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1. Introduction. Let f(z) be a meromorphic function in the finite plane
[z]| <oo. If the order of f(z) is infinite, then the so-called “exc eptional set” appears
in the second fundamental theorem of Nevanlinna. Therefore, in contrast to the
case of finite order, we have many difficulties and troubles in the investigation of
value distribution of meromorphic functions of infinite order. To avoid some of
them, we introduce some new notions, modified characteristic function and
deficiencies etc., to the Nevanlinna theory. Applying them to the classical cases,
we obtain, for example, that > 8(a,f)=1 and 8(co,f) =1 imply that f(2) is of

a3x00

regular growth even if the order of f(z) is infinite. This was proved by Edrei and
Fuchs [2] when the order of f(z) is finite.
We use freely the symbols

T, f), m(r,a), N(r,a), N, f), &a,f), S(r,f) etc.

of the Nevanlinna theory of meromorphic functions [5].

2. Definitions. Let f(z) be a meromorphic function in |z|<<co of order
p, 0= p= oo, lower order p. Denote by a any non-negative number smaller than p
if p is not zero, and zero if p=0. Take any positive number 7.

DEFINITION 1. We put

Tdrira: ) =f Mdt’ N7, 745 a)-—-f N—t(lt;Ta‘)dt,

tl+a
0

mirrys = [ "6 ar, N = [ NeBar

and

*) Supported in part by the Sakkokai Foundation
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S, 795 f) =fr&f)dt.

tl+a

The function T.(,r,; f) is called the modified a-characteristic function of

S (@)

DEFINITION 2. For any complex number a, finite or not, we define as
follows :

mdr, 7, a)

Bﬂ(a,f) - llrE.glf Ta(r, Ty ;f)’

mdr, 7y ; @)

Ada. f) = lim sup Tudr, 75 f)

and

M(ls ’fo 5 (l)

®.(a,f) = 1— limsup Tirrof)
(il a0

We call 8.7a, f) the modified «-deficericy of f(z) at a and the value a satisfying
8.a, f)>0 an a-deficient value of f{z).

In this paper, using these notations given above, we reform some parts of the
Nevanlinna theory.

3. Basic properties. In this section, we give some basic properties and
fundamental results using the notat'ons in Definitions 1 and 2, which will be

needed later.

PROPOSITION 1. 1) For 1 <k< oo, it holds that

71‘(7" f) _—<= C(k’ a)TR(kT? 7‘0 5 f)ra ’
where
ko - .
o or a>0
clhy i) = ke—1 J

logk for a=0.

2) If p>0, then Tdr,7vy; f) is increasing in r and satisfics the following:
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lim sup log Tu(r, 705 f) _ p—a

rosos log »
and
..o log Tu(r,ry;
ler'Lnf iglo(g—rif_)g max (p— a,0).
Further

. Tyr,re; f) _
lm =ogry = ©

if and only if f(z) is transcendental.

3)
N(r,a) = clk,a) NJkr,ry; a) r*

and
N(r,a) = c(k,a) Nfkr,7y; a) 7.

PROOF. 1) By the definition, for 1 <<%, < oo, we have

Kkr kr
Tk, Nz [ Belarz10.0) [ Hear,

because T(r, f) is increasing. Here

v llogk, fora=0
f——‘dt 1 1

1+a
.t — (1——k,), for @ 0.

Therefore, we have 1).

637

2) It is trivial that Tu(r,7,; f) is increasing in 7. We can prove easily the

remainder using 1) and definitions.
The proof of 3) is as same as that of 1).

REMARK. 2) implies that T(7,7,; f) is unbounded if f(z) is transcendental.

Many properties concerning the quantities defined in Definition 1 are independent
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of “r,” as Proposition 1 shows, so we omit “r,” in the sequel except when it is

necessary.
PROPOSITION 2. For any finite number a, the first fundamental theorem
holds :
Tu(raf) = ma(r»f) + Na(r’f)

= m.(r, a) + N(r, a) + &)

where

O(logr) for a=0,

&) = 0Q) for a+0.

PROOF. We obtain this proposition by dividing the both sides of the first
fundamental theorem of Nevanlinna by #'** and integrating from 7, to 7.

COROLLARY. If f(z) is transcendental, then

da)=1— linl sup 1—,}%
and
Ada) = 1~ lim inf 2724 ((’ ;; .

