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1. Introduction. Let f(z) be a meromorphic function in the finite plane
\z\ <oo. If the order of f(z) is infinite, then the so-called "exc eptional set" appears
in the second fundamental theorem of Nevanlinna. Therefore, in contrast to the
case of finite order, we have many difficulties and troubles in the investigation of
value distribution of meromorphic functions of infinite order. To avoid some of
them, we introduce some new notions, modified characteristic function and
deficiencies etc., to the Nevanlinna theory. Applying them to the classical cases,
we obtain, for example, that Σ,^(a>f) = 1 an<^ &(°°>f) = 1 imply that f(z) is of

regular growth even if the order of f(z) is infinite. This was proved by Edrei and
Fuchs [2] when the order of f(z) is finite.

We use freely the symbols

Ύ{rJ\ τn(r9ά), N(r,a), N(r,f), B(aJ), S(r,f) etc.

of the Nevanlinna theory of meromorphic functions [5].

2. Definitions. Let f(z) be a meromorphic function in | z \ < °° of order
p, O ^ p ^ o o , lower order μ. Denote by a any non-negative number smaller than p
if p is not zero, and zero if p=0. Take any positive number r0.

D E F I N I T I O N 1. We put

Ta(r, r0 /) = I ~hPdt, Na(r, ro;a)= I —~^dt9
Jr i • Jr t

ma(r. r 0 a) = I y+a

 Jdt, Na(r,r0;a) = / -~^rdty

and

*) Supported in part by the Sakkokai Foundation
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5.(r,ro;/)= f^rβdt.
Jr0

 l

The function Ta{r, r0 f) is called the modified α-characteristic function of

DEFINITION 2. For any complex number a, finite or not, we define as
follows :

aJ) = hminf τ }r yr/y
1 \r Λ J )

(α,/) = lunsup ,̂-χ-r- °. /

and

Πa(aJ) = 1- limsup ΨJIΓL'ΓA

We call δx{a,f) the modified #-defic!eπcy of /(.z) at α and the value α satisfying
δ*(a,f)>0 an ^-deficient value of

In this paper, using these notations given above, we reform some parts of the
Nevanlinna theory.

3. Basic properties. In this section, we give some basic properties and
fundamental results using the notations in Definitions 1 and 2, which will be
needed later.

PROPOSITION l. 1) For l < £ < o o , it holds that

T(rJ) fg c(k, a)T/kry r0 f)r«,

where

kaa r ^ r

Ta^_ for a > 0

log k for a = 0 .

2) If p> 0, then Tn{r, r0 / ) is increasing in r and satisfies the followi?ιg:
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,. log Ta(r, rQ f)
h m s u p s , ' °'JJ = p — ct

r-oo κ log Γ r

log

Further

lim inf loBTJr,r0;f)^ m a χ ( _
r-*oo log V

lbnψφ=00τ-~ (log rf

if and only if f(z) is transcendental.

3)

N(r, a) ̂  c(k, a) Na(kr, r0 α)

ΛΓ(r, a) ̂  c(*,«) J^(*r, r0 β) r-.

PROOF. 1) By the definition, for 1 < k < oo, we have

Tα(̂ r, r0 /) ̂  f"^fi dt Si T(r,

becaiαse T(r,f) is increasing. Here

I log A, for α =

Therefore, we have 1).
2) It is trivial that Ta(r, r0 / ) is increasing in r. We can prove easily the

remainder using 1) and definitions.
The proof of 3) is as same as that of 1).

REMARK. 2) implies that Ta(r,r0;f) is unbounded if f{z) is transcendental.

Many properties concerning the quantities defined in Definition 1 are independent
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of " r 0 " as Proposition 1 shows, so we omit " r 0 " in the sequel except when it is
necessary.

PROPOSITION 2. For any finite number a, the first fundamental theorem
holds:

= ma(r, a) + Na(r, a) + 8(r)

where

(O(logr) for a = 0,

( O ( l ) for aΦO.

PROOF. We obtain this proposition by dividing the both sides of the first
fundamental theorem of Nevanlinna by t1+a and integrating from r 0 to r.

COROLLARY. If f(z) is transcendental, then

6a(a) = 1 — Inn sup ̂  , A

and

It is trivial by Proposition 1-2) that the right-hand sides of these equalities
or of Definition 2 are independent of "r 0 " .

PROPOSITION 3. For q complex numbers au , aQ (finite or not), the
second fundamental theorem holds :

(q - 2)T.(r,/) ^ E Na(r, at) + Sa(r,f) ,
i=l

where, for any positive number r^.r0,

' O((logr)2) for a = 0 and p < <χ>.
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PROOF. We have only to prove the fact concerning the error term Sa(r,f).

