SASAKIAN MANIFOLD WITH PSEUDO-RIEMANNIAN METRIC

TOSHIO TAKAHASHI*)

(Received December 4, 1968)

Introduction. Sasakian manifold with Riemannian metric is defined by S. Sasaki [5]. In this paper, we want to define Sasakian manifold with pseudo-Riemannian metric, and discuss the classification of Sasakian manifolds.

In section 1, we define a Sasakian manifold (with pseudo-Riemannian metric). In section 2, we define the model spaces of Sasakian manifolds which are used in section 4 for the classification of Sasakian manifolds of constant ϕ -sectional curvatures. In section 3, we discuss D-homothetic deformation which is defined by S. Tanno [9], and prove some fundamental lemmas concerning completeness of the deformed metric. In section 5, we prove that a Sasakian manifold, satisfying $R(X,Y) \cdot R = 0$ for all tangent vectors X and Y, is of constant curvature. In section 6, we discuss a Sasakian manifold M^{2n+1} which is properly and isometrically immersed in E_s^{2n+2} .

I wish to express my hearty thanks to Prof. K. Nomizu, Prof. S. Sasaki and Prof. S. Tanno for their valuable advices.

1. **Preliminaries**. Manifolds and tensor fields are supposed to be of class C^{∞} .

Let $M = M^{2n+1}$ be a connected differentiable manifold, and let ϕ , ξ and η be tensor fields of type (1, 1), (1, 0) and (0, 1), respectively, on M.

DEFINITION. (ϕ, ξ, η) is called an *almost contact structure* on M, if the followings are satisfied:

$$\eta(\xi)=1$$
 , $\eta(\phi(X))=0$, $X\in\mathfrak{X}(M)$, $\phi^2(X)=-X+\eta(X)\xi$, $X\in\mathfrak{X}(M)$.

^{*)} Partially supported by the National Science Foundation.

DEFINITION. $(\phi, \xi, \eta, g, \varepsilon)$ is called an almost contact metric structure on M, if (ϕ, ξ, η) is an almost contact structure on M and g is a pseudo-Riemannian metric on M such that

$$\begin{split} g(\xi,\xi) &= \mathcal{E} \,, \quad \mathcal{E} = +1 \text{ or } -1 \,, \\ \eta(X) &= \mathcal{E}g(\xi,X) \,, \quad X \in \mathfrak{X}(M) \,, \\ g(\phi X,\phi Y) &= g(X,Y) - \mathcal{E}\eta(X) \, \eta(Y) \,, \quad X, \ Y \in \mathfrak{X}(M) \,. \end{split}$$

DEFINITION. $(\phi, \xi, \eta, g, \varepsilon)$ is a contact metric structure on M, if it is an almost contact metric structure on M and satisfies

$$d\eta(X,Y) = g(\phi X,Y), \quad X,Y \in \mathfrak{X}(M).$$

DEFINITION. $(\phi, \xi, \eta, g, \varepsilon)$ is a normal contact metric structure on M, if it is a contact metric structure and satisfies

$$(\nabla_X \phi) Y = \mathcal{E} \eta(Y) X - g(X, Y) \xi, \quad X, Y \in \mathfrak{X}(M),$$

where ∇ indicates the Levi-Civita connection for the pseudo-Riemannian metric g. In this case, we call $M(\phi, \xi, \eta, g, \varepsilon)$ a Sasakian manifold.

The following example shows that we may assume $\varepsilon = 1$ without loss of generality.

EXAMPLE. Let $(\phi, \xi, \eta, g, \varepsilon)$ be an almost contact metric structure (resp. a normal contact metric structure) on M. We put

$$\overline{g} = -g, \ \ \overline{\xi} = -\xi, \ \ \overline{\eta} = -\eta, \ \ \overline{\phi} = \phi \ .$$

Then $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g}, \overline{\varepsilon})$, $\overline{\varepsilon} = -\varepsilon$, is an almost contact metric structure (resp. a normal contact metric structure) on M.

PROOF. It is easy to see that $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g}, \overline{\varepsilon})$ is an almost contact metric structure, and it is a contact metric structure if $(\phi, \xi, \eta, g, \varepsilon)$ is a contact metric structure. Suppose $(\phi, \xi, \eta, g, \varepsilon)$ is a normal contact metric structure. Since the parallelism with respect to g and the parallelism with respect to \overline{g} are the same, we get

$$(\overline{\nabla}_{x}\overline{\phi})Y = (\nabla_{x}\phi)Y$$

$$= \varepsilon\eta(Y)X - g(X,Y)\xi$$

$$= \bar{\varepsilon}\bar{\eta}(Y)X - \bar{g}(X,Y)\bar{\xi}.$$

Thus $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g}, \overline{\varepsilon})$ is normal.

Hereafter, we assume $\varepsilon=1$, and drop it.

REMARK. A contact metric structure is normal if and only if the following tensor field vanishes:

$$N(X,Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + \phi^{2}[X,Y] + 2d\eta(X,Y)\xi$$
.

(cf. S. Sasaki [7], Theorem 11.1)

By the same method as in the case of Riemannian metric, we get the following, which we use later:

PROPOSITION 1. For an almost contact metric structure (ϕ, ξ, η, g) on M,

$$(1) \qquad (\nabla_X \phi) Y = \eta(Y) X - g(X, Y) \xi$$

implies

- $(i) \quad \nabla_X \xi = \phi(X),$
- (ii) ξ is a Killing vector field,
- (iii) $d\eta(X, Y) = g(\phi X, Y)$.

Let (M^n, g) be a pseudo-Riemannian manifold. Let X and Y be tangent vectors at a point of M^n . If X and Y satisfy

$$g(X, X) g(Y, Y) - g(X, Y)^2 \neq 0$$
,

then we say that X and Y span a non-degenerate 2-plane $X \wedge Y$. This definition is independent of the choice of X and Y which span the 2-plane $X \wedge Y$. For a non-degenerate 2-plane $X \wedge Y$, we define a sectional curvature K(X,Y) by

$$K\!(X,Y) = \frac{g(R\!(X,Y)Y,X)}{g(X,X)\,g(Y,Y) \!-\! g(X,Y)^{2}}. \label{eq:K}$$

If K(X,Y) is constant for all X and Y in $T_x(M^n)$ such that $X \wedge Y$ is a non-degenerate 2-plane, we call (M^n,g) to be of constant curvature at x. If (M^n,g) is of constant curvature at every point of M^n , K(X,Y) is a function of $x \in M^n$, say k(x). If k(x) is constant on M^n , we call (M^n,g) to be of constant curvature. It is known that if (M^n,g) is of constant curvature at

every point and if $n \ge 3$, then (M^n, g) is of constant curvature (J. A. Wolf [10], p. 57, Cor. 2.2.7). Suppose (M^n, g) is of constant curvature k, then we have

(2)
$$R(X,Y)Z = k\{g(Y,Z)X - g(X,Z)Y\}$$

for all tangent vectors X, Y and Z (cf. J. A. Wolf [10], p. 56, Cor. 2.2.5).