It is trivial by Proposition 1-2) that the right-hand sides of these equalities
or of Definition 2 are independent of “r,”.

PROPOSITION 3. For q complex numbers a,,---,a, (finite or not), the
second fundamental theorem holds :

(@—2Trf) = z Nu(r, @) + S4r. f),

where, for any positive number r =r,,

(f log+;1:£f f))dt for a>0,

O((log 7)?) for a=0 and p< co.

Sdr, f) =
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PROOF. We have only to prove the fact concerning the error term S.(7,f).
Nevanlinna [5] proved

tl+a tl+¢

'S f) gy - o( [ e Zte ) )dt)

7o

for >0 and 7,>0. We have only to use this relation for the case @ #0. For
a=0 and p<<oo, we see

S(r,f) = O(logr),
so we have

So(r, f) = O((log 7)?) .

LEMMA 1. Let f(z) be transcendental. Then

. Sdr.f)
tm 7 f) = ©

for a>0 or for a=0 and p < oo.

PROOF. T(r,f) being increasing and unbounded,” for any positive number &
there is a positive number 7, such that

logT(r,f)=&T(r,f)
for r =r,. Therefore we get

Su(r, 705 f) = Sdri, 705 f) + Selr, 715 f)

— o)+ o( ' Mﬁ)a’t < O1) + OET(r, 745 ).

1+a
Ty ¢

As T.(r,f) is increasing and unbounded, we see

. Tor, rl;f)
lim 52212 =1.
m 7, 703 )

From the above inequality, we have the required for @>0. In the case when =0
and p< oo, the proof is very easy by virtue of Proposition 1-2).
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As is easily seen, Lemma 1 gives the following defect relation.

PROPOSITION 4. If f(z) is transcendental, then the set
N. = {a; 8/a) > 0}

is countable and the inequality

Y d(a)=2

aeN,

holds for any admissible a. (Hereafter, we use “admissible &’ for a>0 or
a=0 and p<0.)

In fact, we can prove this proposition by Lemma 1 as usual.

PROPOSITION 5. If f(z) is transcendental and if 0=a<<B<p, then
¥(a) = 8a) = 8(a) = Asla) = Au(a) = A(a)

for any complex number a finite or not.

PRrROOF. First we shall prove 8(a)=8.(a). By the definition of &(a), for any
positive number &, there is a positive number 7, such that

©(a)—&T(r,f) =m(r,a)
for any » =r,. Therefore, we have

(8(a) = T ulr,1y; ) = malr,7y; a)

so that
d(a) = 3.(a) .

Next, we shall show 8.(a)=8s(a). Let 8—a=", which is positive. Integration
by parts yields

" Tt T.(r)
Te(r) =" ] FéT)dt“L_r(’_

and
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5(r, a) —vf Nt1+,“)dt+ =, a)

where T.(r W7, ).

On the other hand, by the definition of 3.(a), for any €>0, there is an 7,
such that

Ni(r, a) = (1 — 8.(a) o7 f)
for any »=r,. Using these three relations, we have easily
3s(a) = 84(a) .

Similarly, we can prove the remainder.

4. The sum of 8.(a). We can prove the following

THEOREM 1. Let f(2) be a transcendental meromorphic function in
|z| < oo. Then,

Tl S it 05 5 limswe 777 52 01

for any admissible a to f(2).
PROOF. We note first that T,(r, ') etc. can be defined well because of the

identity of the order of f(z) and that of f’(z). We know that the following
inequalities hold for any positive 7 :

(1) N, 1/ + z mir, a) — S(r, f) < T(r, f')
and
(2) T(r,f) = Tlr.f) + N f) + St f)

where a;(i=1,--+,q) are g distinct finite complex numbers. (See [7].)
From (1), we have

7‘ 1/fv Z 7' ai) (r’f) é Ta(r?f) >

so Lemma 1 implies
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.. T, f)
2 8:(a) = lim inf 772

On the other hand, from (2), we have

Tolr, f') = Tulrs f) + Nur, f) + Salr, f)
and by using Lemma 1

1imsup%'—; <2 @,().

r—00

THEOREM 2. Let f(z) be meromorphic and transcendental in |z|<<oco.
Then for any admissible a,

1
770,(c0) > 8.(a) =8.(0),

G300

where 3,(a) =8.(a, f).

