j=1}^{\infty} e^{i m \cdot \emptyset} f_{j}(\theta),
$$

where $f_{j}(\theta)=\sum_{-2 n j}^{2 n j} \hat{f}_{j}(n) e^{i n \theta}$. Then we have, by (b) of Lemma C,

$$
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{\infty} \leqq 2\left\|f^{*}\right\|_{\infty}
$$

We define a functional T on X by

$$
T f=\sum_{j=1}^{\infty} \int_{-\pi}^{\pi} f_{j}(-\theta) \sum_{-2 n_{j}}^{2 n_{j}} \phi_{j}(n) e^{i n \theta} d \theta
$$

Then this is bounded on X. Thus there exists, by extension theorem, a finite measure μ on G such that

$$
T f=\int_{G} f^{*}(-x) d \mu(x)
$$

In particular $\hat{\mu}\left(m_{j} \gamma_{j}+n \gamma_{j}\right)=\phi_{j}(n)$ for $|n| \leqq 2 n_{j}, j=1,2, \cdots$. As above we may assume $\hat{\mu}$ is real-valued.

Now for the polynomial q on \boldsymbol{T} of order $\leqq n_{j}$, put

$$
q^{*}(x)=\sum_{-n_{j}}^{n_{j}} \hat{q}(n)\left(x, n \gamma_{j}\right), \quad x \in G .
$$

If $\boldsymbol{\gamma}_{j}$ is of infinite order, then $\left\|q^{*}\right\|_{L^{p_{(F)}}}=\|q\|_{L^{p_{(T)}}}$. If $\boldsymbol{\gamma}_{j}$ has order d, say, then

$$
\left\|q^{*}\right\|_{L^{p}(G)}=\left[\sum_{k=1}^{d} \frac{1}{d}\left|q\left(\frac{2 \pi k}{d}\right)\right|^{p}\right]^{1 / p}
$$

This differs from

$$
\|\boldsymbol{q}\|_{\left.L^{\boldsymbol{p}}, T\right)}=\left[\sum_{k=1}^{d} \frac{1}{2 \pi} \int_{(2 k-1) \pi / d}^{(2 k+1) \pi / d}|\boldsymbol{q}(\theta)|^{\nu} d \theta\right]^{1 / p}
$$

by at most

$$
\frac{\pi}{d}\left\|q^{\prime}\right\|_{\infty} \leqq \frac{5 \pi}{d} n_{j}^{2}\|q\|_{L^{\prime}(T)} \leqq \frac{1}{2}\|q\|_{L^{\prime}(T)} \leqq \frac{1}{2}\|q\|_{L^{p_{(T)}}}
$$

Thus we have

$$
2\|q\|_{L^{\boldsymbol{p}_{(T)}}} \geqq\left\|q^{*}\right\|_{L^{\boldsymbol{p}_{(G)}}} \geqq \frac{1}{2}\|q\|_{L^{\boldsymbol{p}}(T)} .
$$

Therefore from (8) we get

$$
\begin{equation*}
\left\|p_{j}^{*}\right\|_{L^{p_{(G)}}} \leqq 2^{-j+1} \tag{9}
\end{equation*}
$$

$$
\begin{gathered}
\left\|\sum_{-n_{j}}^{n_{j}} \Phi\left(\varphi_{j}(n)\right) \hat{p}_{j}(n)\left(\cdot, n \gamma_{j}\right)\right\|_{L^{p_{(G)}}} \geqq \frac{1}{2} j, \\
j=1,2, \cdots \text { Since } \hat{\mu} \in M_{1}\left(\mathbf{I}^{\prime}\right) \text { and }\left\|\sum p_{j}^{*}\right\|_{L^{\prime}(G)} \leqq 2, \\
\left\|\sum_{j=1}^{\infty} \sum_{-n_{j}}^{n_{j}} \Phi\left(\hat{\mu}\left(m_{j} \gamma_{j}+n \gamma_{j}\right)\right) \hat{p}_{j}(n)\left(\cdot, m_{j} \gamma_{j}+n \gamma_{j}\right)\right\|_{L^{p_{(F)}}} \leqq 2\|\Phi(\hat{\mu})\|_{\mathcal{M}_{\boldsymbol{p}}(\Gamma)} \\
\end{gathered}
$$