Suppose we have a Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$. Let

$$D_x = \{X \in T_x(M^{2n+1}); \ \eta(X) = 0\}.$$

For a non-null vector X in D_x , X and ϕX span a non-degenerate 2-plane, and hence we can consider a sectional curvature $K(X) = K(X, \phi X)$. If K(X) is constant for all non-null vectors X in D_x , we call (M^{2n+1}, g) to be of constant ϕ -sectional curvature at x. If (M^{2n+1}, g) is of constant ϕ -sectional curvature at every point, K(X) is a function of $x \in M^{2n+1}$, say k(x). In this case, if k(x) is constant on M^{2n+1} , we call (M^{2n+1}, g) to be of constant ϕ -sectional curvature. If (M^{2n+1}, g) is of constant ϕ -sectional curvature at every point and if $n \geq 2$, (M^{2n+1}, g) is of constant ϕ -sectional curvature (cf. K. Ogiue [4]). Suppose (M^{2n+1}, g) is of constant ϕ -sectional curvature k, then we have, for any tangent vectors X, Y and Z,

(3)
$$4R(X,Y)Z = (k+3)\{g(Y,Z)X - g(X,Z)Y\} + (k-1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + g(\phi Y,Z)\phi X + g(\phi Z,X)\phi Y - 2g(\phi X,Y)\phi Z\}.$$

(cf. K. Ogiue [4]). Thus, if (M^{2n+1}, g) is of constant ϕ -sectional curvature 1, it is of constant curvature 1.

REMARK. If we do not assume $\varepsilon = 1$, (3) should be

$$\begin{array}{ll} (3') & 4R(X,Y)Z = (k+3\mathfrak{E})\{g(Y,Z)X - g(X,Z)Y\} \\ \\ & + (\mathfrak{E}k-1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\} \\ \\ & + (k-\mathfrak{E})\{g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi \\ \\ & + g(\phi Y,Z)\phi X + g(\phi Z,X)\phi Y - 2g(\phi X,Y)\phi Z\} \,. \end{array}$$

2. Model spaces. Let b_s^{n+1} be an "inner product" on C^{n+1} , defined by

$$b_s^{n+1}(u,v) = \operatorname{Re}\left(-\sum_{i=1}^s u_i \, \overline{v}_i + \sum_{j=s+1}^{n+1} u_j \, \overline{v}_j\right).$$

Let $\widetilde{g} = g_{2s}^{2n+2}$ be a pseudo-Riemannian metric on C^{n+1} defined by the parallel translation of b_s^{n+1} . Let J be a complex structure on C^{n+1} defined by the parallel translation of the map

$$u \in C^{n+1} \longrightarrow \sqrt{-1} u$$
.

For $n \ge 0$ and $0 \le s \le n$, let $M = S_{2s}^{2n+1}$ be a hypersurface of C^{n+1} defined by

$$(2) S_{2s}^{2n+1} = \{ u \in C^{n+1} ; b_s^{n+1}(u,u) = 1 \},$$

and let $g = \widetilde{g} \mid S_{2s}^{2n+1}$. Then (M,g) is a pseudo-Riemannian manifold of constant curvature 1, of dimension 2n+1 and of signature 2s (cf. J. A. Wolf [10], pp. 62-68). If s = 0, M is nothing but the unit sphere S^{2n+1} ; S. Sasaki and Y. Hatakeyama [6] defined a Sasakian structure on it. Similarly, we can define a Sasakian structure on $M = S_{2s}^{2n+1}$, $n \ge 0$, $0 \le s \le n$, as follows:

For $x \in M$, the tangent space of M at x is given by

$$T_x(M) = \{X \in T_x(C^{n+1}); \ \widetilde{g}(X,x) = 0\},$$

where we consider x as its position vector. Let ξ be a vector field on M defined by

$$\xi: x \in M \longrightarrow \xi_x = Jx,$$

where Jx is considered as a tangent vector of C^{n+1} at x by the parallel translation. Since J is skew-symmetric with respect to \widetilde{g} , $\widetilde{g}(Jx,x)=0$; hence Jx is in $T_x(M)$, and

$$g(\xi_x, \xi_x) = \widetilde{g}(x, x) = 1$$
.

Let η be a 1-form on M defined by

$$\eta(X) = g(\xi, X), \quad X \in \mathfrak{X}(M).$$

Since $x \in M$ is a non-null vector in C^{n+1} , we have an orthogonal projection

$$\pi: T_x(\mathbb{C}^{n+1}) \longrightarrow T_x(M)$$

with respect to \widetilde{g} , that is,

(5)
$$\pi(X) = X - \widetilde{g}(x, X) x, \quad X \in T_x(\mathbb{C}^{n+1}), \quad x \in M.$$

Let ϕ be a tensor field of type (1, 1) on M defined by

$$\phi = \pi \circ J.$$

It is easy to see that (ϕ, ξ, η, g) is an almost contact metric structure on M. We want to show that this structure is a Sasakian structure. According to Proposition 1, it is sufficient to show

$$(7) \qquad (\nabla_X \phi) Y = \eta(Y) X - g(X, Y) \xi.$$

Consider M to be a hypersurface of C^{n+1} . Then the vector field

$$\zeta: x \in M \longrightarrow \zeta_x = x$$

is a field of unit normal vectors to M in C^{n+1} . For any vector fields X and Y tangent to M, we have the formulas of Gauss and Weingarten:

$$(8) D_{\mathbf{X}}Y = \nabla_{\mathbf{X}}Y + h(X,Y)\zeta,$$

$$(9) D_{x}\zeta = -AX,$$

where D_x and ∇_x denote covariant differentiations for \widetilde{g} and g, respectively. A is a field of symmetric endomorphisms (with respect to g) satisfying

$$h(X,Y) = g(AX,Y)$$

for tangent vectors X and Y (cf. L. P. Eisenhart [1]). Since the pseudo-Riemannian metric g is defined by the parallel translation,

$$(11) D_x \zeta = X$$

for any tangent vector X to M. Thus, (8), (9), (10) and (11) imply

$$(12) D_{x}Y = \nabla_{x}Y - g(X,Y)\zeta.$$

Now, we have

$$(13) \qquad (\nabla_{x}\phi)Y = \nabla_{x}(\phi Y) - \phi \nabla_{x}Y,$$

for any vector fields X and Y tangent to M. We want to show that the right hand side of the above equation is nothing but the right hand side of (7). Using (12), we get