Nevanlinna [5] proved

for a > 0 and r0 > 0. We have only to use this relation for the case a Φ 0. For
a — 0 and p < oo, we see

5(r,/) = O(logr),

so we have

5 0(r,/) = O((logr)2).

LEMMA 1. Let f(z) be transcendental. Then

lim ψfc& = 0

for a > 0 or for a = 0 and ρ<°o.

PROOF. T(r,f) being increasing and unbounded, for any positive number 8

there is a positive number rι such that

for r^rλ. Therefore we get

5α(r, r 0 / ) = Sa(rl9 r0 / ) + Sa(r, rγ

O / £ ̂ ~^fAdt g O(l) + O(STa(r,ri;f)).

As Ta(r,f) is increasing and unbounded, we see

From the above inequality, we have the required for a>0. In the case when a=Q

and /><oo, the proof is very easy by virtue of Proposition 1-2).
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As is easily seen, Lemma 1 gives the following defect relation.

PROPOSITION 4. If f(z) is transcendental, then the set

Na= {a; Sa(a)>0}

is countable and the inequality

holds for any admissible a. {Hereafter, we use "admissible a" for ct>0 or
a = 0 and p<oo.)

In fact, we can prove this proposition by Lemma 1 as usual.

PROPOSITION 5. If f(z) is transcendental and if 0^a<β<p, then

δ(α) ̂  δ.(α) ̂  Sβ(a) g Aβ(a) ^ Δ«(α) ̂  Δ(α)

for any complex number a finite or not.

PROOF. First we shall prove S(a)^Sa(a). By the definition of δ(α), for any
positive number 8, there is a positive number r0 such that

for any r^r0. Therefore, we have

(S(a) - 8)Ta(r, r0 / ) ^ ma(r, r0 a)

so that

Next, we shall show δ«(α)^δ^(α). Let β—a=V, which is positive. Integration
by parts yields

K.'TJr) = Ί \

J t1+y

and
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AT i \ W Γ Na(r9 a) j , Na(r9 a)
Nβ(r,a) = y] «\;τ

 ]dt+ aX

r;
 ι

where Ta(r) = Tm(r,f).
On the other hand, by the definition of δβ(α), for any £ > 0 , there is an rx

such that

for any r g ^ . Using these three relations, we have easily

Similarly, we can prove the remainder.

4. The sum of δα(α). We can prove the following

THEOREM 1. Let f(z) be a transcendental meromorphic function in
| z |<oo. Then,

X)δΛ(α) giliminf ^}J J ^ limsup *T λ ^=2-Θα(oo)
α^oo r-*<χ> ± a[r9j ) r->oo ± a\r, J )

for any admissible a to f(z).

PROOF. We note first that Ta{r,f) etc. can be defined well because of the
identity of the order of f(z) and that of f'{z). We know that the following
inequalities hold for any positive r :

(1) N(r, l/f) + ± m(r, αt) - S(r,f) ^ T(r,f)

and

(2) T(r,f) ^ T(r,f) + N(r,f) + S(r,f),

where at(i = 1, , q) are q distinct finite complex numbers. (See [7].)
From (1), we have

Na(r, 1/f) + £ma(r, at) - Sa(rJ) ^ Ta(r,f ),

so Lemma 1 implies
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On the other hand, from (2), we have

Ta(r,f) fg Γβ(r,/) + Nm(r,f) + Sβ(r

and by using Lemma 1

lim sup ffi'-C! ^ 2 - Θβ(oo) .
r o β l [ r J )

THEOREM 2. Let f(z) be meromorphic and transcendental in | z |<oo.
Then for any admissible a,

where B'a(a) =δ«(α,/).

PROOF. From the inequality (1), we have

Σ mα(r, α.) - SJrJ) ^ mα(r, 1//) .
ί=l

Hence

ma(r,l/f) ,. Ta(r,f)
^ ^ { "v * ^ limsup ' ^ .

Using Theorem 1, we obtain this theorem.

5. The order of meromorphic functions with several α: deficient values.
We investigate relations between the order and the -̂deficient value of f{z).

DEFINITION 3. Let f(z) be transcendental meromorphic in |s:|<oo. We
define, for admissible a,

„.„ r Na(r,
Ka(f) = hrnsu» l >
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We can show easily that the right-hand side of the above is independent of

PROPOSITION 6. For admissible a and β(>ct),

where

„.„ v N(r,l/f)+N(r,f)
K(f) = Inn:sup ψ{rJ) .