PROOF. From the inequality (1), we have

q

z Ma(rs @) — Sa(r, ) = malr, 1/.f’) .

i=1

Hence

Lo ma(r,ay) e ma(r, 1/f) . Tar,f)
2 liminf 72"y < liminf Zp7een™ limsup. 772y

Using Theorem 1, we obtain this theorem.

5. The order of meromorphic functions with several a-deficient values.
We investigate relations between the order and the a-deficient value of f(z).

DEFINITION 3. Let f(z) be transcendental meromorphic in |z|<co. We
define, for admissible «,
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We can show easily that the right-hand side of the above is independent of

7.

PROPOSITION 6. For admissible a and B(> ),
Ku(f) = Ku(f) = K(f)

where

K(f) = limsup N, 1/_7{()r:i-f1)\f(r,f) .

700

We can prove this proposition as in the proof of Proposition 5.

THEOREM 3. Let f(z) be a meromorphic function of non-integral order
p, 0<p<oo. Then, for admissible a, the inequality

K.(f) = Kalp)

holds, where
=1—-p Jor 0<p<1;

K, —o)(p—
(P)lé(q——t—l;%’)—i) for p>1 and [pl=q;

and

(){=2(p+l)(2+log(q+1)) if ¢>0,
a =1 if g=0.

PROOF. Let [p]=gq. Then we have the inequality

7. f) S cla) o [ lae g2y [N ar] + 06

T

where N(t) = N(t,0)+N(t, f) (See [4] p.102).

Dividing both sides by 7!** and integrating by parts from 7, to 7, we see
easily
" a mNa —a
(31 Tty sala o [ Dl aos g [ Nlllan) + 00
0

T
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We proceed as in the proof of Theorem 4.5 [4]. Given a sufficiently small
positive & and applying Lemma 4.7 [4] for functions

ple) = "
and
wie) = e

which satisfy the conditions of the lemma, we can see that there is a sequence
{rz}m, increasing to infinity such that, for any #,

N, = (%)p-‘N,(r,,)r,.“ to=t=r,

and

N, (2)t= <( £ )”'Na(r,,)r,.“ (ra =t < o).

Tn

1) If p<1, then ¢=0. Hence ¢,(9) =1 and (3) yields

Tulr, f) < rA*Nulro)r-= f - (_:_) gt +0(1)

T n

— Ne(ra)

=1—p= s+0(1)

Since € may be chosen as small as we please, this implies

2) If ¢>0, then g<p<gq+ 1. Then we obtain from (3)

Tira )= O S claNur) [o=tg + L.

Since there is a constant ¢ such that, for any 7,

Nelralrs — <9,

ret -
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we have

(We may consider as O %) =0(1) if g=a.)
Therefore, we obtain

(g+1—p)(p—q)
Klf) = pci(q) )

COROLLARY. If K.(f)=0 for some admissible a, then the order of
f(2) is integer or infinite.

THEOREM 4. Let f(z) be meromorphic of order p and lower order p
in |z|<oo. If

K(f)<1
for some admissible a, then
p=1 and p=1l-a for K.(f)=0
and

1
log g A Ie—Kalf)

m@+nvmimvﬂ

p=

for K,(f)>0.

PROOF. We use the method of Edrei and Fuchs ([2], Th. 3a). They proved
the following inequality

T(r, f) S =21 Tlor, £) + max(N (o7, 0), N (o7, £)) + Olog 1)
for o>1 and r>2.

From this, we can deduce easily

40'“

Tulrf) = 275

Ta(or, f) + 6" Nalor) + S,,a(r)

where
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S.a(r) = 0Q1) for a>0,=O((logr)?) for a=0.
Let ¢ and ¢ be two positive number such that
Kif) < <e<l.
Then, by the definition of K.(f), it holds that

N, () < cTar,f)

for all sufficiently large 7.
Since f(z) is clearly not a rational function, we see

. Syklr)
lim =5y =0
by Proposition 1, and hence
, Sl,,,(r)
c + T (7 <c
for all sufficiently large ». Let
_ 4
o=1+ =0

Then we have for all sufficiently large 7
Tolr, f) = Talor, flo"c(2 —c) .

Therefore, as in the proof of Theorem 4 [2], we obtain

log
liminf 18 Lelnf) = _ gy —m—f(f:;‘) :

T—00 log r

W%

By Proposition 1, we have our theorem by letting ¢ — K,(f).