(14)
$$\nabla_{x}(\phi Y) = D_{x}(\phi Y) + g(X, \phi Y) \zeta$$
$$= D_{x}(\pi J Y) + \widetilde{g}(X, \phi Y) \zeta.$$

On the other hand, we have

$$\begin{split} D_{X}(\pi JY) &= D_{X}(JY - \widetilde{g}(\xi, JY) \, \xi) \\ &= JD_{X}Y - \widetilde{g}(X, JY) \, \xi - \widetilde{g}(\xi, JD_{X}Y) \, \xi - \widetilde{g}(\xi, JY) \, X \,, \\ \widetilde{g}(X, \phi Y) - \widetilde{g}(X, JY) &= \widetilde{g}(X, \pi JY - JY) \\ &= \widetilde{g}(X, -\widetilde{g}(\xi, JY) \, \xi) \\ &= 0 \,. \end{split}$$

Thus (14) becomes

$$(15) \qquad \nabla_{X}(\phi Y) = JD_{X}Y - \widetilde{g}(\zeta, JD_{X}Y)\zeta - \widetilde{g}(\zeta, JY)X.$$

The second term of the right hand side of (13) is

(16)
$$\phi \nabla_{X} Y = \pi J(D_{X} Y + g(X, Y) \xi)$$
$$= \pi J D_{X} Y + g(X, Y) \xi.$$

Hence, (13), (15) and (16) imply

$$(\nabla_{X}\phi) Y = JD_{X}Y - \widetilde{g}(\xi, JD_{X}Y)\xi - \widetilde{g}(\xi, JY)X - \pi JD_{X}Y - g(X, Y)\xi$$

$$= \widetilde{g}(\xi, JD_{X}Y)\xi - \widetilde{g}(\xi, JD_{X}Y)\xi + g(\xi, Y)X - g(X, Y)\xi$$

$$= \eta(Y)X - g(X, Y)\xi.$$

REMARK. If we replace (2),(3),(4) and (6) by

(2')
$$H_{2s-1}^{2n+1} = \{ u \in C^{n+1} ; b_s^{n+1}(u,u) = -1 \}, \quad 1 \leq s \leq n+1,$$

$$(3') \bar{\xi}: x \in H_{2s-1}^{2n+1} \longrightarrow \bar{\xi}_x = -Jx,$$

$$(4') \overline{\eta}(X) = -\overline{g}(\overline{\xi}, X), \quad \overline{g} = \widetilde{g} \mid H_{2s-1}^{2n+1},$$

(6')
$$\overline{\phi} = \overline{\pi} \circ J, \quad \overline{\pi}X = X + \widetilde{g}(x, X)x, \quad X \in T_x(H_{2s-1}^{2n+1}),$$

then $H_{2s-1}^{2n+1}(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g}, -1)$ is a Sasakian manifold and $H_{2s-1}^{2n+1}(\overline{\phi}, -\overline{\xi}, -\overline{\eta}, -\overline{g}, +1)$

is nothing but $S_{2(n-s+1)}^{2n+1}(\phi, \xi, \eta, g)$ (cf. Example of §1).

It is known that S_{2s}^{2n+1} is diffeomorphic to $R^{2s} \times S^{2n+1-2s}$. Thus S_{2s}^{2n+1} is simply connected for $s \neq n$; S_{2n}^{2n+1} is connected with infinite cyclic fundamental group. We define

(17)
$$\widetilde{S}_{2s}^{2n+1} = S_{2s}^{2n+1}$$
 for $s \neq n$; $\widetilde{S}_{2n}^{2n+1} = \text{universal pseudo-Riemannian covering manifold of } S_{2n}^{2n+1}$.

The Sasakian structure on S_{2n}^{2n+1} , which we defined above, induces a Sasakian structure on $\widetilde{S}_{2n}^{2n+1}$. We call $\widetilde{S}_{2s}^{2n+1}$ with the Sasakian structure to be the model spaces of Sasakian manifolds, and denote by $\widetilde{S}_{2s}^{2n+1}(\mathfrak{F}, \mathfrak{F}, \mathfrak{J}, \mathfrak{F})$.

LEMMA 1. Let (M^{2n+1},h) be a pseudo-Riemannian manifold. Suppose (M^{2n+1},h) is complete and of constant curvature 1, M^{2n+1} is simply connected and h is of signature 2s, $0 \le s \le n$, $n \ge 1$. Then, (M^{2n+1},h) is isometric to the model space $\widetilde{S}_{2s}^{2n+1}$. (cf. J. A. Wolf [10], p. 68, Theorem 2.4.9).

LEMMA 2. Suppose we have two Sasakian manifolds $M^{2n+1}(\phi, \xi, \eta, g)$ and $\overline{M}^{2n+1}(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ such that M and \overline{M} are simply connected, g and \overline{g} have the same signature. If (M, g) and $(\overline{M}, \overline{g})$ are complete and of constant curvature 1, then there is an isometry

$$f: M \longrightarrow \bar{M}$$

such that $f_*\xi = \overline{\xi}$, $f^*\overline{\eta} = \eta$, $f_* \circ \phi = \overline{\phi} \circ f_*$; that is, $M(\phi, \xi, \eta, g)$ and $\overline{M}(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ are equivalent.