We can prove this proposition as in the proof of Proposition 5.

THEOREM 3. Let f(z) be a meromorphic function of non-integral order

p9 0<ρ<oo. Then, for admissible a, the inequality

Ka(f) ^ Ka(p)

holds, where

1^1 — p jor 0 < p < 1

/

^ (α + 1 — p)(ρ — q) r -. i r -Λ

^ Λ̂  y_±i—JJ. j o r p>ι and [p\ = q
and

[ = 1 if Q = 0.

PROOF. Let [p] = q. Then we have the inequality

T(r,f)^cM)

where N(t) = N(t,0)+N(t,f) (See [4] p. 102).

Dividing both sides by r 1 + α and integrating by parts from r 0 to r, we see

easily

( 3 ) Ta (r,f) =g cM \qr*-° f ^ ^ dt + (q + 1)^-" f $&



644 N. TODA

We proceed as in the proof of Theorem 4.5 [4]. Given a sufficiently small
positive S and applying Lemma 4. 7 [4] for functions

m -
and

which satisfy the conditions of the lemma, we can see that there is a sequence
[rn}n=i increasing to infinity such that, for any n,

jNa(t)t" Ξs {-jr\ W > » α (ί. ^ ί ^ r.)

and

Na(t)t" ̂  U-T'N.(rn)r (r, ^ ί < oo) .

1) If p < l , then q = 0. Hence 0^) = ! and ( 3 ) yields

Ta(rn,f) ^ ri-'ΛΓ.(r.)r,- Γ (-£-Y+< ' dt + 0(1)

=

 g n + O(l) .

Since θ may be chosen as small as we please, this implies

2) If q>0, then q < p < q + 1. Then we obtain from ( 3 )

T.(rn,f) - O(Π-) ^ c , ( »

Since there is a constant c such that, for any n,

' n
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we have

nr = o(Na(rn)).

(We may consider as O(r*~a) = O(l) if q^cc.)
Therefore, we obtain

Ka(f) >
pcx

COROLLARY. If Ka(f) = 0 for some admissible a, then the order of
f(z) is integer or infinite.

THEOREM 4. Let f(z) be meromorphic of order p and lower order μ
in \z\<oo. If

Ka(f)<l

for some admissible a, then

p^l and fi^l-ct for Ka{f) = 0

and

* κ W for KΛf)>0.
log(l

PROOF. We use the method of Edrei and Fuchs ([2], Th. 3a). They proved
the following inequality

T(r,f) ^ ^ r T(σr,f) + max(N(σr, 0),N(σr,f)) + O(log r)
(T— 1

for σ>l and r > 2 .
From this, we can deduce easily

where

Tα(rJ) ^ - ^ r Tα{σrJ) + σ«Nα(σr)
c—i
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Shm{r) = 0(1) for a>0, = O((logr)2) for a = 0.

Let c and c be two positive number such that

Ka(f) <c<c<\.

Then, by the definition of Ka(f), it holds that

Na(r)<cTa(r,f)

for all sufficiently large r.
Since f(z) is clearly not a rational function, we see

lim jΛ r \ = 0

by Proposition 1, and hence

c +~τJr)<c

for all sufficiently large r. Let

4
σ = 1 +

c(l-c)

Then we have for all sufficiently large r

Therefore, as in the proof of Theorem 4 [2], we obtain

1

lfainf^- t f +^.
r-oo logr logσ

By Proposition 1, we have our theorem by letting c-+KΛ(f).

THEOREM 5. Let f(z) be a transcendental merσmorphic function in
l^l<°° of order p(^oo) and lower order μ, 0<μ<p and let r and a(>0)
be any number such that
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1) τ is not an integer such that μ < τ
2) a<μ and T + a<ρ

and
3)

Then

Λ α U Ί = i£(tf,τ)+|sin/r(τ+Λ)|

where K (a, T) /5 α positive constant depending only on a and T.

PROOF. We use some inequalities proved by Edrei [3]. Let [r] = q. Edrei
proved that

(4) 2T(r,f)-N(r) 5Ξ r"^^Pφl^dt + K(r« + logr)

+ 14 ί-^j T(2i?) for r0 ̂  r = |z| ̂  -±-R,

where

aμ and bυ being the zeros and the poles of f(z),

= — Γ — 2ίcos^ + l)1 /

and K is an absolute constant.
Let

μ < σ < T .