If we put $\hat{K}_{j}(\gamma)=\min \left(1,2-|n| / n_{j}\right)$ for $\gamma=m_{j} \gamma_{j}+n \gamma_{j},|n| \leqq 2 n_{j}$ and $\hat{K}_{j}=0$ otherwise, then $\left\|\hat{K}_{j}\right\|_{M_{p}(\Gamma)} \leqq 3$. Thus

$$
\begin{aligned}
6\|\Phi(\hat{\mu})\|_{M_{j}(\Gamma)} & \geqq\left\|\sum_{-n_{j}}^{n_{j}} \Phi\left(\hat{\mu}\left(m_{j} \gamma_{j}+n \gamma_{j}\right)\right) \hat{p}_{j}(n)\left(\cdot, m_{j} \gamma_{j}+n \gamma_{j}\right)\right\|_{L^{p_{(G)}}} \\
& =\left\|\sum_{-n_{j}}^{n_{j}} \Phi\left(\boldsymbol{\phi}_{j}(n)\right) \hat{p}_{j}(n)\left(\cdot, n \gamma_{j}\right)\right\|_{L^{p^{p}(G)}}
\end{aligned}
$$

which contradicts (9). Thus the lemma is proved.

Now we proceed to the proof of Theorem 1 . Let Φ be the function in the theorem. Considering $\Phi(\sin t)$ and $\Phi(\varepsilon \sin t)(0<\varepsilon<1)$, it is sufficient to show that Φ is entire under the additional assumption that Φ is defined on the whole line and periodic. By Lemmas 2 and 3Φ is continuous and maps real-valued functions in $M_{1}(\Lambda)$ into $M_{p}(\Lambda)$ where Λ is an infinite discrete group. We have

$$
\left.e^{i n \varphi} \hat{\Phi}^{\prime} n\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Phi(\varphi+x) e^{-i n x} d x
$$

where $\varphi \in M_{1}(\Lambda)$ and $\Lambda=\Delta(r)(r \geqq 2)$ or \boldsymbol{Z}. Hence by Lemma 4

$$
|\hat{\Phi}(n)|\left\|e^{i n \phi}\right\|_{M_{p}(1)} \leqq C_{a}
$$

for any φ such that $\|\boldsymbol{\varphi}\|_{M_{1}(\Lambda)} \leqq a$. Therefore by Lemma 1 we get $|\hat{\Phi}(n)|$ $\leqq C_{a} K_{p}^{-a n}$ for any $a>0$. Therefore Φ is extended to an entire function.

REMARK. Let Γ be a compact abelian group and $1 \leqq p<2$. If Φ is a function on $[-1,1]$ and $\Phi(\phi) \in M_{p}(\Gamma)$ for all φ in $M_{1}(\Gamma)$ with the range contained in $[-1,1]$, then Φ is the restriction of a function analytic in a neighborhood of $[-1,1]$.

In fact $M_{1}(\Gamma)=A_{1}(\Gamma)$ and $M_{p}(\Gamma) \subset A_{p}(\Gamma)$, so that this follows from a theorem of Rudin in [9].
4. Some consequences of Theorem 1. Let $1 \leqq p<2$ and $m_{p}(\mathbf{\Gamma})$ be the space of continuous functions in $M_{p}(\Gamma)$. Since $\|\boldsymbol{\varphi}\|_{\infty} \leqq\|\boldsymbol{\varphi}\|_{M_{\boldsymbol{p}}(\Gamma)}, m_{p}(\Gamma)$ is a closed subalgebra of $M_{p}(\Gamma)$ and each point of Γ is identified with a maximal ideal of $m_{p}(\Gamma)$.