PROOF. Let $x \in M$ and $\overline{x} \in \overline{M}$ be arbitrary points. Since g and \overline{g} have the same signature, we can find an isometry

$$F: T_x(M) \longrightarrow T_{\overline{x}}(\overline{M})$$

such that $F(\xi_x) = \overline{\xi}_{\overline{x}}$, $\overline{\eta}(F(X)) = \eta(X)$ for $X \in T_x(M)$ and $F \circ \phi = \overline{\phi} \circ F$. Since M and \overline{M} are simply connected, and since (M,g) and $(\overline{M},\overline{g})$ are complete, we have a unique isometry

$$f: M \longrightarrow \overline{M}$$

such that $f(x) = \bar{x}$ and $f_* | T_x(M) = F$ (cf. J. A. Wolf [10], p. 61, Corollary 2.3.12). Since f is an isometry and since ξ is a Killing vector field by Proposition 1,

 $f_*\xi$ is a Killing vector field on \overline{M} . For any tangent vector \overline{X} to \overline{M} , we have

$$\overline{\nabla}_{\overline{A}}(f_*\xi) = f_*(\nabla_{f_*^{-1}\overline{X}}\xi) = f_*(\phi f_*^{-1}\overline{X}).$$

Hence, for $\overline{X} \in T_{\overline{x}}(\overline{M})$, we get

$$(18) \qquad \qquad \overline{\nabla}_{\overline{x}}(f_*\xi) = \overline{\phi}\,\overline{X}\,.$$

Thus, since $\overline{\xi}$ is a Killing vector field, (18), $\overline{\nabla}_{\overline{X}}\xi = \overline{\phi}\,\overline{X}$ and $(f_*\xi)_{\overline{x}} = \overline{\xi}_{\overline{x}}$ imply $f_*\xi = \overline{\xi}$, and hence $f^*\overline{\eta} = \eta$. Finally, for any $X \in \mathfrak{X}(M)$ and $\overline{Y} \in \mathfrak{X}(\overline{M})$, we have

$$\begin{split} \overline{g}(f_{\ast} \boldsymbol{\cdot} \phi X, \ \overline{Y}) \boldsymbol{\cdot} f &= (f^{\ast} \overline{g})(\phi X, f_{\ast}^{\scriptscriptstyle -1} \overline{Y}) = g(\phi X, f_{\ast}^{\scriptscriptstyle -1} \overline{Y}) \\ &= d\eta(X, f_{\ast}^{\scriptscriptstyle -1} \overline{Y}) = (f^{\ast} d\overline{\eta})(X, f_{\ast}^{\scriptscriptstyle -1} \overline{Y}) \\ &= d\overline{\eta}(f_{\ast} X, \ \overline{Y}) \boldsymbol{\cdot} f = \overline{g}(\overline{\phi} \boldsymbol{\cdot} f_{\ast} X, \ \overline{Y}) \boldsymbol{\cdot} f, \end{split}$$

showing $f_* \circ \phi = \overline{\phi} \circ f_*$.

3. **D-homothetic deformations**. Suppose we have a Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$. Let

$$\overline{g} = \alpha g + (\alpha^2 - \alpha) \eta \otimes \eta,$$

where α is a non-zero constant, and let

$$\overline{\xi} = (1/\alpha)\xi$$
, $\overline{\eta} = \alpha\eta$, $\overline{\phi} = \phi$.

Then $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ is a Sasakian structure on $M = M^{2n+1}$, and we say that $M(\phi, \xi, \eta, g)$ is D-homothetic to $M(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$. If (M, g) is of constant ϕ -sectional curvature k, we have

(2)
$$\overline{K}(X) = \overline{K}(X, \overline{\phi}X)$$
$$= (1/\alpha)\{k - 3(\alpha - 1)\}$$

for any non-null vector $X \in D_x$, and hence (M, \overline{g}) is of constant ϕ -sectional curvature $(1/\alpha)\{k-3(\alpha-1)\}$. Thus if $k \neq -3$, and if we take $\alpha = (k+3)/4$, (M, \overline{g}) is of constant ϕ -sectional curvature 1, and hence of constant curvature 1. (cf. S. Tanno [8], [9]). We summarize as follows:

PROROSITION 2. A Sasakian manifold of constant ϕ -sectional curvature $k \neq -3$ is D-homothetic to a Sasakian manifold of constant curvature 1.

Let $M=M^{2n+1}(\phi,\xi,\eta,g)$ be a Sasakian manifold.

DEFINITION. We call a geodesic x(t), $\alpha < t < \beta$, to be ξ -geodesic (resp. D-geodesic) if $\phi(\dot{x}(t)) = 0$ (resp. $\eta(\dot{x}(t)) = 0$) for $\alpha < t < \beta$.

DEFINITION. We call M to be ξ -complete (resp. D-complete) if every ξ -geodesic (resp. D-geodesic) is complete.

LEMMA 1. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a Sasakian manifold. If (M^{2n+1}, g) is complete, then (M^{2n+1}, \overline{g}) is ξ - and D-complete, where

$$ar{g} = lpha g + (lpha^2 - lpha) \, \eta \otimes \eta \,, \quad lpha
eq 0 \,.$$

PROOF. Let $\overline{\bigtriangledown}_X$ and \bigtriangledown_X denote covariant differentiations for \vec{g} and g, respectively. For any vector fields X, Y and Z, we have

$$\begin{split} 2\vec{\boldsymbol{g}}(\overline{\bigtriangledown}_{\boldsymbol{X}}Y,Z) &= X\vec{\boldsymbol{g}}(Y,Z) + Y\dot{\bar{\boldsymbol{g}}}(X,Z) - Z\boldsymbol{\bar{g}}(X,Y) \\ &+ \vec{\boldsymbol{g}}([X,Y],Z) + \dot{\boldsymbol{g}}([Z,X],Y) + \boldsymbol{\bar{g}}([Z,Y],X) \\ &= 2\alpha \boldsymbol{g}(\bigtriangledown_{\boldsymbol{X}}Y,Z) + (\alpha^2 - \alpha)\{X(\eta(Y)\,\eta(Z)) + Y(\eta(X)\,\eta(Z)) \\ &- Z(\eta(X)\,\eta(Y)) + \eta([X,Y])\,\eta(Z) + \eta([Z,X])\,\eta(Y)! \\ &+ \eta([Z,Y])\,\eta(X)\}\;. \end{split}$$

On the other hand, by the definition of contact metric structure,

$$2g(\phi X, Y) = 2d\eta(X, Y)$$
$$= X\eta(Y) - Y\eta(X) - \eta([X, Y]).$$

Hence, we have

$$\begin{split} & \eta([X,Y]) = X \eta(Y) - Y \eta(X) - 2g(\phi X,Y) \,, \\ & \eta([Z,X]) = Z \eta(X) - X \eta(Z) - 2g(\phi Z,X) \,, \\ & \eta([Z,Y]) = Z \eta(Y) - Y \eta(Z) - 2g(\phi Z,Y) \,. \end{split}$$

Thus we get

(3)
$$\widehat{g}(\overline{\nabla}_{x}Y,Z) = \alpha g(\nabla_{x}Y,Z) + (\alpha^{2} - \alpha)\{(X\eta(Y))\eta(Z) - g(\phi X,Y)\eta(Z) - g(\phi Z,X)\eta(Y) - g(\phi Z,Y)\eta(X)\}.$$