THEOREM 5. Let f(z) be a transcendental meromorphic function in
|z| <oo of order p(= ) and lower order p, 0<u<p and let v and a(>0)
be any number such that
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1) = is not an integer such that p<w;
2) a<pand TH+a<p

and
3) [Fl=[r+al

Then

2|sin w(T+a)|
K(a,r)+ |sin z(r+a) |

Ka(f) =
where K (a,T) is a positive constant depending only on a and .

PROOF. We use some inequalities proved by Edrei [3]. Let [+]=¢q. Edrei
proved that

£ )dt + K+ logr)

r

(4) 2T(r, f) — N(r) < re f ” n;q*;(lt) ¢(

q¥1
+14(—;—> T(2R) for r0§r=|z|§%R,

where

nxe)=3 1 +> 1,

0<|g,l=min(¢,R) 0<[bv|=min(t, R)

a, and b, being the zeros and the poles of f(z),

1 [ dé
$(2) = 2%./: (#®—2tcosf + 1)V
and K is an absolute constant.
Let

plolT.
Since, the order of T.(r, f) is equal to p—a and lower order of T.(r,f) is at

most u, we can apply Lemma 1 [3] for T.(r,f) and o, 7 chosen as above. We
have a sequence {r,}i2, increasing to infinity such that

(5) LD TD a=i=mm.

and
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(6) - T(rl’f)

I,—-wo

We estimate the right-hand side of the inequality (4). First let
I(r) =r‘1f ":qff) ¢>( ) dt .

Then, using the inequality
p)=2/t 2=1),
we obtain

I(r)y=r f ' %(f% (_:“) dt + KT(ZR)(%)M (ro=r=R/2),
B

where 7(t) = n(¢, 0)+n(¢, o0) —n(0, 0)—n(0, o) and n(8) = n(0), 8>0.
Since

t(1+1/7)
4
0 < L "D g < N+ 1/m),

we have

R(1+1/7)
I(r) =r‘(1+1/7)%(r+ 1)f lt\zgtl) ] (7‘(1 _: 1/7))

B(1+1/7)

g+1
+ KT(2R) (‘1%) (ro<r=<R/2).
Using, here, Proposition 1-3) for £ =2, that is, the inequality

NG = 2,, t"N (2t),

we obtain

R(1+1/7) N(t) t R(l+1/r)N(2t) ¢
f A ¢( r(1+1/7)) P 1f gorie P (r(l—l—l/'r))dt

B(1+1/r) B(1+1/7)

_ 2a+1y 2R (1+1/1) N,(t) ¢
201 e T\ 2r(l+1/7)

28(1+1/7)

)dt:Il.
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For any positive number &, there is a £, such that

N(t) = (Kf) + OTlt, f) (E=2t,).

20+1a 2R(1+1/7) T,,(t) t
(7 ) II é 2¢ — 1 {(Kﬂ(f) + 8) tq+1—a ¢ (27.(1_*_1/7.)) dt

2to
o NJ(2t) ¢ )
* j;ﬁ(l+1/r) tq+1-ﬂ qs 27'(1 + 1/7) dt } .

Now, we estimate the first term of the right-hand side of the above inequality
by using (5) for the sequence {r}i..
We put

AR(1+1/r)=ri" (I =0,1,---).

Then, for r,=r=R,/2, it holds that

2R;(1+1/7)
_ Tt) t
n=[T e (2r(1+1/7)) de

2to

Ta(rl) 2Ry (1+1/7) 1 ¢
=
re P\ 1/m) | U

2to

Changing ¢/(2r(1+1/7)) to u, we see that the right-hand side of the above is
equal to

Ry/r
Tu(rl) (2(1+ 1/7))r+u—qrr+u—af ur+a—q—1¢(u)du .
a 260/7(141/r) ,

Since

- 4.4
tle(t)dt < —
j; $(2) sinzlB

0<B<D,

for 8=7+a—q, we see

44

Ta(rl) THA—=( T+ A=
L= r° (@A + 1/m)yresermre=e |sinz(t+a)|

Next, we estimate the second term of the right-hand side of (7):
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(8) L=New[ e (QﬂTi—-Uﬂ) “