Since, the order of Ta(r,f) is equal to p—of and lower order of T α (r,/) is at
most μ, we can apply Lemma 1 [3] for Ta(r,f) and σ, r chosen as above. We
have a sequence {̂ }Π=i increasing to infinity such that

(5) T.{t
t

and
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We estimate the right-hand side of the inequality (4) . First let

Then, using the inequality

we obtain

f ^ l ) dt + KT{2R){-^-Jl (ro^r^ R/2)

where n(t) = w(ί,0) + w(ί? oo)-w(0,0)-w(0, oo) and w(/9) = w(0), £ > 0 .
Since

we have

ί-g-) (r.SrSR/2).

Using, here, Proposition 1-3) for k = 2, that is, the inequality

we obtain
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For any positive number £, there is a t0 such that

So

( 7 )

Now, we estimate the first term of the right-hand side of the above inequality

by using ( 5 ) for the sequence {rt}Γ^

We put

= r ^ (/ = 0,l, )

Then, for r o ^ r ^ i ? z / 2 , it holds that

2 " '2t

τ) 1

Changing ί/(2r(l + 1/τ)) to w, we see that the right-hand side of the above is

equal to

^ 4 ^ ( 2 ( l + l/τ))Γ+α-V-α

Since

for 8 = τ + a — q, we see

j < Z?fcil (2(1
7 / y |sinτr(τ+α:)|

Next, we estimate the second term of the right-hand side of ( 7 )
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(8, ,,

J
*ίo/r(l+l/r

β/r

fiU/r

r)-Wα(2ίo) I
Jβ/r

J
β/r

r {l+l/τ)

β/r

because φ satisfies the relation

Changing 1/w to t, we see that the last term in ( 8 ) equals

(2ίo)"(2(l + l/τ)r)->Na(2t0) ί t"φ(t)dt.
*'r(l+l/r)/t0

Since

φ(ί) < 2/ί

for ί^2, we see for r(^2ί 0 ) that

/

r/β

tq~ιdt

, 0
f 0 Γ q > 0

((2ί0)"2iV.(2ί0)logr/2/S for 9 = 0.

Therefore, we have

(10) I(r) ^ r\l + l/τ)(l + τ)ψ^{jKJif)+B)^{^^

for γ = max(r0,2t0) ̂  r ̂  i?Σ/2.
Combining ( 4 ), (9) and (10), dividing by r1+α and integrating with respect to

r from γ to r ( ^ R | / 2 ) , we have



ON A MODIFIED DEFICIENCY 651

2Ta(r,y;f)-Na(r,y)

jf

where Kx and K2 are positive constants.
This reduces to

(11) 2T α (r ,γ;/) - Nβ(r,y)

O r + α + l ^

= O« 1 V1 ^ - L / T / V^^αv// ^ C / I o :
r,'

By the definition, we have for any positive £

(12) (2 - Ka(f) - S)Γ.(r, 7 / ) ̂  2Tβ(r, γ / ) - iSΓ.(r, 7)

for all sufficiently large r.
As

we can take

in the above discussion for all sufficiently large /. We can prove easily

and by (6) we get

i j
r> L-i-. + î gΛ Λ =
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Further

T{2Rt

T.(rltr9;f) RΓ1 = ~ s T.fo.r.;/)

by Proposition 1-1), (5) and the choice of Rt. Since Rt = rl/σ/4(l + l/τ), the last
term of the above inequalities equals

which tends to zero as Z—>0 by virtue of f l — — )(# + 1 — T — Λ) < 0 , where

iC3, iC4 and K5 are positive constants.
Putting r = rt in (11), combining (11) and (12) and using above properties,

we have, 6 being as small as we please,

κ ( f K(a,τ)K.(f)
2-KJJ)^ | s i n j r ( τ + Λ ) ,

where

K(Λ, T) = 2. 2(2(1 4- l/τ))τ+a+2 ct/(2* - 1) .

This implies

^ β l / ; = K(a, T) H- |sin^(τ+α) I ?

which is the desired.

COROLLARY 1. Let f(z) be a meromorphic function in \z\<oo of order
^oo) and lower order μ. If for some admissible a, 0 < # < l / 2 ,

W ) = o,

1) when p<oo, then



ON A MODIFIED DEFICIENCY 653

2) when p = oo, then f(z) is of regular growth.

PROOF. 1) The case p<oo. By Corollary of Theorem 3, p is an integer.
Further, by Theorem 4, we have

so

μ - a>0.

If pφμ, then clearly p>[μ]. First, we shall prove that

p-[μ] = l

Suppose that

p-[μ]^2.

Let

T = [>] + 1 + θ, 0 < θ < 1/2 .

Then

[T] = [r + α] = [/x] + 1, T + a < p.

Therefore, Theorem 5 implies that

K.(f) > 0,

which is a contradiction. This shows

p-[μ] = l.