THEOREM 4. Let $1 \leqq p<2$ and Γ be a locally compact non-compact abelian group. Then for any complex number z there exist a real-valued function φ in $m_{p}(\Gamma)$ and a homomorphism h of $m_{p}(\Gamma)$ such that $h(\varphi)=z$.

Proof. Otherwise the function $\Phi(x)=(x-z)^{-1}$ would carry the realvalued functions in $m_{p}(\Gamma)$ to $M_{p}(\Gamma)$, which is impossible since $M_{1}(\Gamma) \subset m_{p}(\Gamma)$.

Corollary 5. Under the conditions in Theorem 4 the algebra $m_{p}(\Gamma)$
is asymmetric and not regular.

Proof. By Theorem 4, Γ is not dense in the maximal ideal space \mathfrak{M} of $m_{p}\left(\Gamma^{\top}\right)$. Therefore $m_{p}(\Gamma)$ is not regular. Let φ be a function in $m_{p}(\Gamma)$ such that the Fourier-Gelfand transform $\widetilde{\mathcal{P}}$ is real-valued on $\bar{\Gamma}$ but not on \mathfrak{M}. If for some $\psi \in m_{p}(\mathbf{\Gamma})$ we have $\widetilde{\psi}=\overline{\widetilde{\mathscr{P}}}$ on \mathfrak{M}, then $\psi(\gamma)=\boldsymbol{\phi}(\gamma)$ for all $\gamma \in \Gamma$, that is, $\widetilde{\mathscr{\rho}}$ is real-valued. Thus $\overline{\widetilde{\rho}} ₫ \widetilde{m_{p}(\bar{\Gamma})}$.

THEOREM 6. Under the conditions in Theorem 4 there exists a realvalued function φ in $M_{1}(\Gamma)$ such that $\varphi(\gamma) \geqq 1$ but $1 / \varphi \notin M_{p}(\Gamma)$.

Proof. It suffices to consider the function $\Phi^{\prime}(x)=1 /\left(x^{2}+1\right)$.

This will be interesting in connection with the inversion theorem of the singular integral operators; see Calderón-Zygmund [1].

From Theorem 1 and Remark in § 3 we have the following result which is proved partially by Hörmander [6] and Figà-Talamanca [4] in the case $\Gamma=\boldsymbol{R}$.

THEOREM 7. Let Γ be a locally compact abelian group and $1 \leqq p<2$. Then the contraction does not operate on $M_{p}(\mathbf{\Gamma})$ and $m_{p}(\Gamma)$.

References

[1] A. P. Calderon and A. Zygmund, Algebras of certain singular operators, Amer. J. Math., 78(1956), 310-320.
[2] K. De Leeuw, On L^{p}-multipliers, Ann. of Math., 81(1965), 364-379.
[3] R. E. Edwards, Changing signs of Fourier coefficients, Pacific J. Math., 15(1965), 463475.
[4] A. Figa-TALAMANCA, On the subspace of L^{p} invariant under multiplication of transform by bounded continuous functions, Rend. Sem. Mat. Univ. Padova, 35(1965), 176-189.
[5] H. Helson, J. P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math., 102(1959), 135-157.
[6] L. Hormander, Estimates for translation invariant operators in L^{p} spaces, Acta Math., 104(1960), 93-140.
[7] S. Igari, Lectures on Fourier Series of Several Variables, Univ. of Wis., 1968.
[8] H. Rosenthal, Projections onto Translation Invariant Subspaces of $L^{p}(G)$, Mem. Amer. Math. Soc., 1966.
[9] W. Rudin, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962), 694-701.
[10] W. Rudin, Fourier Analysis on Groups, Interscience. Publ., 1962.
[11] A. Zygmund, Trigonometric Series, vol. 1 2nd ed., Cambridge 1958.

Mathematical Institute
TÔHOKU UNIVERSITY
Sendai, Japan

[^0]: *) Supported in part by the Sakkokai Foundation.