28 (1+1/7)

to/7(1+1/7)
= @ty + U Ne [ wdu
B/r

to/7(1+1/7) 1
- @rea+yorNen [ vy (7) du

B/r

because ¢ satisfies the relation

u(n) = ¢(i)-

u

Changing 1/u to t, we see that the last term in (8 ) equals

7/B
(2to)*(2(1 + 1/7)r) " N.(2¢,) f t'$(t)dt .

r(1+1/7) /te

Since
ot) < 2/t

for t =2, we see for 7(=2t,) that

r/B
(9) L= ey 22L + 1/nyr)y No2ey) | e

2(2t4)"Na(2t0)
< { q(2B(1+1/7))*
(2t0)2N.(2ty)logr/28 for g¢=0.

for ¢>0

Therefore, we have

44
|sinz(T+a)|

10) I(r) = 7L + 1/7)(1 + 1) g"_ol‘ (KA f)+e>%f‘)(z(1+ 1/m)r)r+ea

q+1
+ I, + KT(2R) (—Ig—)
l

for v = max(r,, 2t,) =r=R,/2.
Combining (4 ), (9) and (10), dividing by 7** and integrating with respect to
r from v to 7(=R,/2), we have
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2T (r,v; f) — N7, v)

2t+¢+l a Ta(rz

= (1+1/,‘_)1+n+1 (T+1)2—_—1 (Ka(f)+8) e |Sln7t 'T+d l f =11y

+ K, f (w IOE,,T)d r Ko Rqﬂ f r-dr,
v

where K, and K, are positive constants.
This reduces to

(11) 2Tu(r,v5 f) — Na(r, ")
21+a+1a catd 4.4 Ta(rb ro;ﬁ T
=% (1+1/7) (Kol f) +€) Isinz(r+a)| ' 4
" aerea  logr Ky TQR) g-a
+ K'j; (7’“ + Fl+a d?‘+q+1 —a R! e

By the definition, we have for any positive &
(12) (2 = Ko f) =& Tulr, 5 f) = 2Tu(r, v; f) — Nlr, v)
for all sufficiently large 7.
As
R, _ ri”

" (1+1/T)/'°° (

l—-—)oo),

we can take

r=r,
in the above discussion for all sufficiently large /. We can prove easily

lim Tar,v, f)

=1
r—500 Ta(r, ro ’f)

and by (6) we get

K, f (,-a-l-“ + loﬁf) dt = o(Tu(r,, f)) (I —o0).
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Further

T(2Rl) 7"{+1—a< K, T.4R,, ro;f) (L)qﬂ-a

Ta(rlerQf) ) R = Ta(re, ro;f) R,
(4RL)T _7';_ q+l-a _ _1"_1 g+l-r—a
=K r’ R, =K R,

by Proposition 1-1), (5) and the choice of R,. Since R, =r{’"/4(1+1/7), the last
term of the above inequalities equals

Ksrl (1—7')(q+1—r-a)

which tends to zero as [—0 by virtue of (1 - {—)(q +1—7—a)<0, where

K;, K, and K; are positive constants.
Putting 7 =7, in (11), combining (11) and (12) and using above properties,
we have, & being as small as we please,

_ Kl 1) Kl f)
= |sinz(r+a)|

2 — K.(f)

where
Kla,7) = 2.2(2(1 + 1/7))**** /(2" - 1) .

This implies

2|sinz(r+a)|
Ka(f) gI{(a’ 7) + |sinz(r+a)|’

which is the desired.

COROLLARY 1. Let f(z) be a meromorphic function in |z|<co of order
P(= oo) and lower order p. If, for some admissible a, 0 <a<1/2,

1) when p<co, then
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2) when p= oo, then f(z) is of regular growth.

PROOF. 1) The case p<<co. By Corollary of Theorem 3, p is an integer.
Further, by Theorem 4, we have

M g 1-— a,
so
pw—a>0.
If p#pu, then clearly p>[u]. First, we shall prove that
p—lul=1.
Suppose that
p—lpul=2.
Let
T=[u]+1+E 0<<ECL/2.
Then