Now, suppose x(t), $\beta < t < \gamma$, be a geodesic in M^{2n+1} with respect to \overline{g} . Since $\overline{\xi}$ is a Killing vector field,

$$ar{m{g}}(\overline{\nabla}_{\dot{m{x}}(t)}\overline{m{\xi}},\dot{m{x}}(t)) = (1/2)(L(\overline{m{\xi}})\,\overline{m{g}})(\dot{m{x}}(t),\,\dot{m{x}}(t))$$

$$= 0.$$

Hence we get

$$\begin{split} \boldsymbol{\dot{x}}(t) \ \overline{\boldsymbol{\eta}}(\dot{x}(t)) &= \dot{x}(t) \, \overline{\boldsymbol{g}}(\overline{\boldsymbol{\xi}}, \dot{x}(t)) \\ &= 2 \overline{\boldsymbol{g}}(\overline{\bigtriangledown}_{\dot{x}(t)} \, \overline{\boldsymbol{\xi}}, \, \boldsymbol{\dot{x}}(t)) \\ &= 0 \, . \end{split}$$

Since ϕ is skew symmetric with respect to g,

$$g(\phi \dot{x}(t), \dot{x}(t)) = 0.$$

If we put $X = Y = \dot{x}(t)$ in (3), then (4) and (5) imply

(6)
$$\alpha g(\nabla_{\dot{x}(t)}\dot{x}(t),Z) - (\alpha^2 - \alpha) g(\phi Z,\dot{x}(t)) \eta(\dot{x}(t)) = 0.$$

This formula says that $x(t), \beta < t < \gamma$, is a geodesic with respect to g if x(t) is either ξ -geodesic or D-geodesic with respect to \bar{g} . Thus, since (M^{2n+1}, g) is complete, (M^{2n+1}, \bar{g}) is ξ - and D-complete.

The following lemma is due to S. Tanno:

LEMMA 2. If a simply connected Sasnkian manifold $M=M^{2n+1}(\phi, \xi, \eta, g)$ is ξ - and D-complete, and of constant curvature 1, then it is complete.

PROOF. Let \widetilde{S} be one of the model spaces such that the signature of \widetilde{S} is the same as that of M. Let $\overline{x}(t)$, $\alpha < t < \beta$, be a geodesic in M. We want to show that the geodesic can be extended for $\alpha < t < \beta + \varepsilon$ for some $\varepsilon > 0$. We may suppose $0 \in (\alpha, \beta)$. Let us take any point $x_0 \in \widetilde{S}$. Since \widetilde{S} and M are of constant curvature, we can find a local isomorphism f_0 such that $f_0(x_0) = \overline{}(0)$. Let X be a tangent vector to \widetilde{S} at x_0 such that $f_{0*}(X) = \overline{x}(0)$, and let x(t) be a geodesic in \widetilde{S} such that $x(0) = x_0$ and x(0) = X. Since \widetilde{S} is complete, we can extend x(t) for $-\infty < t < +\infty$. Thus we can extend the local isomorphism f_0 along x(t) for $\alpha < t < \beta$, say f_1 . To show that $\overline{x}(t)$ can be extended for $\alpha < t < \beta + \varepsilon$ for some $\varepsilon > 0$, it is sufficient to show that f_0 can be extended along x(t) for $\alpha < t \le \beta$. If x(t) is either ξ -geodesic or

D-geodesic it can be done, because M is ξ - and D-complete. So, we may suppose that x(t) is neither ξ -geodesic nor D-geodesic. By considering a normal coordinate neighborhood of \widetilde{S} at $x(\mathcal{B})$, we can find $t_1 \in (0, \mathcal{B})$ such that, there exists $Y \in T_{x(t)}(\widetilde{S})$ such that $\widetilde{\eta}(Y) = 0$ and the D-geodesic y(t), $y(0) = x(t_1)$ and $\dot{y}(0) = Y$, intersects the trajectory L of ξ passing through $x(\mathcal{B})$ at $z \in \widetilde{S}$. Since M is D-complete, we can extend f_1 along the D-geodesic y(t), say f_2 ; especially, the domain of f_2 contains a neighborhood of z. Since M is ξ -complete, we can extend f_2 along L, say f_3 ; in particular, the domain of f_3 contains a neighborhood of $x(\mathcal{B})$. Since \widetilde{S} and M are simply connected, these extensions are unique. Thus f_0 is extended along x(t) for $\alpha < t \leq \mathcal{B}$.

4. Main theorems.

THEOREM 1. If a Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, $n \ge 1$, is complete, simply connected and of constant ϕ -sectional curvature $k \ne -3$, then it is D-homothetic to the model space \widetilde{S}_{s}^{2n+1} of Sasakian manifolds, where

$$2s = the \ signature \ of \ g \ if \ k > -3$$
,
 $2s = 2n - the \ signature \ of \ g \ if \ k < -3$.

PROOF. Let

$$egin{aligned} \overline{g} &= lpha g \, + (lpha^2 \! - \! lpha) \, \eta \otimes \eta \, , \ & \overline{\xi} &= (1/lpha) \, \xi \, , \quad \overline{\eta} &= lpha \eta \, , \quad \overline{\phi} &= \phi \, , \ & lpha &= (k\! + \! 3)/4 \, . \end{aligned}$$

Then Proposition 2 says that $M^{2n+1}(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ is a Sasakian manifold of constant curvature 1. According to Lemma 1 of §3, (M^{2n+1}, \overline{g}) is ξ - and D-complete, and hence it is complete by Lemma 2 of §3. Since (M^{2n+1}, \overline{g}) is complete, Lemma 1 of §2 says that it is isometric to $\widetilde{S}_{2s}^{2n+1}$, where

$$2s =$$
 the signature of g if $\alpha > 0$, $2s = 2n -$ the signature of g if $\alpha < 0$.

It is clear that $\alpha>0$ (resp. $\alpha<0$) is equivalent to k>-3 (resp. k<-3). Then, Lemma 2 of §2 says that $M^{2^{n+1}}(\overline{\phi},\overline{\xi},\overline{\eta},\overline{g})$ is equivalent to the model space $\widetilde{S}_{2s}^{2n+1}$ of Sasakian manifold; that is, the Sasakian manifold $M^{2n+1}(\phi,\xi,\eta,g)$ is D-homothetic to $\widetilde{S}_{2s}^{2n+1}$.

COROLLARY. If a Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, $n \ge 1$, with a Riemannian metric g is complete, simply connected and of constant

 ϕ -sectional curvature $k \neq -3$, then it is D-homothetic to either the unit sphere S^{2n+1} if k > -3 or $\widetilde{S}_{2n}^{2n+1}$ if k < -3.