We have also

p ^ l .

Now, we prove that

P — β ί i oc •

If
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p- μ>QL,

then, there is a non integral number τ such that

μ<τ, τ + Oί<p

and so

[τ] = [τ+ *] = [/*].

As these numbers satisfy the conditions of Theorem 5, we obtain by Theorem 5

Ka(f)>0,

which is a contradiction. This implies p — μ^cc.
2) The case ρ = oo. Suppose that μ<oo. By Theorem 4,

Hence

μ-ct>0.

Let

T = [/*] + 1 + £ , 0 < £ < 1/2 .

Then

W = [T + Λ] = [ft] + 1, T + a < oo.

As these numbers satisfy the conditions of Theorem 5, we have by Theorem 5

K.{f) > 0,

which is a contradiction. Thus we have

IX = OO .

COROLLARY 2. //, /or αwy α > 0 ,

, f(z) is of regular growth and if p<°°, ίΛ̂ w p is a positive integer.
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LEMMA 2. Let f(z) be a transcendental meromorphic function in |s:|<oo.
Then,

v logT(rJ) v log T(r,/')
lim sup ?. v J' = hmsup * v 'J '

r-̂oo ^ logr r̂ oo ̂  logr

r . , log T(r,f) r . r log T(r,f)
lim inf — π — ^ v - i = lim inf β . v ^ 7

r->oo l o g r r-*oo l o g r

(See [1]).

THEOREM 6. Let f(z) be a transcendental meromorphic function in
\z\ < oo of order p and lower order μ>. If, for some admissible a,0<ct<l/2,

£δ α (α) = 1 and δα(oo) = 1,

then, 1) if p< oo, then

p- μ^a;

2) if p= co, then f(z) is of regular growth, that is, p = μ.

PROOF. By the definition of Θβ(oo), we see

1 = δα(oo) ^ Θβ(oo) ^ 1 .

By Theorem 2, we have

(13) δβ'(0) = 1 .

On the other hand, it holds that

so we obtain

In our case, by Theorem 1,
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so, by the hypothesis,

0 =g limsup^f ^j =g 2 limsup ψfcQ = 0 .

This shows that

(14) 8.'(oo) = 1 .

By (13) and (14)

o ^ x«(/') ^ 2 - s (o) - δ (oo) = o.

Therefore, by Corollary of Theorem 5 and Lemma 2, we have this theorem.

COROLLARY. Let f{z) be transcendental meromorphic in | z |<oo. If

(α) = 1 and δ(oo) = 1,

then, for any admissible a,

Σ » = 1 and δα(oo) = 1.

Therefore, in this case, f(z) is of regular growth even if the order of
f(z) is infinite.

PROOF. We have by Proposition 4

δα(oo) = 1 ,

and using Corollary of Proposition 3 we see

PROPOSITION 7. Let f(z) be a meromorphic function in | z | < o o . If, for
any admissible a,

then
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K(a) = Δ.(α)

for any complex number a finite or not.

We can prove this easily by using Theorems 1 and 2.

6. Supplement to [6]. In our former paper [6], there are some gaps in the
proofs of Theorems 1, 2, 4 and 5, where we used Lemmas 2, 4 and 7 which are
valid only for meromorphic functions of finite order. That is, we concluded that,
if a meromorphic function in | z | < °° is of lower order finite and has the deficient
values such that

]Γδ(α) = l and δ(oo) = 1,
α^oo

then the function is of order finite and of regular growth. This can not be proved
by Lemmas 2, 4 and 7 in [6]. But, we can prove this by Corollary of Theorem
6 and can cover these gaps in the proofs of Theorems 1, 2, 4 and 5 in [6].

Addendum. We can give an example of meromorphic functions in |£ |<oo
such that

δ.(α) Φ 8(a)

for some admissible a and some value a.
In fact, let fλ (z) be an entire function of order p and lower order μ such that

pΦn9 fϊ{z) an entire function of regular growth and of order λ, μ<X<p. There
is a finite value w0 not exceptional in the sense of Valiron such that fλ{z) and
f3(z)=f2(z)—w0 have no common zero. Then the meromorphic function

Ά*)=fΛz)/f*{z)

is of order p and lower order not less than λ. Further,

N(r,f)=N(r,OJs)

and

T(r,f) ^ T{rJx) + T(r,ft) + 0(1) .

By the properties of fλ{z) and f3(z), we can verify easily that

8(00,/) ^ 1/2
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and that if λ < # < / > , then

S.Mori told me that by another method he could also construct such an
example of meromorphic functions as mentioned above.
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