[Fl=F+al=[pl+Lr+a<p.
Therefore, Theorem 5 implies that
K.f)>0,

which is a contradiction. This shows

p—Ipl=1.
We have also
p=1
Now, we prove that
pP-r=a

If



654 N. TODA
P-—p>a,
then, there is a non integral number = such that

p<T, THa<p

and so
[r] =[r+a] = [ul.
As these numbers satisfy the conditions of Theorem 5, we obtain by Theorem 5
Kdf)>0,

which is a contradiction. This implies p—p=a.
2) The case p =oo. Suppose that u<<co. By Theorem 4,

w=1l—a.
Hence
pw—a>0.
Let
r=[pl+14+E, 0<ECL/2.
Then

[fl=[r+al =[pl+1,7+a << oo
As these numbers satisfy the conditions of Theorem 5, we have by Theorem 5
K(f) >0,
which is a contradiction. Thus we have
p= co.
COROLLARY 2. If, for any a>0,
K(f)=0,

then, f(z) is of regular growth; and if p<<co, then p is a positive integer.



ON A MODIFIED DEFICIENCY 655

LEMMA 2. Let f(2) be a transcendental meromorphic function in |z|<<oo.
Then,

lme%TMﬂ=hmwl%TMf)

rosco log P log

lim inf [ LES) _ pio g log T f)
Treo log 7 Too log 7

(See [1]).

THEOREM 6. Let f(z) be a transcendental meromorphic function in
|z| < oo of order p and lower order . If, for some admissible a, 0<<a<1/2,

S 8ua) =1 and 8(c0) =1,

a>x00

then, 1) if p< oo, then

pP—u=a;

2) if p= oo, then f(2) is of regular growth, that is, p= p.

PROOF. By the definition of ®,(c0), we see
1 = 8s(00) = Bu(c0) =1.
By Theorem 2, we have
(13) 8(0) =1.
On the other hand, it holds that
N(r,f)=2N(r.f),

so we obtain

N(r, f*) = 2N, f) .

In our case, by Theorem 1,

. Tar,f") _
lim 77 = 1
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so, by the hypothesis,

0=lim supiv,r—“((i'ff% = 2 limsup N"(r’% =0.

T—00 7', T—00 Ta (7‘

This shows that
(14) 3i(0) =1.
By (13) and (14)
0=Kdf)=2-8/(0) —8(0) = 0.

Therefore, by Corollary of Theorem 5 and Lemma 2, we have this theorem.

COROLLARY. Let f(z) be transcendental meromorphic in |z|<<oo. If

> 8a)=1 and 8() =1,

axoo

then, for any admissible a,

> 8la) =1 and 8.(x)=1.

axoo

Therefore, in this case, f(z) is of regular growth even if the order of
f(z) is infinite.

PROOF. We have by Proposition 4

and using Corollary of Proposition 3 we see

1=33%a)=> 8.l =1.

A0 A3x00

PROPOSITION 7. Let f(z) be a meromorphic function in |z| < oo. If, for
any admissible a,

2_0%(a) =2,

then
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d.(a) = Adla)
for any complex number a finite or not.

We can prove this easily by using Theorems 1 and 2.

6. Supplement to [6]. In our former paper [6], there are some gaps in the
proofs of Theorems 1, 2, 4 and 5, where we used Lemmas 2, 4 and 7 which are
valid only for meromorphic functions of finite order. That is, we concluded that,
if a meromorphic function in |z|< oo is of lower order finite and has the deficient

values such that

> 8@ =1 and §(0) =1,

X0

then the function is of order finite and of regular growth. This can not be proved
by Lemmas 2, 4 and 7 in [6]. But, we can prove this by Corollary of Theorem
6 and can cover these gaps in the proofs of Theorems 1, 2, 4 and 5 in [6].

Addendum. We can give an example of meromorphic functions in |z|<Ceo
such that

S.(a) # 3(a)
for some admissible a and some value a.
In fact, let fi(z) be an entire function of order p and lower order u such that
P+ u, f3(z) an entire function of regular growth and of order A, p<<a<p. There

is a finite value w, not exceptional in the sense of Valiron such that fi(z) and
f3(z)=s2(2) —w, have no common zero. Then the meromorphic function

flz) = fi(2)/f3(2)
is of order p and lower order not less than A. Further,
N(?",f) = N(?’, 07f3)

and

Trf)=T(rfi)+T(rf:)+0Q1).
By the properties of f1(z) and f;(z), we can verify easily that

8(c0, f) =1/2
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and

N. TODA

that if A <a<p, then
Oa(o0, f) = 1.

S.Mori told me that by another method he could also construct such an

example of meromorphic functions as mentioned above.
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