REMARK. The above Corollary was proved by S. Tanno [9] in the case of k > -3.

EXAMPLE. Let us consider the model space $(\widetilde{S}_{2n}^{2n+1}, \widetilde{g})$. $\widetilde{S}_{2n}^{2n+1}$ is the universal pseudo-Riemannian covering manifold of S_{2n}^{2n+1} , which is diffeomorphic to $R^{2n} \times S^1$. Let us consider a D-homothetic deformation

$$\bar{g} = -\widetilde{g} + 2\widetilde{\eta} \otimes \widetilde{\eta},$$

i.e., $\alpha = -1$ in (1) of §3. It is clear that \bar{g} is a Riemannian metric of $\widetilde{S}_{2n}^{2n+1}$, and (2) of §3 says that $(\widetilde{S}_{2n}^{2n+1}, \bar{g})$ is of constant ϕ -sectional curvature -7.

THEOREM 2. Let $M_i = M_i^{2n+1}(\phi_i, \xi_i, \eta_i, g_i)$, $i = 1, 2, n \ge 1$, be complete, simply connected Sasakian manifolds. Suppose they are of the same signature 2s and of the same constant ϕ -sectional curvature $k \ne -3$, then they are equivalent; that is, there is an isometry

$$f: M_1 \longrightarrow M_2$$

such that $f_*\xi_1 = \xi_2$, $f^*\eta_2 = \eta_1$ and $f^* \circ \phi_1 = \phi_2 \circ f_*$.

PROOF. Theorem 1 says that $\overline{M}_i = M_i^{2n+1}(\overline{\phi}_i, \overline{\xi}_i, \overline{\eta}_i, \overline{g}_i)$, i = 1, 2, are equivalent to $\widetilde{S}_{2s}^{2n+1}$, where

$$egin{aligned} & \overline{g}_{-i} = lpha g_i + (lpha^2 - lpha) \, \eta_i \otimes \eta_i \,, \ & \overline{\xi}_i = (1/lpha) \, \xi_i \,, \quad \overline{\eta}_i = lpha \eta_i, \quad \overline{\phi}_i = \phi_i, \quad i = 1, 2, \ & lpha = (k+3)/4 \,. \end{aligned}$$

Hence, Lemma 2 of §2 implies that \overline{M}_1 and \overline{M}_2 are equivalent; that is, there is an isometry

$$f \colon \overline{M}_1 \longrightarrow \overline{M}_2$$

such that $f_*\bar{\xi}_1 = \bar{\xi}_2$, $f^*\bar{\eta}_2 = \bar{\eta}_1$ and $f_*\circ\bar{\phi}_1 = \bar{\phi}_2\circ f_*$. Since

$$oldsymbol{g}_i = (1/lpha)\, ar{oldsymbol{g}}_i + ((1/lpha^{\scriptscriptstyle 2}) - (1/lpha))\, ar{oldsymbol{\eta}}_i \otimes \, ar{oldsymbol{\eta}}_i \,, \hspace{5mm} i = 1,2 \,,$$

f is an isometry

$$f: M_1 \longrightarrow M_2$$
.

Moreover, we have

$$egin{align} f_* & \xi_1 = f_* (lpha \overline{\xi_1}) = lpha \overline{\xi_2} = \xi_2, \ & f^* \eta_2 = f^* ((1/lpha) \overline{\eta_2}) = (1/lpha) \overline{\eta_1} = \eta_1, \ & f_* \circ \phi_1 = f_* \circ \overline{\phi}_1 = \overline{\phi}_2 \circ f_* = \phi_2 \circ f_*. \ \end{split}$$

Thus f gives the equivalence of M_1 and M_2 .

5. Sasakian manifold with $R(X,Y) \cdot R = 0$. Let $M^{2n+1}(\phi,\xi,\eta,g)$ be a Sasakian manifold. Then, by the definition of Sasakian manifold, we get

(1)
$$R(X,\xi) Y = \nabla_{X} \nabla_{Y} \xi - \nabla_{\nabla_{X} Y} \xi \quad (\because \xi \text{ is a Killing vector field})$$

$$= \nabla_{X} (\phi Y) - \phi(\nabla_{X} Y)$$

$$= (\nabla_{X} \phi) Y + \phi(\nabla_{X} Y) - \phi(\nabla_{X} Y)$$

$$= \eta(Y) X - g(X, Y) \xi,$$
(2)
$$R(X, Y) \xi = \nabla_{X} \nabla_{Y} \xi - \nabla_{Y} \nabla_{X} \xi - \nabla_{[X,Y]} \xi$$

$$= \nabla_{X} (\phi Y) - \nabla_{Y} (\phi X) - \phi([X, Y])$$

$$= (\nabla_{X} \phi) Y + \phi(\nabla_{X} Y) - (\nabla_{Y} \phi) X - \phi(\nabla_{Y} X) - \phi([X, Y])$$

$$= \eta(Y) X - g(X, Y) \xi - (\eta(X) Y - g(Y, X) \xi)$$

$$= \eta(Y) X - \eta(X) Y$$

for any vector fields X and Y. Suppose $R(X,Y) \cdot R = 0$ for all tangent vectors X and Y, where R(X,Y) operates on R as a derivation of the tensor algebra at each point. Now, let X and Y be tangent vectors such that $\eta(X) = \eta(Y) = 0$ and g(X,Y) = 0. Then, using (1) and (2) above,

$$\begin{split} &(R(X,\xi) \cdot R)(X,Y)Y \\ &= R(X,\xi)R(X,Y)Y - R(R(X,\xi)X,Y)Y - R(X,R(X,\xi)Y)Y - R(X,Y)R(X,\xi)Y \\ &= \eta(R(X,Y)Y)X - g(X,R(X,Y)Y)\xi - R(\eta(X)X - g(X,X)\xi,Y)Y \\ &- R(X,\eta(Y)X - g(X,Y)\xi)Y - R(X,Y)(\eta(Y)X - g(X,Y)\xi) \\ &= \eta(R(X,Y)Y)X - g(X,R(X,Y)Y)\xi + g(X,X)R(\xi,Y)Y \end{split}$$

$$= \eta(R(X,Y)Y)X - g(X,R(X,Y)Y)\xi - g(X,X)\eta(Y)Y + g(X,X)g(Y,Y)\xi.$$

Hence,

(3)
$$\eta(R(X,Y)Y)X - g(X,R(X,Y)Y)\xi + g(X,X)g(Y,Y)\xi = 0.$$

Thus, considering ξ -component of (3), we get

$$g(X, R(X, Y)Y) = g(X, X)g(Y, Y),$$

showing that (M^{2n+1},g) is of constant ϕ -sectional curvature 1, and hence it is of constant curvature 1.

THEOREM 3. A Sasakian manifold satisfying $R(X,Y) \cdot R = 0$ for all tangent vectors X and Y is of constant curvature 1.

6. Sasakian manifold M^{2n+1} which is isometrically immersed in E_s^{2n+2} . Let E_s^n be a Euclidean space R^n with a pseudo-Riemannian metric \widetilde{g}_s which is defined by the parallel displacement of the "inner product"

$$\langle x, y \rangle = -\sum_{i=1}^{s} x^{i} y^{i} + \sum_{j=s+1}^{n} x^{j} y^{j}.$$

Then the signature of \widetilde{g}_s is s, and E_s^n is complete and of constant curvature 0 (cf. J. A. Wolf [10], §2.4).

Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a Sasakian manifold. Suppose we have an isometric immersion

$$f:M^{2n+1}\longrightarrow E_s^{2n+2}$$

For each $x \in M^{2n+1}$, we can choose a unit vector field ζ normal to M^{2n+1} on some neighborhood U of x:

$$\widetilde{g_s}(\zeta,\zeta)=arepsilon, \quad arepsilon=1 \quad ext{ or } -1 \quad ext{ on } U.$$

For any vector fields X and Y on U tangent to M^{2n+1} , we have the formulas of Gauss and Weingarten:

$$D_XY = \nabla_XY + \varepsilon h(X, Y)\zeta,$$

$$D_{X}\zeta = -AX,$$

where D_X and ∇_X denote covariant differentiations for \widetilde{g}_s and g, respectively. A is a field of symmetric endomorphisms which corresponds to the second fundamental form h, that is, h(X,Y) = g(AX,Y) for all tangent vectors X and Y. The equation of Gauss expresses the curvature tensor R of M^{2n+1} by means of A:

(1)
$$R(X,Y)Z = \mathcal{E}\{g(Z,AY)AX - g(Z,AX)AY\}.$$

This equation implies

(2)
$$R(X,\xi)Y = \mathcal{E}\{\eta(AY)AX - g(AX,Y)A\xi\}.$$

On the other hand, we have (1) of §5:

(3)
$$R(X,\xi)Y = \eta(Y)X - g(X,Y)\xi.$$

Suppose the isometric immersion $f: M^{2n+1} \longrightarrow E_s^{2n+2}$ is proper, that is, A can be expressed by a real diagonal matrix with respect to a certain orthonormal frame at each point of M^{2n+1} (cf. A. Fialkow [2], p.764). Let $\{e_1, e_2, \dots, e_{2n+1}\}$ be an orthonormal basis of $T_{x_0}(M^{2n+1})$ such that A is expressed by a diagonal matrix with respect to $\{e_1, e_2, \dots e_{2n+1}\}$, i.e.,

(4)
$$Ae_i = \rho_i e_i, \quad 1 \leq i \leq 2n+1, \quad \rho_i \in R.$$

(2), (3) with $X = e_i$, $Y = e_i$ and (4) imply

(5)
$$\eta(e_i)e_i - g(e_i, e_i)\xi = \mathcal{E}\{\rho_i\rho_i\eta(e_i)e_i - \rho_ig(e_i, e_i)A\xi\}.$$

If $i \neq j$, (5) implies

$$\eta(e_j)e_i = \mathcal{E}\rho_i\rho_j\eta(e_j)e_i.$$

Hence $\mathcal{E}\rho_i\rho_j=1$ for all $i\neq j$, or $\eta(e_j)=0$ for some j.

- (a) Suppose $\varepsilon \rho_i \rho_j = 1$ for all $i \neq j$. Then $\rho_i \neq 0$ for all i, and $\rho_1 = \rho_2 = \cdots = \rho_{2n+1} = \rho$. Thus $\varepsilon \rho^2 = 1$. This implies $\varepsilon = 1$ and $\rho^2 = 1$.
 - (b) Suppose $\eta(e_{j_0}) = 0$ for some j_0 . Then (5) implies

$$\xi = \varepsilon \rho_{i_0} A \xi$$
.

Hence $\rho_{j_0} \neq 0$ and $A\xi = (1/\varepsilon \rho_{j_0})\xi$, i. e, ξ is an eigenvector of A with eigenvalue

 $1/\varepsilon \rho_{j_0}$. We may suppose $e_1 = \xi$, and hence $\eta(e_i) = 0$ for $2 \le i \le 2n+1$. (2) implies

$$K(e_i, \xi) = \varepsilon \rho_1 \rho_i$$
,

(3) implies

$$K(e_i, \xi) = 1$$

for $2 \leq i \leq 2n+1$. Hence we get $\rho_1 \rho_i = \mathcal{E}$ for $2 \leq i \leq 2n+1$, and hence $\rho_2 = \rho_3 = \cdots = \rho_{2n+1} = \rho$. Consequently, $AX = \rho X$ for any tangent vector X such that $\eta(X) = 0$. Thus (1) implies (M^{2n+1}, g) is of constant ϕ -sectional curvature $\mathcal{E} \rho^2$, hence we have (3) of §1 with $k = \mathcal{E} \rho^2$. Now, if we assume $n \geq 2$, we can find non-null tangent vectors X and Y such that $\eta(X) = \eta(Y) = 0$, g(X, Y) = 0 and $g(\phi X, Y) = 0$. Then (3) of §1 and (1) of this section give

$$4R(X,Y)X = -(k+3) g(X,X)Y$$

and

$$R(X,Y)X = -\varepsilon \rho^2 g(X,X)Y$$
,

respectively. Hence we get

$$\frac{k+3}{4} = \varepsilon \rho^2 \cdot$$

Since $k = \mathcal{E}\rho^2$, this equation implies $\mathcal{E}\rho^2 = 1$, that is, $\rho^2 = \mathcal{E}$. Hence $\mathcal{E} = 1$ and $\rho^2 = 1$. Since $\rho_1 \rho = \mathcal{E}$, we get $\rho_1 = \rho$.

Summarizing (a) and (b), if $n \ge 2$, we have $\varepsilon = 1$, $A = \rho$ and $\rho^2 = 1$. We may suppose $\rho = 1$, since the change $\zeta \longrightarrow -\zeta$ implies $A \longrightarrow -A$, $\rho = (1/(2n+1))$. Tr A is a differentiable function on U.

Now, let us suppose $n \ge 2$. Consider the R^{2n+2} -valued function

$$x \in U \subset M^{2n+1} \longrightarrow \zeta_x + f(x) \in R^{2n+2}$$
.

For any tangent vector X to M^{2n+1} , we have

$$D_{f_*X}(\zeta + f) = f_*(-AX + X)$$
$$= 0.$$

This implies that $\xi + f$ is a constant map $M^{2n+1} \longrightarrow \alpha \in \mathbb{R}^{2n+2}$, and hence

$$\langle f(x) - \alpha, f(x) - \alpha \rangle = \langle \zeta_x, \zeta_x \rangle$$

= 1

for $x \in U$. Thus f(U) lies on the hypersurface $S_s^{2n+1}(\alpha)$, which is the hypersurface S_s^{2n+1} translated by the parallel translation $\beta \longrightarrow \alpha + \beta$, $\beta \in R^{2n+2}$. Let $M' = \{x \in M^{2n+1} : f(x) \in S_s^{2n+1}(\alpha)\}$. Then the above argument says that M' is open. Similarly, $M^{2n+1} - M'$ is open, showing M' to be closed. Thus, since M^{2n+1} is connected, $M' = M^{2n+1}$, i.e., $f(M^{2n+1})$ lies on $S_s^{2n+1}(\alpha)$. In particular, (M^{2n+1}, g) is of constant curvature 1.

THEOREM 4. Suppose we have a complete Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, $n \ge 2$, which is properly and isometrically immersed in E_s^{2n+2} . Then

- (i) if $0 \le s \le 2n-1$, then s is even, the immersion is an isometric imbedding and $M^{2n+1}(\phi,\xi,\eta,g)$ is equivalent to \widetilde{S}_s^{2n+1} ,
- (ii) if $2n \le s \le 2n+2$, then s=2n and $M^{2n+1}(\phi,\xi,\eta,g)$ is a pseudo-Riemannian covering manifold of S_{2n}^{2n+1} and the immersion induces the covering projection, naturally.

We need the following Lemma:

LEMMA. Let $M_1 = (M_1^n, h_1)$ and $M_2 = (M_2^n, h_2)$ be pseudo-Riemannian manifolds with the same dimension and signature. Suppose M_1 and M_2 are of the same constant curvature k, and suppose we have an isometric immersion

$$f: M_1 \longrightarrow M_2$$
.

Then, if M_1 is complete, M_2 is also complete and the isometric immersion f is a covering projection (cf. S. Kobayashi-K. Nomizu [3], Theorem 4.6).

PROOF. Let y_2 be an arbitrary point of M_2 . Let us take $x_1 \in M_1$ and let $x_2 = f(x_1)$. Then we can join x_2 and y_2 by a broken geodesic L_2 . Since M_1 is complete, there is a broken geodesic L_1 in M_1 such that $f(L_1)=L_2$, showing that f is an onto mapping.

Let $x_2(t)$, $\alpha < t < \beta$, be a geodesic in M_2 . Then, since M_1 is complete, we have a geodesic $x_1(t)$, $-\infty < t < +\infty$, such that $f(x_1(t)) = x_2(t)$ for $\alpha < t < \beta$. Since f is an isometric immersion, there is a neighborhood U of $x_1(\alpha)$ (resp. $x_1(\beta)$) such that f|U is an isometry of U onto f(U) which is a

neighborhood of $f(x_1(\alpha))$ (resp. $f(x_1(\beta))$). Thus the geodesic $x_2(t)$, $\alpha < t < \beta$, can be extended for $\alpha - \mathcal{E}' < t < \beta + \mathcal{E}''$ for some positive constants \mathcal{E}' and \mathcal{E}'' , showing M_2 to be complete.

Let us consider the universal pseudo-Riemannian covering manifolds \widetilde{M}_1 and \widetilde{M}_2 of M_1 and M_2 with projections p_1 and p_2 , respectively. Let x_1 be an arbitrary point of M_1 , choose $y_1 \in p_1^{-1}(x_1)$ and $y_2 \in p_2^{-1}(f(x_1))$. Let V_{y_1} , U_{x_1} , $U_{f(x_1)}$ and V_{y_2} be neighborhoods of y_1 , x_1 , $f(x_1)$ and y_2 , respectively, such that p_1 , f and p_2 are isometries of V_{y_1} , U_{x_1} and V_{y_2} onto U_{x_1} , $U_{f(x_1)}$ and $U_{f(x_1)}$, respectively. Then we have an isometry

$$F = p_2^{-1} f p_1 : V_{y_1} \longrightarrow V_{y_2}$$
.

Since \widetilde{M}_1 and \widetilde{M}_2 are complete, simply connected and of constant curvature k, the local isometry F has a unique extension, say F; that is, an isometry $F \colon \widetilde{M}_1 \longrightarrow \widetilde{M}_2$. Since this extension can be done along all (broken) geodesics passing through y_1 , we have

$$p_2 \circ F = f \circ p_1$$
,

which shows that f is a covering projection, since f is a continuous and open mapping.

PROOF OF THEOREM 4. The above Lemma says that the isometric immersion is a covering projection $M^{2n+1} \longrightarrow S_s^{2n+1}(\alpha)$. If $0 \le s \le 2n-1$, s is even, then $S_s^{2n+1}(\alpha)$ is simply connected, hence the covering projection is an isometry. Thus the Theorem follows from Lemma 2 of §2.

REFERENCES

- [1] L. P. EISENHART, Riemannian Geometry, Chapter IV, Princeton University Press, 1949.
- [2] A. FIALKOW, Hypersurfaces of a space of constant curvature, Ann. of Math., 39(1938), 762-785.
- [3] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Volume 1, Interscience, 1963.
- [4] K. OGIUE, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kodai Math. Sem. Rep., 16(1964), 223-232.
- [5] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. J., 12(1960), 459-476.
- [6] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with contact metric structures, J. of Math. Soc. of Japan, 14(1962), 249-271.
- [7] S. SASAKI, Almost contact manifolds, Part I, Lecture note, Math. Inst, of Tôhoku Univ., 1965.

- [8] S. TANNO, Partially conformal transformations with respect to (m-1)-dimensional distributions of m-dimensional Riemannian manifolds, Tôhoku Math. J., 17(1965), 358-409.
 [9] S. TANNO, The topology of contact Riemannian manifolds, Illinois J. of Math., 12(1968), 700-717.
- [10] J. A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., 1967.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN